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1. Sound Waves
By performing a perturbation analysis of the mass and momentum conservation equations,
derive the dispersion relation for sound waves,

ω2 =
δP̂
δρ̂

k2, (1)

where the hat indicates Fourier components. Using this dispersion relation, derive the
phase and group speed of sound waves. Compare and discuss the different properties of
sound and gravity waves.

2. Gravity Waves
Let the total gas pressure and density be related by the isothermal sound speed, P = c2

iso,0 ρ
and let’s assume a fixed gravitational field of the form

g = −
g0

1 + z/z0
ez. (2)

(a) Assuming hydrostatic equilibrium, derive the density stratification, i.e., ρ = ρ(z, h)
where h = c2

iso,0/g0 is the pressure scale height.

(b) Take the limit z0 → ∞ and compute ρ(z, h).

(c) Now, compute the Brunt-Väisälä frequency for both atmospheres (finite z0 and
z0 → ∞). In which of the two atmospheres do you get g-mode trapping and at which
height are they trapped?

(d) Compute the Brunt-Väisälä frequency in the central cluster regions (which have a
cuspy NFW density profile) and in the Earth’s atmosphere to order of magnitude. To
this end, you may take the limit z � z0.



3. Shocks
Show, that a Galilean transformation of the Rankine-Hugoniot shock jump conditions from
the shock to the laboratory rest system leads to the generalized Rankine-Hugoniot condi-
tions of mass, momentum, and energy conservation at a shock,

3s[ρ] = [ρ3],
3s[ρ3] = [ρ32 + P], (3)

3s

[
ρ
32

2
+ ε

]
=

[(
ρ
32

2
+ ε + P

)
3

]
.

Here 3s and 3 denote the shock and the mean gas velocity measured in the laboratory rest
system and we introduced the abbreviation [F] = Fi − F j for the jump of some quantity F
across the shock.

4. Turbulence
Consider the Navier-Stokes equation in the following compact form

d3
dt

= −
∇P
ρ

+ ν∇23, (4)

where d/dt = ∂/∂t + 3 ·∇ is the Lagrangian time derivative and ν = η/ρ is the kinematic
viscosity.

(a) By introducing characteristic length L0, velocity V0, and density ρ0 scales, rewrite the
Navier-Stokes equation into dimensionless form. Hint: you also have to introduce a
dimensionless time and a dimensionless Nabla operator using these three character-
istic scales.
You will find, that the dimensionless equation involves one number, the Reynolds
number Re ≡ L0V0/ν, that characterizes the flow and determines the structure of the
solutions to this equation. What is the meaning of this number?

(b) In the lectures, we introduced an energy flow rate per unit mass, ε̇ = 33λ/λ, that is valid
on all scales λ and constant (because energy does not accumulate at any intermediate
scale). Hence, ε̇ = V3/L has also the meaning of an energy injection rate into the
turbulent cascade at the outer scale L. Defining the Kolmogorov length `, show that
this defines corresponding velocity and time scales,

` ≡

(
ν3

ε̇

)1/4

, 3` = (ε̇ν)1/4 , τ` =

(
ν

ε̇

)1/2
. (5)

What value has the Reynolds number Re at the Kolmogorov length ` and why?
Work out the scaling of the following ratios, L0/`, V0/3`, τ/τ`, and ε0/ε` with the
Reynolds number. We speak about a turbulent flow if the Reynolds number at the
outer scale is Re(L) & 103. Interpret your ratios in the light of this requirement.

(c) Do we have turbulent flows in the hot (kBT = 10 keV) intracluster medium (n =

10−3 cm−3), if the outer scale is L0 = 300 kpc and we consider it to be a purely
hydrodynamical system? Argue qualitatively, what you would expect to change, if
we did add magnetic fields to the system.


