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Cosmic microwave background (CMB) spectrum
Comparing the perfect black-body spectrum of the CMB and that of the Sun
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Sunyaev-Zel’dovich effect: idea
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Sunyaev-Zel’dovich effect: Compton scattering

CMB photon interacts with electrons of the ICM via Compton scattering

elastic scattering event conserves number of CMB photons

mean energy transfer from the “hot” electron to the “cold” photon: “inverse
Compton scattering”

causes distortion of the CMB spectrum: decrement in thermodynamic
temperature below ν0 ≈ 220 GHz, and an excess above

galaxy clusters appear as holes in the CMB sky at ν < ν0 and as extended
sources above
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Sunyaev-Zel’dovich effect: spectral shift
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Sunyaev-Zel’dovich effect: spectral distortion
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Sunyaev-Zel’dovich effect – scattering probability
How many cosmic microwave photons photons experience inverse Compton
scattering on passing through a cluster?

To answer this, we compute the optical depth

τ =

∫ L

0
neσTdl ≈ neσTL,

where L is the effective path length through the hot intracluster medium and σT is
the Thomson cross section,

σT ≈ 2πr2
0 = 2π

(
e2

mec2

)2

≈ 6

[(
4.8 × 10−10)2

10−27 1021

]2

cm2

≈ 6
(

3 × 10−13
)2

cm2 ≈ 6 × 10−25 cm2,

where r0 is the classical electron radius.

Hence, we obtain an optical depth

τ = neσTL ≈ 10−4 cm−3 6 × 10−25 cm2 1025 cm ≈ 6 × 10−4 ≪ 1.

⇒ on average only one photon in 2000 experiences a scattering event

Christoph Pfrommer The Physics of Galaxy Clusters



Sunyaev-Zel’dovich effect – scattering probability
How many cosmic microwave photons photons experience inverse Compton
scattering on passing through a cluster?

To answer this, we compute the optical depth

τ =

∫ L

0
neσTdl ≈ neσTL,

where L is the effective path length through the hot intracluster medium and σT is
the Thomson cross section,

σT ≈ 2πr2
0 = 2π

(
e2

mec2

)2

≈ 6

[(
4.8 × 10−10)2

10−27 1021

]2

cm2

≈ 6
(

3 × 10−13
)2

cm2 ≈ 6 × 10−25 cm2,

where r0 is the classical electron radius.

Hence, we obtain an optical depth

τ = neσTL ≈ 10−4 cm−3 6 × 10−25 cm2 1025 cm ≈ 6 × 10−4 ≪ 1.

⇒ on average only one photon in 2000 experiences a scattering event

Christoph Pfrommer The Physics of Galaxy Clusters



Sunyaev-Zel’dovich effect – scattering probability
How many cosmic microwave photons photons experience inverse Compton
scattering on passing through a cluster?

To answer this, we compute the optical depth

τ =

∫ L

0
neσTdl ≈ neσTL,

where L is the effective path length through the hot intracluster medium and σT is
the Thomson cross section,

σT ≈ 2πr2
0 = 2π

(
e2

mec2

)2

≈ 6

[(
4.8 × 10−10)2

10−27 1021

]2

cm2

≈ 6
(

3 × 10−13
)2

cm2 ≈ 6 × 10−25 cm2,

where r0 is the classical electron radius.

Hence, we obtain an optical depth

τ = neσTL ≈ 10−4 cm−3 6 × 10−25 cm2 1025 cm ≈ 6 × 10−4 ≪ 1.

⇒ on average only one photon in 2000 experiences a scattering event

Christoph Pfrommer The Physics of Galaxy Clusters



Sunyaev-Zel’dovich effect – scattering probability
How many cosmic microwave photons photons experience inverse Compton
scattering on passing through a cluster?

To answer this, we compute the optical depth

τ =

∫ L

0
neσTdl ≈ neσTL,

where L is the effective path length through the hot intracluster medium and σT is
the Thomson cross section,

σT ≈ 2πr2
0 = 2π

(
e2

mec2

)2

≈ 6

[(
4.8 × 10−10)2

10−27 1021

]2

cm2

≈ 6
(

3 × 10−13
)2

cm2 ≈ 6 × 10−25 cm2,

where r0 is the classical electron radius.

Hence, we obtain an optical depth

τ = neσTL ≈ 10−4 cm−3 6 × 10−25 cm2 1025 cm ≈ 6 × 10−4 ≪ 1.

⇒ on average only one photon in 2000 experiences a scattering event

Christoph Pfrommer The Physics of Galaxy Clusters



Sunyaev-Zel’dovich effect – energy transfer

How much energy is on average transferred to a photon (= the amplitude of the
Sunyaev-Zel’dovich effect)?

To answer this, we integrate the typical energy gain experienced by a photon in a
Compton interaction (kBTe/mec2) times the differential scattering probability of a
photon (dτ = neσTdl) over the photon path length, L.

This is the definition of the Compton-y parameter,

ycl =

∫ L

0

kBTe

mec2
neσTdl ≈ 10−2 × 6 × 10−4 = 6 × 10−6,

where, we adopted a line-of-sight averaged temperature of our massive
(1015 M⊙) cluster with kBTe ≈ 6 keV. This is a tiny signal!

As we can see, the SZ signal is proportional to the integrated electron pressure
(Pe = kBTene), so the hot gas of the galaxy clusters dominates the effect, but by
how much?

What about the other parts of the photon path? There is the photon propagation
through the intergalactic medium (IGM) and the halo of our galaxy ⇒ exercise

Compton-y parameter: y =

∫ L

0

kBTe

mec2
neσTdl ∼ ycl + yIGM + yMW
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Sunyaev-Zel’dovich effect: redshift dependence
Why is the Compton-y parameter independent of redshift?

The expansion of the universe redshifts photons independent of their energy
⇒ they are redshifted before and after Compton scatting irrespective of when
this happended!

Is the observable (solid-angle) integrated Compton-y parameter independent of
redshift?

Y =

∫
ydΩ =

1
D2

ang(0, z)

∫
yd2R

=
1

D2
ang(0, z)

σT

mec2

∫ Rvir

0
PedV

=
γ − 1

D2
and(0, z)

σT

mec2
xeXHµEgas

where xe = ne/nH is the free electron fraction, XH = 0.76 is the primordial
hydrogen mass fraction, and µ is the molecular weight so that

ne = xeXHµngas

Hence, the integrated Compton-y parameter depends on redshift via
Y ∝ D−2

ang(0, z)
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Synthesis of observational windows

Which observational method would you prefer to observe the
inner parts of a cluster? which for the outer parts?

Which problem do you see arising for studying small clusters
with galaxy observations? How reliable can you estimate the
cluster mass here?

Which method is most powerful to do cluster cosmology? which
criteria would you find most important for this?
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Relation to average Universe

The critical density of the universe is the density that closes the universe, i.e., it
would make the cosmic expansion asymptotically come to a halt in the absence
of a cosmological constant or dark energy. Its value today is given by

ρcr,0 =
3H2

0

8πG
≈ 10−29 g cm−3,

where H0 ≈ 70 km s−1 Mpc−1 is the Hubble constant.

To order of magnitude, we can show why this form is obvious (without invoking
general relativity). If gravity dominates, the dynamical time of a system is
tdyn ∼ 1/

√
Gρ. Where does this come from?

d2r
dt2

= −
Gm
r2

∼
r
t2

⇒ tff ∼
1√
Gρ
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Relation to average Universe
Explain why clusters are rare objects.

⇒ the mean matter density of the Universe is

ρ̄m,0 = Ωm,0ρcr,0 ∼ 0.3 × 10−29 g
cm3

3 × 1073cm3

Mpc3

M⊙

2 × 1033g

∼ 4 × 1010 M⊙ Mpc−3 ∼ 109 M⊙ Mlyr−3.

⇒ let’s compare this to typical cluster masses Mcl ∼ 1015 M⊙; in order to form
clusters, we need large chunks of volume that contain 1015 M⊙

a spherical region at the mean matter density of the virial radius rcl = 2 Mpc of a
cluster collects a mass of only

M =
4π
3

r3
clρ̄m,0 ∼ 4 × 8 Mpc3 × 4 × 1010 M⊙ Mpc−3 ∼ 1012 M⊙.

Hence, we have to increase the radius to rcl = 20 Mpc to collect enough mass to
build a cluster. Upon radial collapse by a factor of ∼ 10, we obtain a cluster
mass of M ∼ 1015 M⊙.

Thus, we typically find cluster densities of ρ̄cl ∼ 103ρ̄m,0 that form as a result of
gravitational collapse. This collapse is stopped by the virialization process (next
week).
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The Growth of perturbations – methodology
We assume small-scale inhomogeneities ⇒ Newtonian dynamics;
structure grows from small-amplitude seed fluctuations through gravitational
instability ⇒ determine the rate of growth

We begin with the continuity equation, which formulates mass conservation,

∂ρ

∂t
+∇r · (ρv) = 0 ,

where ρ(t , r) and v(t , r) are the density and velocity of the cosmic fluid at
position r and time t .
The second equation is Euler’s equation which formulates the conservation of
momentum,

∂v
∂t

+ (v ·∇r )v = −
∇r P
ρ

−∇rΦ .

The terms on the right-hand side represent the pressure-gradient and
gravitational forces.
The Newtonian gravitational potential Φ satisfies the Poisson equation

∇2
r Φ = 4πGρ .

The next steps consist in decomposing density and velocity fields into their
homogeneous background values ρ̄ and v̄ and small perturbations δρ and δv ,

ρ(t , r) = ρ̄(t) + δρ(t , r) , v(t , r) = v̄(t) + δv(t , r) .

Christoph Pfrommer The Physics of Galaxy Clusters



The Growth of perturbations – methodology
We assume small-scale inhomogeneities ⇒ Newtonian dynamics;
structure grows from small-amplitude seed fluctuations through gravitational
instability ⇒ determine the rate of growth
We begin with the continuity equation, which formulates mass conservation,

∂ρ

∂t
+∇r · (ρv) = 0 ,

where ρ(t , r) and v(t , r) are the density and velocity of the cosmic fluid at
position r and time t .

The second equation is Euler’s equation which formulates the conservation of
momentum,

∂v
∂t

+ (v ·∇r )v = −
∇r P
ρ

−∇rΦ .

The terms on the right-hand side represent the pressure-gradient and
gravitational forces.
The Newtonian gravitational potential Φ satisfies the Poisson equation

∇2
r Φ = 4πGρ .

The next steps consist in decomposing density and velocity fields into their
homogeneous background values ρ̄ and v̄ and small perturbations δρ and δv ,

ρ(t , r) = ρ̄(t) + δρ(t , r) , v(t , r) = v̄(t) + δv(t , r) .

Christoph Pfrommer The Physics of Galaxy Clusters



The Growth of perturbations – methodology
We assume small-scale inhomogeneities ⇒ Newtonian dynamics;
structure grows from small-amplitude seed fluctuations through gravitational
instability ⇒ determine the rate of growth
We begin with the continuity equation, which formulates mass conservation,

∂ρ

∂t
+∇r · (ρv) = 0 ,

where ρ(t , r) and v(t , r) are the density and velocity of the cosmic fluid at
position r and time t .
The second equation is Euler’s equation which formulates the conservation of
momentum,

∂v
∂t

+ (v ·∇r )v = −
∇r P
ρ

−∇rΦ .

The terms on the right-hand side represent the pressure-gradient and
gravitational forces.

The Newtonian gravitational potential Φ satisfies the Poisson equation

∇2
r Φ = 4πGρ .

The next steps consist in decomposing density and velocity fields into their
homogeneous background values ρ̄ and v̄ and small perturbations δρ and δv ,

ρ(t , r) = ρ̄(t) + δρ(t , r) , v(t , r) = v̄(t) + δv(t , r) .

Christoph Pfrommer The Physics of Galaxy Clusters



The Growth of perturbations – methodology
We assume small-scale inhomogeneities ⇒ Newtonian dynamics;
structure grows from small-amplitude seed fluctuations through gravitational
instability ⇒ determine the rate of growth
We begin with the continuity equation, which formulates mass conservation,

∂ρ

∂t
+∇r · (ρv) = 0 ,

where ρ(t , r) and v(t , r) are the density and velocity of the cosmic fluid at
position r and time t .
The second equation is Euler’s equation which formulates the conservation of
momentum,

∂v
∂t

+ (v ·∇r )v = −
∇r P
ρ

−∇rΦ .

The terms on the right-hand side represent the pressure-gradient and
gravitational forces.
The Newtonian gravitational potential Φ satisfies the Poisson equation

∇2
r Φ = 4πGρ .

The next steps consist in decomposing density and velocity fields into their
homogeneous background values ρ̄ and v̄ and small perturbations δρ and δv ,

ρ(t , r) = ρ̄(t) + δρ(t , r) , v(t , r) = v̄(t) + δv(t , r) .
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The Growth of perturbations: background evolution
The evolution of the homogeneous background quantities are governed by the
expansion of the universe. Physical coordinates, r , are related to comoving
coordinates, x , via the equation r = ax . Here, a(t) is the cosmic scale factor
whose dynamics is governed by Friedmann’s equations:

H2(a) ≡
(

ȧ
a

)2

=
8πG

3
ρ−

Kc2

a2
+

Λc2

3
, (1)

ä
a

= −
4πG

3

(
ρ+

3p
c2

)
+

Λc2

3
. (2)

Here, K is a constant parameterizing the curvature of spatial hypersurfaces and
Λ is the cosmological constant. The scale factor is uniquely determined once its
value at a fixed time t is chosen. We set a = 1 today.

If we set the radius r(t) ≡ a(t)R where R = const., we can interpret Friedmann’s
Equations in terms of Newtonian dynamics, i.e., an energy equation and an
equation of motions of a test mass on the surface of a sphere that is embedded
in an (infinite) expanding, homogeneous mass density distribution ρ(t) of a
idealized pressureless fluid (proof in cosmology lectures):(

ṙ
r

)2

=
8πG

3
ρ+

C
r2

,

r̈ = −
4πG

3
r
(
ρ+

3p
c2

)
.
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ä
a

= −
4πG

3

(
ρ+

3p
c2

)
+

Λc2

3
. (2)

Here, K is a constant parameterizing the curvature of spatial hypersurfaces and
Λ is the cosmological constant. The scale factor is uniquely determined once its
value at a fixed time t is chosen. We set a = 1 today.
If we set the radius r(t) ≡ a(t)R where R = const., we can interpret Friedmann’s
Equations in terms of Newtonian dynamics, i.e., an energy equation and an
equation of motions of a test mass on the surface of a sphere that is embedded
in an (infinite) expanding, homogeneous mass density distribution ρ(t) of a
idealized pressureless fluid (proof in cosmology lectures):(

ṙ
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The Growth of perturbations: background evolution

If we set the radius r(t) ≡ a(t)R where R = const., we can interpret Friedmann’s
Equations in terms of Newtonian dynamics, i.e., an energy equation and an
equation of motions of a test mass on the surface of a sphere that is embedded
in an (infinite) expanding, homogeneous mass density distribution ρ(t) of a
idealized pressureless fluid (proof in cosmology lectures):

(
ṙ
r

)2

=
8πG

3
ρ+

C
r2

r̈ = −
4πG

3
r
(
ρ+

3p
c2

)

The density sources gravity. The pressure term adds to the density because
pressure is a consequence of particle motion, i.e. the kinetic energy of particles,
which is equivalent to a mass density and thus acts gravitationally.

Choosing K = −C/c2 yields the curvature term, i.e., K is the constant of
integration and determines the fate of the expansion.

The Λ term has no analogy in Newtonian dynamics.
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ṙ
r

)2

=
8πG

3
ρ+

C
r2

r̈ = −
4πG

3
r
(
ρ+

3p
c2

)

The density sources gravity. The pressure term adds to the density because
pressure is a consequence of particle motion, i.e. the kinetic energy of particles,
which is equivalent to a mass density and thus acts gravitationally.

Choosing K = −C/c2 yields the curvature term, i.e., K is the constant of
integration and determines the fate of the expansion.

The Λ term has no analogy in Newtonian dynamics.

Christoph Pfrommer The Physics of Galaxy Clusters



The Growth of perturbations: comoving coordinates

We transform physical coordinates, r , to comoving coordinates, x , which are
related by r = ax .
We obtain an expression for the velocity,

v = ṙ = ȧx + aẋ = Hr + aẋ = v̄ + δv ,

where v̄ = Hr is the Hubble velocity and δv = aẋ is the peculiar velocity that
deviates from the Hubble flow.
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The Growth of perturbations: comoving coordinates

The velocity is given by

v = ṙ = ȧx + aẋ = Hr + aẋ = v̄ + δv ,

where v̄ = Hr is the Hubble velocity and δv = aẋ is the peculiar velocity that
deviates from the Hubble flow.
What is the physical meaning of this separation? Why does this insight help in
deriving the perturbation equations?
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The Growth of perturbations – methodology

We define the density contrast,

δ ≡
δρ

ρ̄
,

and adopt an equation of state linking the pressure fluctuation to the density
fluctuation,

δp = δp(δ) ≡ c2
s δρ

with the sound speed cs.

The equations of mass, momentum, and energy conservation can be combined
to yield a single equation for the density contrast

δ̈ + 2H δ̇ =

(
4πGρ̄δ +

c2
s∇2

xδ

a2

)
.

Christoph Pfrommer The Physics of Galaxy Clusters



The Growth of perturbations – methodology

We define the density contrast,

δ ≡
δρ

ρ̄
,

and adopt an equation of state linking the pressure fluctuation to the density
fluctuation,

δp = δp(δ) ≡ c2
s δρ

with the sound speed cs.

The equations of mass, momentum, and energy conservation can be combined
to yield a single equation for the density contrast

δ̈ + 2H δ̇ =

(
4πGρ̄δ +

c2
s∇2

xδ

a2

)
.

Christoph Pfrommer The Physics of Galaxy Clusters



The Growth of perturbations: solutions

You derived an ordinary differential equation for the density contrast δ:

δ̈ + 2H δ̇ =

(
4πGρ̄δ +

c2
s∇2

xδ

a2

)

Which mathematical form has this equation? What is the physical meaning of the
term with H? How do you solve it?

I derived in my notes that the growing and decaying mode solutions in the matter
dominated phase read as

δ̂ ∝
{

a ,

a−3/2 .

Which of these are responsible for growing a cluster? which mode grows cosmic
voids (huge volumes of nearly empty space)? Are decaying modes responsible
for growing these? Justify your answer.

In the derivation, the pressure term provides the restoring force. It communicates
the pressure gradients via collisions and sound waves to the gas. However, dark
matter does not interact via sound waves? How would you need to conceptually
change the derivation to account for a collisionless dark matter component? How
does dark matter influence structure formation?
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Power spectra

The variance of δ in Fourier space defines the power spectrum P(k),

⟨δ̂(k)δ̂∗(k ′)⟩ ≡ (2π)3P(k)δD(k − k ′) ,

where δD is Dirac’s delta distribution.

Why does the Dirac delta distribution appear in the definition of the power
spectrum?

⇒ it ensures that modes of different wave vector k are uncorrelated in Fourier
space in order to ensure homogeneity

Why does the power spectrum only depend on the magnitude of the wave vector
and not its direction?
⇒ the power spectrum cannot depend on the direction of k because of isotropy

derive relation between power spectrum and correlation function and introduce
filtering concept on blackboard
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The Physics of Galaxy Clusters
Recap of today’s lecture

Sunyaev-Zel’dovich Effect

Synthesis of Observational Windows

Relation to Average Universe

The Growth of Perturbations: Newtonian Equations and Density
Perturbations

Power Spectra
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