Christoph Pfrommer

Leibniz Institute for Astrophysics, Potsdam (AIP) University of Potsdam

Lectures in the International Astrophysics Masters Program at Potsdam University

The Physics of Galaxy Clusters Modus operandi

- I provide you with a full set of lecture notes, freely available at: https://pages.aip.de/pfrommer/Lectures/galaxy_clusters.html
- weekly reading assignments, which help you to prepare the class for the upcoming week
- ~10-12 questions about the reading assignment: answers to be handed in every Tuesday at noon

The Physics of Galaxy Clusters Modus operandi

- I provide you with a full set of lecture notes, freely available at: https://pages.aip.de/pfrommer/Lectures/galaxy_clusters.html
- weekly reading assignments, which help you to prepare the class for the upcoming week
- ~10-12 questions about the reading assignment: answers to be handed in every Tuesday at noon
- exercise sheet with order-of-magnitude estimates, derivations, some problems: due on Tuesday every second week at noon
- in-person lecture every week: derivations and discussions about the material that you prepared

The Physics of Galaxy Clusters Modus operandi

- I provide you with a full set of lecture notes, freely available at: https://pages.aip.de/pfrommer/Lectures/galaxy_clusters.html
- weekly reading assignments, which help you to prepare the class for the upcoming week
- ~10-12 questions about the reading assignment: answers to be handed in every Tuesday at noon
- exercise sheet with order-of-magnitude estimates, derivations, some problems: due on Tuesday every second week at noon
- in-person lecture every week: derivations and discussions about the material that you prepared
- this won't be a 90-min class the way I would have normally taught it, but rather interactive sessions where
 - you can ask questions
 - we discuss the concepts of the lectures
 - we do order of magnitude physics

- **Contact:** cpfrommer@aip.de
- Literature: lecture notes on lecture web page
- **Background:** cosmology part from *Galaxies & Cosmology* useful but not required
- *Credits:* 50% of weekly questions and 50% of exercises, oral exam after the course

• Success:

talk to your fellow students and discuss! Connect online and in real life!

• Overview

Evolution of the dark component

Evolution of the baryonic component

Cluster physics informed by different observables

Overview

- What is a galaxy cluster?
- Why are clusters interesting?

Evolution of the dark component

- When, where, and how do clusters form?
- How many clusters are there?
- Structure of a cluster?

• Evolution of the baryonic component

- Non-radiative physics
- Radiative physics
- Non-thermal processes

Cluster physics informed by different observables

Optical, X-rays, Sunyaev-Zel'dovich effect, radio

My own motivation to study galaxy clusters

Fascinating science

- clusters are largest collapsed objects in the universe
- clusters are extremely rare: opportunity to study large-scale structure, dark energy and dark matter
- clusters reveal rich astrophysics: laboratories for physics, including plasma processes to collisionless dynamics

My own motivation to study galaxy clusters

• Fascinating science

- clusters are largest collapsed objects in the universe
- clusters are extremely rare: opportunity to study large-scale structure, dark energy and dark matter
- clusters reveal rich astrophysics: laboratories for physics, including plasma processes to collisionless dynamics

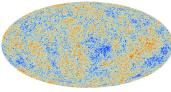
Plan of the lectures

- start with overview today and next week
- we will assemble a cluster by starting simple and adding consecutively more complex physics

My own motivation to study galaxy clusters

• Fascinating science

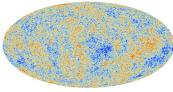
- clusters are largest collapsed objects in the universe
- clusters are extremely rare: opportunity to study large-scale structure, dark energy and dark matter
- clusters reveal rich astrophysics: laboratories for physics, including plasma processes to collisionless dynamics


Plan of the lectures

- start with overview today and next week
- we will assemble a cluster by starting simple and adding consecutively more complex physics

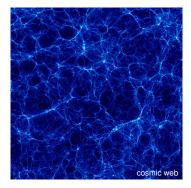
Main take-away points

- theoretical astrophysics connected to multi-frequency observations
- order of magnitude physics

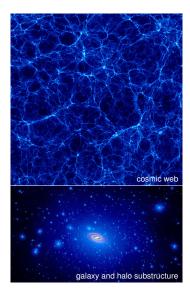


ESA/Planck Collaboration (2013)

 small fluctuations in cosmic microwave background are initial conditions for structure formation

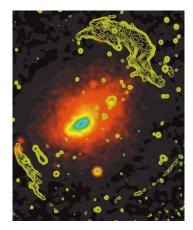

ESA/Planck Collaboration (2013)

dropping pebbles into the pond generates expanding waves that interfere with each other


- small fluctuations in cosmic microwave background are initial conditions for structure formation
- galaxies and clusters form at sites of constructive interference of those primordial waves

- small fluctuations in cosmic microwave background are initial conditions for structure formation
- galaxies and clusters form at sites of constructive interference of those primordial waves
- cosmic matter assembles in the "cosmic web" through gravitational instability
- galaxies form as "beats on a string" along the cosmic filaments
- galaxy clusters form at the knots of the cosmic web by mergers of galaxies and galaxy groups

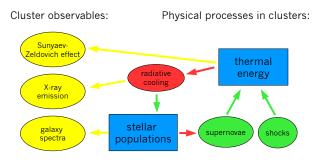
- small fluctuations in cosmic microwave background are initial conditions for structure formation
- galaxies and clusters form at sites of constructive interference of those primordial waves
- cosmic matter assembles in the "cosmic web" through gravitational instability
- galaxies form as "beats on a string" along the cosmic filaments
- galaxy clusters form at the knots of the cosmic web by mergers of galaxies and galaxy groups



Cluster mergers: the most energetic cosmic events

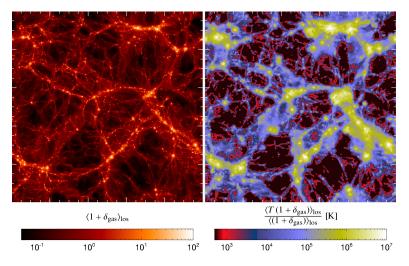
1E 0657-56 ("Bullet cluster")

(X-ray: NASA/CXC/CfA/Markevitch; Optical: NASA/STScI; Magellan/U Arizona/Clowe; Lensing: NASA/STScI; ESO WFI; Magellan/U Arizona/Clowe)

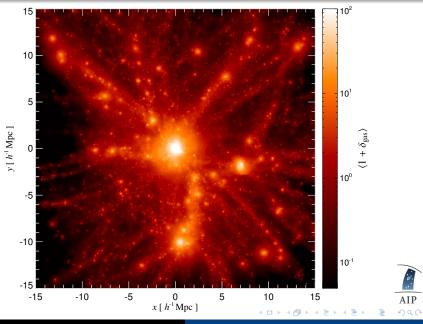


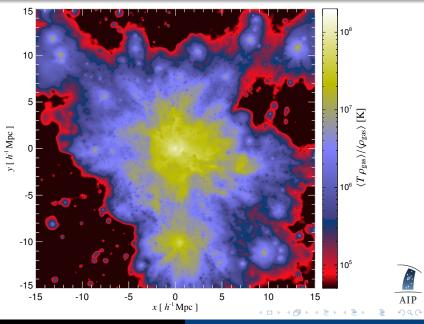
Abell 3667

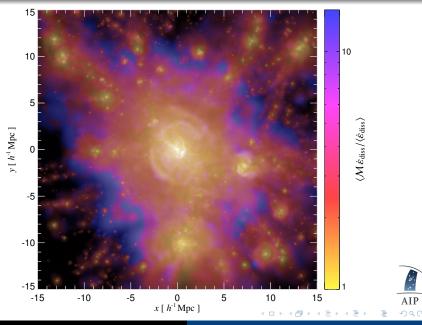
(radio: Johnston-Hollitt; X-ray: ROSAT/PSPC)

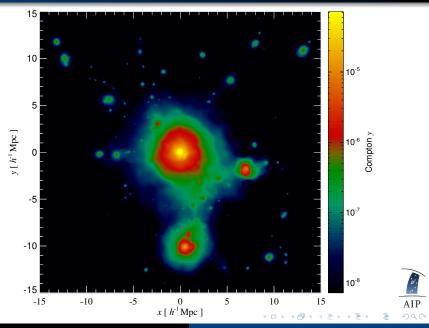


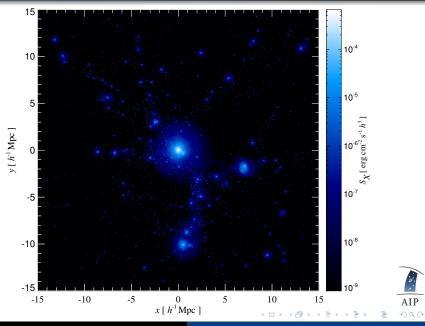
Cosmological simulations - flowchart

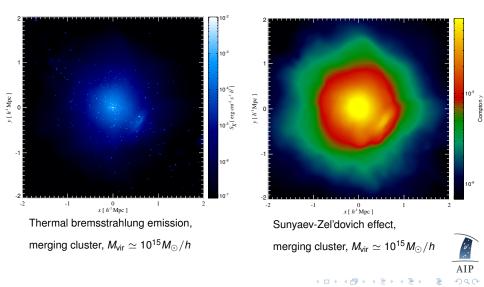

The structure of our Universe

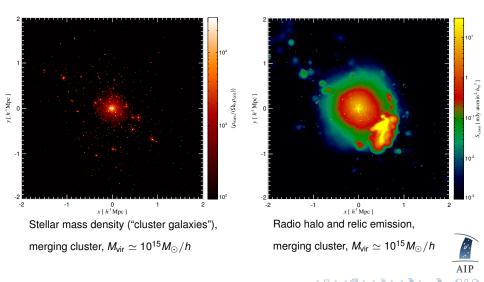

The "cosmic web" today. *Left:* the projected gas density in a cosmological simulation. *Right:* gravitationally heated intergalactic medium (CP+ 2006).


Cosmological cluster simulation: gas density


Mass weighted temperature


Shock strengths weighted by dissipated energy


Sunyaev-Zel'dovich effect: integrated thermal pressure


Thermal X-ray emission: gas density squared

Zooming on the cluster: thermal cluster gas

Zooming on the cluster: optical vs. radio synchrotron

• cgs system of units: cm, gram, second

- cgs system of units: cm, gram, second
- astrophysical length unit: parsecs (parallax second): distance at which the radius of Earth's orbit subtends an angle of one second of arc,

$$1pc = \frac{AU}{\tan\left(\frac{1^{\circ}\cdot 2\pi}{3600\cdot 360}\right)} \approx 2 \times 10^5 \, \text{AU} \approx 3 \times 10^{18} \, \text{cm}$$

- cgs system of units: cm, gram, second
- astrophysical length unit: parsecs (parallax second): distance at which the radius of Earth's orbit subtends an angle of one second of arc,

$$1\text{pc} = \frac{\text{AU}}{\tan\left(\frac{1^\circ\cdot 2\pi}{3600\cdot 360}\right)} \approx 2\times 10^5\,\text{AU} \approx 3\times 10^{18}\,\text{cm}$$

• astrophysical mass unit: solar mass, $1 M_{\odot} \approx 2 \times 10^{33} g$

- cgs system of units: cm, gram, second
- astrophysical length unit: parsecs (parallax second): distance at which the radius of Earth's orbit subtends an angle of one second of arc,

$$1\text{pc} = \frac{\text{AU}}{\tan\left(\frac{1^\circ\cdot 2\pi}{3600\cdot 360}\right)} \approx 2\times 10^5\,\text{AU} \approx 3\times 10^{18}\,\text{cm}$$

- astrophysical mass unit: solar mass, $1 M_{\odot} \approx 2 \times 10^{33} g$
- astrophysical time unit: $1 \text{ Gyr} \approx 10^9 \times \pi \times 10^7 \text{s} \approx 3 \times 10^{16} \text{s}$

- cgs system of units: cm, gram, second
- astrophysical length unit: parsecs (parallax second): distance at which the radius of Earth's orbit subtends an angle of one second of arc,

$$1\text{pc} = \frac{\text{AU}}{\tan\left(\frac{1^\circ\cdot 2\pi}{3600\cdot 360}\right)} \approx 2\times 10^5\,\text{AU} \approx 3\times 10^{18}\,\text{cm}$$

- astrophysical mass unit: solar mass, $1 M_{\odot} \approx 2 \times 10^{33} g$
- astrophysical time unit: $1 \text{ Gyr} \approx 10^9 \times \pi \times 10^7 \text{s} \approx 3 \times 10^{16} \text{s}$
- energy: $1 \text{ erg} = \frac{\text{g cm}^2}{\text{s}^2} = 10^{-7} \text{J}$ and $1 \text{TeV} = 10^{12} \text{eV} \approx 1.6 \text{ erg}$

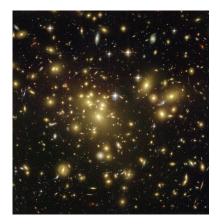
- cgs system of units: cm, gram, second
- astrophysical length unit: parsecs (parallax second): distance at which the radius of Earth's orbit subtends an angle of one second of arc,

$$1\text{pc} = \frac{\text{AU}}{\tan\left(\frac{1^\circ\cdot 2\pi}{3600\cdot 360}\right)} \approx 2\times 10^5\,\text{AU} \approx 3\times 10^{18}\,\text{cm}$$

- astrophysical mass unit: solar mass, $1 M_{\odot} \approx 2 \times 10^{33} g$
- astrophysical time unit: 1 Gyr $\approx 10^9 \times \pi \times 10^7 s \approx 3 \times 10^{16} s$
- energy: $1 \text{ erg} = \frac{\text{g cm}^2}{\text{s}^2} = 10^{-7} \text{J}$ and $1 \text{TeV} = 10^{12} \text{eV} \approx 1.6 \text{ erg}$
- charge: balancing electron rest mass and potential energy, $\frac{e^2}{T_0} = m_e c^2 \qquad 1 \text{ esu} = 1 \text{ erg}^{1/2} \text{ cm}^{1/2} = 1 \text{ cm}^{3/2} \text{ g}^{1/2} \text{ s}^{-1}$

・ロト ・ 同ト ・ ヨト ・ ヨト

- cgs system of units: cm, gram, second
- astrophysical length unit: parsecs (parallax second): distance at which the radius of Earth's orbit subtends an angle of one second of arc,

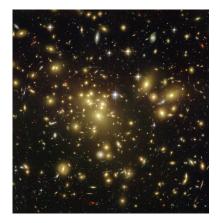

$$1\text{pc} = \frac{\text{AU}}{\tan\left(\frac{1^\circ\cdot 2\pi}{3600\cdot 360}\right)} \approx 2\times 10^5\,\text{AU} \approx 3\times 10^{18}\,\text{cm}$$

- astrophysical mass unit: solar mass, $1 M_{\odot} \approx 2 \times 10^{33} g$
- astrophysical time unit: $1 \text{ Gyr} \approx 10^9 \times \pi \times 10^7 \text{s} \approx 3 \times 10^{16} \text{s}$
- energy: $1 \text{ erg} = \frac{\text{g cm}^2}{\text{s}^2} = 10^{-7} \text{J}$ and $1 \text{TeV} = 10^{12} \text{eV} \approx 1.6 \text{ erg}$
- charge: balancing electron rest mass and potential energy, $\frac{e^2}{r_0} = m_e c^2 \qquad 1 \text{ esu} = 1 \text{ erg}^{1/2} \text{ cm}^{1/2} = 1 \text{ cm}^{3/2} \text{g}^{1/2} \text{s}^{-1}$

defines classical electron radius:

$$r_{0} = \frac{e^{2}}{m_{e}c^{2}} \approx \frac{(4.8 \times 10^{-10})^{2} \text{cm}^{3}\text{g}}{10^{-27} \text{g} 10^{21} \text{cm}^{2} \text{s}^{-2} \text{s}^{2}} \approx \frac{2.3 \times 10^{-19}}{10^{-6}} \text{cm} \approx 3 \times 10^{-13} \text{ cm}$$

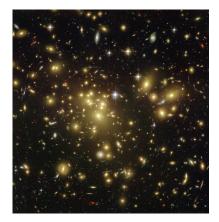
$$AIP$$



- rich galaxy clusters have $\sim 10^3$ galaxies
- galaxies have Gaussian velocity distribution with a dispersion $\sigma_v = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2} \approx 1200 \, \text{km s}^{-1}$
- the typical cluster radius is

 $\it r_{cl} pprox 3 \; Mpc pprox 10^7 \; lyr pprox 10^{25} \; cm$

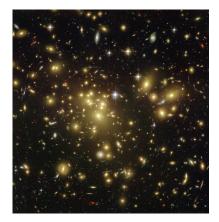
 this defines a dynamical cluster timescale, t ≈ r_{cl}/σ_v ≈ 2 Gyr



- assuming that the cluster is a closed system in dynamical equilibrium
- virial theorem relates the kinetic energy, *E*_{kin}, of a galaxy of mass *M*_{gal} to its potential energy, *E*_{pot},

$$\begin{split} & 2E_{\rm kin}+E_{\rm pot}=0,\\ & M_{\rm gal}\sigma_{\nu}^2-\frac{GM_{\rm cl}M_{\rm gal}}{r_{\rm cl}}=0, \end{split}$$

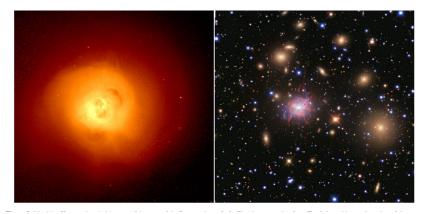
G is Newtons gravitational constant



- assuming that the cluster is a closed system in dynamical equilibrium
- virial theorem relates the kinetic energy, *E*_{kin}, of a galaxy of mass *M*_{gal} to its potential energy, *E*_{pot},

$$\begin{split} & 2E_{\rm kin}+E_{\rm pot}=0,\\ & M_{\rm gal}\sigma_{\nu}^2-\frac{GM_{\rm cl}M_{\rm gal}}{r_{\rm cl}}=0, \end{split}$$

$$M_{\rm cl} = \frac{r_{\rm cl}\sigma_{\nu}^2}{G} \\ \approx \frac{10^{25}\,{\rm cm}\,1.4\times10^{16}\,{\rm cm}^2{\rm s}^{-2}}{7\times10^{-8}\,{\rm erg}\,{\rm cm}\,{\rm g}^{-2}} \\ \approx 2\times10^{48}\,{\rm g}\approx10^{15}\,{\rm M}_{\odot}$$



- *M*_{cl} sources the high velocity dispersion of galaxies
- a typical mass range for clusters is $(10^{14}\dots 10^{15})\,M_\odot$
- however, by adding up the all the luminous stellar mass within the galaxies, we only get $M_* \approx M_{cl}/50$
- this discrepancy of the gravitating and luminous mass in galaxy clusters was already noted by Fritz Zwicky in the 1930s: he postulated the existence of dark matter more than 80 years ago!
- to be precise, back then the "dark matter" could have been baryonic in form of compact objects (such as planets) or in form of diffuse gas

Galaxy clusters: X-ray vs. optical window

Perseus galaxy cluster

- 1970s: X-ray astronomy that galaxy clusters are among the brightest X-ray sources
- improved angular resolution: the entire galaxy cluster glows in X-rays, filling in the volume in between the galaxies
- which emission process produces X-rays?

- 1970s: X-ray astronomy that galaxy clusters are among the brightest X-ray sources
- improved angular resolution: the entire galaxy cluster glows in X-rays, filling in the volume in between the galaxies
- which emission process produces X-rays?
- bremsstrahlung emission of hot thermal electrons,
- Iine emission from recombination of atoms, or
- Inverse Compton emission by relativistic electrons interacting with low-energy photons: electrons cool by upscattering these photons into the X-ray regime ⇒ power-law X-ray spectra

- observed X-ray spectrum is flat with an exponential decline ⇒ thermal bremsstrahlung emission
- bremsstrahlung emissivity scales as $j_X \propto n_e n_i \sqrt{T_e}$, where T_e , n_e , and n_i are the electron temperature, density and the ion density
- additionally, spectral lines

- observed X-ray spectrum is flat with an exponential decline ⇒ thermal bremsstrahlung emission
- bremsstrahlung emissivity scales as $j_X \propto n_e n_i \sqrt{T_e}$, where T_e , n_e , and n_i are the electron temperature, density and the ion density
- additionally, spectral lines

AIP

 amount of X-rays and location of the exponential break (as well as individual lines) characterize the plasma:

$$n pprox (10^{-4} \dots 10^{-3}) \, \mathrm{cm}^{-3}$$

 $T pprox (10^7 \dots 10^8) \, \mathrm{K}$

 \Rightarrow hot, dilute, and thermal gas

 we talk about gas temperature in terms of particle energies,

$$\begin{split} k_{\text{B}} T &\approx (1 \dots 10) \, \text{keV} \\ &= (10^3 \dots 10^4) \, \text{eV} \end{split}$$

 most elements are fully ionized, except for highly-ionized iron, e.g., hydrogen-like iron (iron nucleus with one bound electron, Fe XXVI)

 we talk about gas temperature in terms of particle energies,

$$\begin{split} k_{\text{B}} T &\approx (1 \dots 10) \, \text{keV} \\ &= (10^3 \dots 10^4) \, \text{eV} \end{split}$$

- most elements are fully ionized, except for highly-ionized iron, e.g., hydrogen-like iron (iron nucleus with one bound electron, Fe XXVI)
- the transition energy of such highly ionized iron is

Fe XXV: $h\nu \approx Z(Z-1) \operatorname{Ry} = 26 \times 25 \times 13.6 \operatorname{eV} \approx 8.8 \operatorname{keV}$ Fe XXVI: $h\nu \approx Z^2 \operatorname{Ry} = 26^2 \times 13.6 \operatorname{eV} \approx 9 \operatorname{keV}$,

i.e., the higher the temperature, the higher the ionization state

 assuming that hot gas with energy E_{th} is in hydrostatic equilibrium with the cluster potential, we have

$$egin{aligned} \mathcal{E}_{ ext{th}} &= \mathcal{E}_{ ext{pot}}, \ rac{3}{2} k_{ ext{B}} \mathcal{T} &= \mu m_{ ext{p}} rac{G \mathcal{M}_{ ext{cl}}}{r_{ ext{cl}}}, \end{aligned}$$

 $m_{\rm p}$ is the proton mass and $\mu = 4/(5X + 3) \approx 0.6$ is mean molecular weight with X = 0.24

 assuming that hot gas with energy E_{th} is in hydrostatic equilibrium with the cluster potential, we have

$$egin{aligned} \mathcal{E}_{ ext{th}} &= \mathcal{E}_{ ext{pot}}, \ rac{3}{2} k_{ ext{B}} \mathcal{T} &= \mu m_{ ext{p}} rac{G M_{ ext{cl}}}{r_{ ext{cl}}}, \end{aligned}$$

 $m_{\rm p}$ is the proton mass and $\mu = 4/(5X + 3) \approx 0.6$ is mean molecular weight with X = 0.24

• solving for the gravitating cluster mass with $k_{\rm B}T = 6$ keV yields

$$\begin{split} \mathcal{M}_{\rm cl} &= \frac{3}{2} \frac{k_{\rm B} \, \textit{Tr}_{\rm cl}}{\mu m_{\rm p} G} \approx \frac{1.5 \times 10^{-8} \, \rm erg \, 10^{25} \, \rm cm}{0.6 \times 1.7 \times 10^{-24} \, \rm g \, 7 \times 10^{-8} \, \rm erg \, \rm cm \, g^{-2}} \\ &\approx 2 \times 10^{48} \, \rm g \approx 10^{15} \, M_{\odot}. \end{split}$$

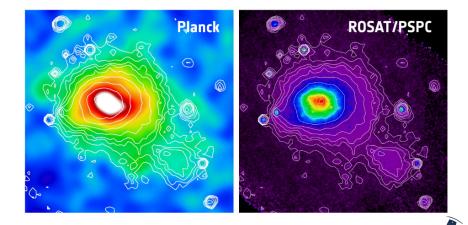
- resolved X-ray imaging of a galaxy cluster produces an X-ray surface brightness map
- deprojection enables us to back out the mass density profile
- integrating over the cluster volume yields the total gas mass, $M_{\rm gas} \approx M_{\rm cl}/7$

- resolved X-ray imaging of a galaxy cluster produces an X-ray surface brightness map
- deprojection enables us to back out the mass density profile
- integrating over the cluster volume yields the total gas mass, $M_{\rm gas} \approx M_{\rm cl}/7$
- we found some of the matter that was "dark" in the optical by looking at a different waveband
- the rest cannot be directly seen in any other waveband, only indirectly through its gravitational interaction ⇒ "dark matter"
- it dominates the total cluster mass and is mostly responsible for the gravitational cluster potential

We can now summarize an inventory of cluster mass

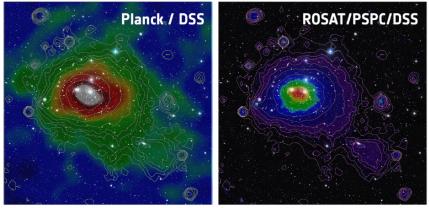
$M_{*}pprox$ 2% :	stars in galaxies
$M_{ m gas}pprox$ 13% :	hot gas $(1 - 10 \text{keV})$
$M_{ m dm}pprox$ 85% :	dark matter

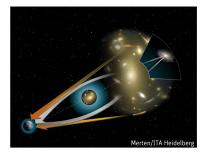
• the value of the baryon fraction in a cluster of $f_{\rm b,clus} \approx 0.15$ is somewhat smaller than the cosmic mean of $f_{\rm b,clus} \approx 0.166$


We can now summarize an inventory of cluster mass

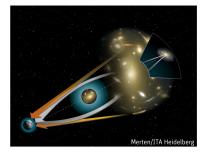
$M_{st}pprox$ 2% :	stars in galaxies
$\mathit{M}_{ ext{gas}}pprox$ 13% :	hot gas $(1 - 10 \text{keV})$
$\mathit{M}_{dm} pprox 85\%$:	dark matter

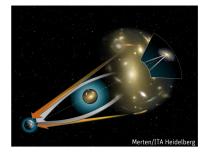
- the value of the baryon fraction in a cluster of $f_{b,clus} \approx 0.15$ is somewhat smaller than the cosmic mean of $f_{b,clus} \approx 0.166$
- this points to interesting physics, including non-gravitational energy input from supernovae and super-massive black holes
- interestingly, f_{b,clus} declines toward less massive clusters in which those feedback processes have a comparably larger impact because of the shallower cluster potential


Coma galaxy cluster: Sunyaev-Zel'dovich vs. X-rays

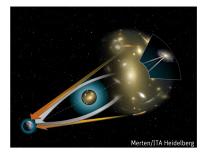

AIP

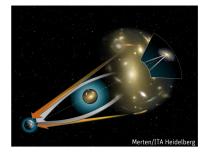
Coma galaxy cluster: SZE/X-rays vs. optical

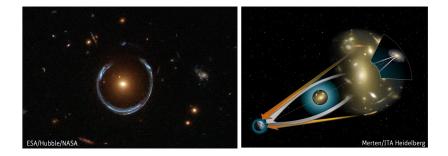

Christoph Pfrommer The Physics of Galaxy Clusters


≣⇒ ≣

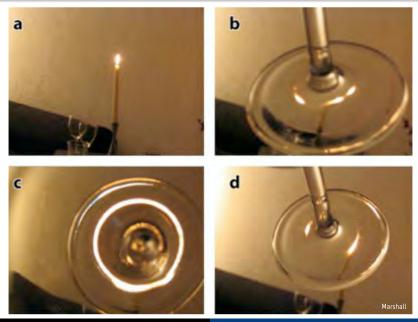
Christoph Pfrommer The Physics of Galaxy Clusters


 according to general relativity, light travels on geodesics (straightest possible lines) through curved space time


- according to general relativity, light travels on geodesics (straightest possible lines) through curved space time
- mass acts as a source of gravity, curving space time at the location of a lensing galaxy cluster ⇒ this causes the light rays to be deflected by the gravitational potential of the lensing object


 galaxy clusters (or galaxies) can act as gravitational lenses for galaxies behind them

- galaxy clusters (or galaxies) can act as gravitational lenses for galaxies behind them
- this causes a single galaxy to be mapped onto multiple images (or even a so-called Einstein ring, provided that we have a very symmetric configuration and a point-like source)



- galaxy clusters (or galaxies) can act as gravitational lenses for galaxies behind them
- this causes a single galaxy to be mapped onto multiple images (or even a so-called Einstein ring, provided that we have a very symmetric configuration and a point-like source)

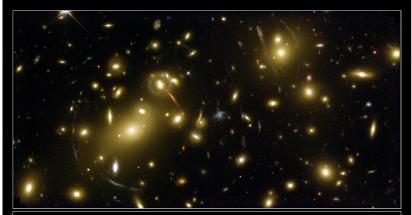
Analogy: light deflection at a wine glass

Christoph Pfrommer

The Physics of Galaxy Clusters

AIP

Gravitational lensing: Abell 1689

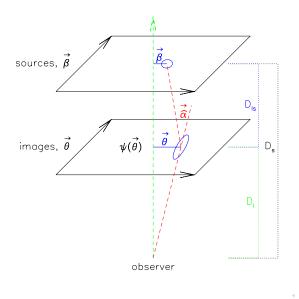


Christoph Pfrommer

The Physics of Galaxy Clusters

Gravitational lensing: Abell 2218

Galaxy Cluster Abell 2218 Hubble Space Telescope • WFPC2


NASA, A. Fruchter and the ERO Team (STScI, ST-ECF) • STScI-PRC00-08

Christoph Pfrommer

The Physics of Galaxy Clusters

Gravitational lensing: geometry

- D_I is the angular diameter distance to the light-deflecting cluster or galaxy
- D_s is the distance to the source galaxy
- D_{Is} is the angular diameter distance between deflector and source

AIP

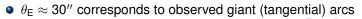
Gravitational lensing: order of magnitudes

 later, we will derive the Einstein radius θ_E; we state the result and insert some values to estimate the involved angular scales:

$$\begin{split} \theta_{\mathsf{E}} &= \left[\frac{4GM(\theta_{\mathsf{E}})}{c^2} \frac{D_{\mathsf{ls}}}{D_{\mathsf{l}} D_{\mathsf{s}}}\right]^{1/2} \\ &\approx 3'' \left(\frac{M}{10^{12} \, M_{\odot}}\right)^{1/2} \left(\frac{D}{1 \, \mathsf{Gpc}}\right)^{-1/2} \text{ (galaxy lensing)} \\ &\approx 30'' \left(\frac{M}{10^{14} \, M_{\odot}}\right)^{1/2} \left(\frac{D}{1 \, \mathsf{Gpc}}\right)^{-1/2} \text{ (cluster lensing)}, \end{split}$$

where $D = D_l D_s / D_{ls}$ is the lensing efficiency distance

Gravitational lensing: order of magnitudes


 later, we will derive the Einstein radius θ_E; we state the result and insert some values to estimate the involved angular scales:

$$\begin{split} \theta_{\mathsf{E}} &= \left[\frac{4GM(\theta_{\mathsf{E}})}{c^2} \frac{D_{\mathsf{ls}}}{D_{\mathsf{l}} \mathsf{D}_{\mathsf{s}}}\right]^{1/2} \\ &\approx 3'' \left(\frac{M}{10^{12} \, M_{\odot}}\right)^{1/2} \left(\frac{D}{1 \, \mathsf{Gpc}}\right)^{-1/2} \text{ (galaxy lensing)} \\ &\approx 30'' \left(\frac{M}{10^{14} \, M_{\odot}}\right)^{1/2} \left(\frac{D}{1 \, \mathsf{Gpc}}\right)^{-1/2} \text{ (cluster lensing),} \end{split}$$

where $D = D_l D_s / D_{ls}$ is the lensing efficiency distance

 in the case of galaxy lensing, the approximation of a point lens is justified whereas for cluster lensing, the size of the lens is much larger than the size of the source

 \Rightarrow requires detailed mass modeling because only the fraction of cluster mass within $\theta_{\rm E}$ contributes to the lensing potential

We distinguish two types of lensing:

- **strong lensing** is sensitive to the projected mass within θ_E and leads to radial arcs that are clearly visible in optical images; in this regime, a source can be imaged onto multiple different images
- weak lensing causes weaker distortions of a galaxy image in the tangential direction that cannot be detected on a individual basis because the effect is very small; we need to assume that the orientation of the neighboring galaxies is random and average over an aperture to detect a weak shear signal that is induced by the gravitational tidal field of the cluster lens

Overview of galaxy clusters: observations and simulations of different observational probes of clusters

- Order of magnitudes
- Optical window: galaxies probe cluster masses; clusters provide a great "magnifying glass" for studying transformational processes of galaxies
- X-ray emission: intracluster plasma probes cluster masses and hydrodynamical flows and instabilities
- Gravitational lensing directly probes cluster potential

Overview of galaxy clusters: observations and simulations of different observational probes of clusters

- Order of magnitudes
- Optical window: galaxies probe cluster masses; clusters provide a great "magnifying glass" for studying transformational processes of galaxies
- X-ray emission: intracluster plasma probes cluster masses and hydrodynamical flows and instabilities
- Gravitational lensing directly probes cluster potential
- Sunyaev-Zel'dovich effect
- Relation to the average universe

