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Sunyaev-Zel’dovich effect – ionosphere contribution

Compton-y parameter: y =
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Christoph Pfrommer The Physics of Galaxy Clusters



Sunyaev-Zel’dovich effect – ionosphere contribution

Compton-y parameter: y =

∫ L

0

kBTe

mec2
neσTdl = ycl + yIGM + yMW + yion−sph

cluster: ne ∼ 10−4 cm−3, kT ∼ 6 keV, L ∼ 3 Mpc:
ionosphere: ne ∼ 106 cm−3, kT ∼ 0.12 eV, L ∼ 300 km:

ycl

yion−sph
=

ne,cl

ne,ion−sph

kTcl

kTion−sph

Lcl

Lion−sph

∼ 10−10 × 5 × 104 × 3 × 1017 ∼ 1.5 × 1012

Christoph Pfrommer The Physics of Galaxy Clusters



The Physics of Galaxy Clusters
Recap of last week’s lecture

Sunyaev-Zel’dovich Effect (SZE):
* inverse Compton scattering of cosmic microwave background (CMB) photons

on hot (several keV) cluster electrons
* tool to observe gas in cluster outskirts

Synthesis of Observational Windows (optical, lensing, X-rays, SZE)

Relation to Average Universe: clusters are rare objects

The Growth of Perturbations:
* cluster form through gravitational instability of overdensities:
λ < λJ: perturbations oscillate
λ > λJ: perturbations grow as δ ∝ a (during matter domination, Ω = 1)

* constructive interference of large-scale primordial waves grow into clusters
* destructive interference of primordial waves grow into voids

Power Spectra:
* statistical tool to quantify structure formation
* equivalent information content as correlation function

(power spectrum is the Fourier transform of the correlation function)

⇒ today’s topic: how do clusters form?
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Window function applied to density field

How does the window function influence the density contrast? Draw some
one-dimensional function that varies widely.
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Window function: impact on power spectrum

How does this look after you applied a top-hat or a Gaussian window? Imagine
you have field δ with two spatial scales (one with a large and one with a small
wavelength). Then you apply the filter which has a scale in between. Which of
the two scales survives (if any)? How does the power spectrum look if you draw
it before and after filtering?
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The matter power spectrum

for a cold dark matter cosmology, the resulting power spectrum reads

P(k) ∝
{

k (k < k0)
k−3 (k ≫ k0)

here, k0 = 2πaeq/λ0 is the comoving wave number of the particle horizon at
matter-radiation equality
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The matter power spectrum

non-linear structure formation causes more strongly enhanced density
fluctuations on small scales

development of a bump at large wave vectors (small spatial scales) in the
non-linear matter power spectrum at the expense of intermediate scales
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Hierarchical formation: when do clusters form?
Quantifying the variance of the matter density fluctuations

We define the non-linear mass M∗, as the mass contained in a sphere of radius
R∗ = 2π/k∗ on which the variance becomes unity:

σ2
∗ =

∫ k∗

0

d3k
(2π)3

P(k) !
= 1,

We assume that the power spectrum can be approximated locally by a power law
of the form P(k) = Akn,

σ2
∗ = 4πA

∫ k∗

0

k2+ndk
(2π)3

=
4πA
(2π)3

kn+3
∗

n + 3
!
= 1,

σ2 = 4π
∫

k2dk
(2π)3

P(k) =
4πA
(2π)3

kn+3

n + 3
=

(
k
k∗

)n+3
.

Masses and length scales are related by background density, M ∝ ρ̄R3 ∝ k−3.
For a fixed volume, density fluctuations are related to mass fluctuations in this
volume, δρ ∝ δM. Normalized by the average density, we obtain δ ∝ δM/M.
Using the definition of the variance and the power spectrum σ2 ∝ k3P(k) ∝ δ2,
we get

σ2 =

〈(
δM
M

)2
〉

=

(
M
M∗

)−1−n/3
=


(

M
M∗

)−4/3
for n = 1,

1 for n = −3.
(1)
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Hierarchical formation: when do clusters form?
Variance of the matter density fluctuations as a function of wave number, σ2(k)

more power on small scales, which first go non-linear (σ2 > 1) and thus collapse
first: dwarf galaxies form before large galaxies, which form before galaxy clusters

critical wave number at which the fluctuation strength becomes non-linear
decreases with time (spatial scale increases with time)

structure forms “bottom-up” in ΛCDM cosmologies: hence we speak about
hierarchical galaxy formation
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Hierarchical formation: when do clusters form?
Variance of the matter density fluctuations as a function of collapsed mass, σ2(M)

more power on small scales, which first go non-linear (σ2 > 1) and thus collapse
first: dwarf galaxies form before large galaxies, which form before galaxy clusters
critical wave number at which the fluctuation strength becomes non-linear
decreases with time (spatial scale increases with time)
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A universe with a top-down structure formation

How would you have to change the initial linear power spectrum in order for
structure formation to proceed differently?

⇒ add cutoff to the primordial power spectrum at cluster scales: if there are no
small-scale fluctuations, they cannot grow and hence, clusters collapse first
⇒ gravitational fragmentation causes the formation of small-scale objects such
as galaxies

What physics would you have to change in such a universe?
⇒ dark matter needs to be relativistic during freeze-out in the early universe
⇒ free streaming of dark matter wipes out all fluctuations on scales below the
mean free path λmfp ∼ mDM/(ρDMσ)
⇒ this is the case of “hot dark matter” which is ruled out by the observation that
galaxies form before clusters
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The initial power spectrum
Potential fluctuations make case for Harrison-Zel’dovich-Peebles spectrum

Let’s look at the fluctuations in the gravitational potential (at fixed volume),

δΦ ∼
GM
R

δM
M

∼ GM2/3ρ̄1/3 δM
M

since at any time R ∝ (M/ρ̄)1/3.

Unless δM/M ∝ M−2/3, the potential fluctuations δΦ will diverge. Depending on
the power-law index of δM/M ∝ M−α, δΦ will diverge on large scales or masses
(for α < 2/3) or on small scales or masses (for α > 2/3).
Hence, the most natural fluctuation spectrum is δM/M ∝ M−2/3, which avoids
divergences.
This can be related to a power spectrum in wave number space by considering
δΦ ∼ GkδM and M ∝ R3 ∝ k−3 which yields (Eqn. 1)

δM
M

∝ M−(n+3)/6 ⇒ δM ∝ M−(n−3)/6 ∝ k (n−3)/2,

or
δΦ ∝ k (n−1)/2.

This shows that n = 1 is the characteristic spectral index that avoids any
unphysical divergence and corresponds to the so-called
Harrison-Zel’dovich-Peebles spectrum of initial fluctuations.
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The CMB sky and the large-scale matter distribution

Left: the cosmic microwave background fluctuations as observed by the Planck
Collaboration (2013)

Right: the cosmic web-like large-scale structure of the universe, dominated by
dark matter
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The CMB vs. the matter power spectrum – 1
How are the power spectrum of the cosmic microwave background (CMB) and
that of the density fluctuations related?

Matter power spectrum: the density contrast δ is decomposed into plane
waves, the orthonormal basis functions of a periodic box. The Fourier transform
δ̂ of the density contrast δ is defined as

δ(x) =
∫

d3k
(2π)3

δ̂(k)e−ik·x , δ̂(k) =
∫

d3x δ(x)eik ·x .

so that the power spectrum P(k) is given by

⟨δ̂(k)δ̂∗(k ′)⟩ ≡ (2π)3P(k)δD(k − k ′) ,

CMB power spectrum: Fourier decomposition is not defined on the sphere.
Instead, one has to project the temperature fluctuations onto another set of basis
functions which are orthonormal on the sky. These are the spherical harmonic
functions Y m

ℓ (θ). If T (θ) is the temperature at position θ on the sky, it can be
expanded into a series

T (θ) =
∑
ℓm

aℓmY m
ℓ (θ) , where aℓm =

∫ 2π

0
dφ

∫ π

0
sin θdθT (θ, ϕ)Y m

ℓ (θ, ϕ) ,

are the (generally complex) expansion coefficients and the power spectrum of
the temperature map is defined by

Cℓ =
〈
|aℓm|2

〉
=

ℓ∑
m=−ℓ

|aℓm|2
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expanded into a series

T (θ) =
∑
ℓm

aℓmY m
ℓ (θ) , where aℓm =

∫ 2π

0
dφ

∫ π

0
sin θdθT (θ, ϕ)Y m

ℓ (θ, ϕ) ,

are the (generally complex) expansion coefficients and the power spectrum of
the temperature map is defined by

Cℓ =
〈
|aℓm|2

〉
=

ℓ∑
m=−ℓ

|aℓm|2
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The CMB vs. the matter power spectrum – 2

How are those related physically?

The CMB energy density u and temperature T are related by

u ∝ T 4 ⇒
δu
u

= 4
δT
T

.

Before the release of the CMB radiation, photons and baryonic matter were
tightly coupled via Thompson scattering and the fluctuations in the CMB mirror
those in the baryons.

In the standard model of cosmology, fluctuations in DM and baryons have a
common origin but fluctuations in the DM density are larger than that in the
baryons because DM does not interact electromagnetically.

Hence the matter density fluctuations (statistically quantified by the matter power
spectrum) provide a much later, non-linear snapshot of cosmic structure and the
temperature fluctuations observed in the CMB (and quantified in the CMB power
spectrum) provide the initial conditions for structure formation. The amplitude of
both scales with the matter density parameter Ωm.

Christoph Pfrommer The Physics of Galaxy Clusters



The CMB vs. the matter power spectrum – 2

How are those related physically?

The CMB energy density u and temperature T are related by

u ∝ T 4 ⇒
δu
u

= 4
δT
T

.

Before the release of the CMB radiation, photons and baryonic matter were
tightly coupled via Thompson scattering and the fluctuations in the CMB mirror
those in the baryons.

In the standard model of cosmology, fluctuations in DM and baryons have a
common origin but fluctuations in the DM density are larger than that in the
baryons because DM does not interact electromagnetically.

Hence the matter density fluctuations (statistically quantified by the matter power
spectrum) provide a much later, non-linear snapshot of cosmic structure and the
temperature fluctuations observed in the CMB (and quantified in the CMB power
spectrum) provide the initial conditions for structure formation. The amplitude of
both scales with the matter density parameter Ωm.

Christoph Pfrommer The Physics of Galaxy Clusters



The CMB vs. the matter power spectrum – 2

How are those related physically?

The CMB energy density u and temperature T are related by

u ∝ T 4 ⇒
δu
u

= 4
δT
T

.

Before the release of the CMB radiation, photons and baryonic matter were
tightly coupled via Thompson scattering and the fluctuations in the CMB mirror
those in the baryons.

In the standard model of cosmology, fluctuations in DM and baryons have a
common origin but fluctuations in the DM density are larger than that in the
baryons because DM does not interact electromagnetically.

Hence the matter density fluctuations (statistically quantified by the matter power
spectrum) provide a much later, non-linear snapshot of cosmic structure and the
temperature fluctuations observed in the CMB (and quantified in the CMB power
spectrum) provide the initial conditions for structure formation. The amplitude of
both scales with the matter density parameter Ωm.

Christoph Pfrommer The Physics of Galaxy Clusters



Evolution of the matter power spectrum

Cosmic inflation (or another process shortly after the Big Bang) sets the
Harrison-Zel’dovich-Peebles spectrum, Pi(k) ∝ kn with n ≈ 1 (exact
measurements indicate n = 0.96)

Once cold dark matter decouples from the thermal heat bath (the “freeze-out”) in
the early universe, it attains a small velocity dispersion and wipes out structures
on the smallest scales: generation of cutoff in the primordial power spectrum at
scales of Earth-mass halos (uncertain by a factor of 106).

Modes that enter the horizon during radiation domination are suppressed
because the rapid cosmic expansion is faster in comparison to the gravitational
collapse. They can only continue to grow after the universe transitions to matter
domination: the power spectrum on intermediate to small scales is suppressed
by k4 so that the linear power spectrum scales as P(k) ∝ k (large scales) and
P(k) ∝ k−3 (intermediate to small scales).

The small baryonic component (by mass) oscillates with the photons before they
decouple from the primordial plasma (release of the radiation that forms the
CMB today): generation of small oscillations imprinted onto the linear matter
power spectrum (with a wavelength that corresponds to the sound horizon at the
time of decoupling); the same oscillations are seen in the CMB power spectrum.

Smallest scales go first non-linear and collapse to small (dwarf-sized) dark
matter halos: development of enhanced small-scale fluctuations and a bump in
the non-linear power spectrum.
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Non-linear structure formation: numerical simuations

Why do you need numerical simulations to study the non-linear phase of
structure formation?

What does a “particle” in these numerical N-body simulations represent? What
are the considerations when choosing the number of particles and how is it
limited to the maximum and minimum numbers of particles?

Describe in your own words which algorithms are improving the scaling
properties of numerical codes with the numbers of particles.
1. direct summation,
2. particle-mesh (PM) algorithm,
3. particle-particle particle-mesh (P3M) algorithm,
4. tree algorithm,
5. combination of tree-PM algorithm with direct summation on very small scales
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The CMB sky and the large-scale matter distribution

Left: the cosmic microwave background fluctuations as observed by the Planck
Collaboration (2013)

Right: the cosmic web-like large-scale structure of the universe, dominated by
dark matter
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Non-linear structure formation: density fluctuations

Plot the probability distribution function of the density contrast at early and at late
times after non-linear structure formation has already begun?

What is the reason that the distribution becomes skewed at late times?

⇒ The overdensity is defined as

δ =
ρ− ρ̄

ρ̄
> −1

and is not bound from above.
⇒ It forms a log-normal distribution at late times!
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Movies of structure formation simulations
Which properties that we talked about so far can you
recognize in these simulations?
Which things do you not understand or would like to know
more about?



Spherical collapse: assumptions

Summarize the assumptions of the spherical collapse model.

1 spherical perturbation, initially uniform overdensity
2 fluid has zero pressure and is collisionless (i.e., the analysis applies to

dark matter and not baryons); later stages of baryonic collapse are
different from that of dark matter since baryons additionally feel the
pressure force (shock formation); because baryons only contribute ∼ 15%
of the total mass, they do not appreciably change the collapse of dark
matter

3 for simplicity, Ω = Ωm = 1; this can be generalized to cases with Ωm0 ̸= 1
and ΩΛ ̸= 1.

What is the benefit of doing this calculation if you have to assume these
numbers of simplifications?
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Spherical collapse: the cycloidal solution

The solution is parametrized with θ and periodic beyond θ = 2π.

Is this completely unphysical? Why is the solution for θ > 2π not realized in
nature?
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Spherical collapse: overdensities
The spherical collapse problem has the following parametric solution, which
describes a cycloid,

R = A(1 − cos θ) , and t = B(θ − sin θ).

The mean density inside the sphere is

ρ =
M

4π/3 R3
=

3M
4πA3

1
(1 − cos θ)3

,

while the mean density of the background universe with Ωm0 = 1 is

ρ̄ =
3H2

8πG
=

1
6πGt2

=
1

6πGB2

1
(θ − sin θ)2

,

with H = 2/(3t).

The overdensity of the sphere (which is generally non-linear) can be obtained by
combining these equations to yield

1 + δ =
ρ

ρ̄
=

9
2
(θ − sin θ)2

(1 − cos θ)3
. (2)

Christoph Pfrommer The Physics of Galaxy Clusters



Spherical collapse: overdensities
The spherical collapse problem has the following parametric solution, which
describes a cycloid,

R = A(1 − cos θ) , and t = B(θ − sin θ).

The mean density inside the sphere is

ρ =
M

4π/3 R3
=

3M
4πA3

1
(1 − cos θ)3

,

while the mean density of the background universe with Ωm0 = 1 is

ρ̄ =
3H2

8πG
=

1
6πGt2

=
1

6πGB2

1
(θ − sin θ)2

,

with H = 2/(3t).

The overdensity of the sphere (which is generally non-linear) can be obtained by
combining these equations to yield

1 + δ =
ρ

ρ̄
=

9
2
(θ − sin θ)2

(1 − cos θ)3
. (2)

Christoph Pfrommer The Physics of Galaxy Clusters



Spherical collapse: overdensities
The spherical collapse problem has the following parametric solution, which
describes a cycloid,

R = A(1 − cos θ) , and t = B(θ − sin θ).

The mean density inside the sphere is

ρ =
M

4π/3 R3
=

3M
4πA3

1
(1 − cos θ)3

,

while the mean density of the background universe with Ωm0 = 1 is

ρ̄ =
3H2

8πG
=

1
6πGt2

=
1

6πGB2

1
(θ − sin θ)2

,

with H = 2/(3t).

The overdensity of the sphere (which is generally non-linear) can be obtained by
combining these equations to yield

1 + δ =
ρ

ρ̄
=

9
2
(θ − sin θ)2

(1 − cos θ)3
. (2)

Christoph Pfrommer The Physics of Galaxy Clusters



Spherical collapse: turnaround

There is an important distinction between (1) the real overdensity and (2) the
overdensity extrapolated according to linear theory,

δlin = δi

(
t
ti

)2/3
=

3
20

(6π)2/3
(

t
tta

)2/3
for all t .

The linear density at maximum expansion radius (i.e., at turnaround t = tta) is

δlin(tta) =
3

20
(6π)2/3 ≈ 1.062

while the real (non-linear) overdensity at turnaround (θ = π) is

1 + δ(tta) =
9
2
(θ − sin θ)2

(1 − cos θ)3
=

9π2

16
≈ 5.55.
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Spherical collapse: properties of the solution

Why does the sphere remain uniform as it collapses if the sphere has a uniform
initial overdensity (δi) at some early time (ti)?

⇒ Because the overdensity follows the time evolution

δ =
3
20

(6π)2/3
(

t
tta

)2/3
≪ 1, for t ≪ tta.

We see that there is no radial dependence of δ, and all interior spheres will have
the same tta. Hence the sphere remains uniform as it collapses!

Why do perturbations collapse earlier if they are initially more over overdense?
⇒ Because tc ∝ δ

−3/2
i , the collapse time scales inversely with the initial

overdensity.
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Spherical collapse: final density – 1
We assume that the final dark matter halo is in dynamical equilibrium and obeys
the virial theorem

2Kf + Vf = 0 ,

where K denotes the total kinetic energy in random motions, V is the total
gravitational binding energy, and we neglected the surface pressure term due to
further infalling material.

To calculate the total gravitational binding energy of a homogeneous sphere, we
write down the masses of a shell and the sphere contained within it,

dmshell = 4πr2ρdr and minterior =
4
3
πr3ρ.

The gravitational binding energy of a differential shell is given by

dVf = −G
minteriordmshell

r
.

This can be integrated to obtain the total gravitational binding energy:

Vf = −G
∫ M

0

4πr3ρ

3r
dmshell = −G

16
3
π2ρ2

∫ Rf

0
r4dr

= −G
16
15

π2ρ2R5
f = −

3
5

GM2

Rf
.

In the last step, we eliminated ρ by adopting the density of a homogeneous
sphere, ρ = M/[(4/3)πR3

f ].
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Spherical collapse: final density – 2

Hence, we have the kinetic and gravitational binding energies:

Kf =
M
2
σ2

f , and

Vf = −
3
5

GM2

Rf
,

where σ is the three-dimensional velocity dispersion and obtain the total energy

Ef = Kf + Vf =
1
2

Vf = −
3

10
GM2

Rf
.

At turn-around, the sphere is at rest, i.e., Kta = 0. The total energy at
turn-around is

Eta = Vta = −
3
5

GM2

Rta
.

Since dark matter is collisionless, the conservation of total energy during the
collapse yields Ef = Eta and hence, Rf = Rta/2.
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Spherical collapse: picture of virialization

Last week, I asked the question that, in the notes, I state that we typically find
ρ̄cl ∼ 103ρ̄m,0. Which processes determine this relation? What is the answer in
the spherical collapse model?
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Spherical collapse: virialization

The final density is thus ρf = 8ρ(tta). Assuming that virialization happens at
t ≈ tc and since ρ̄ ∝ t−2 and tc = 2tta, the overdensity of the final halo is

1 + δv ≡ 1 + δcoll =
ρcoll

ρ̄ (tc/tta)−2
= 32 [1 + δ(tta)] = 18π2 = 178 ,

where ρ(tta)/ρ̄ = 1 + δ(tta) and we evaluated Eq. (2) at turn-around (θ = π) so
that 1 + δ(tta) = 9π2/16.

Hence, the final halo density is

ρf = (1 + δv)ρ̄(tc) = 18π2ρ̄(tc).
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Spherical collapse: characteristic overdensities

We find values for the density contrast at collapse (t = tc = 2tmax) of

δc ≡ δlin(tc) =
3
20

(12π)2/3 ≈ 1.686,

δv ≡ δcoll = 18π2 − 1 = 177.

Explain the difference of these results that describe the same quantity at the
same time.

We will later on use both results. Under which circumstances would you use the
first and under which the second result?
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The Physics of Galaxy Clusters
Recap of today’s lecture

⇒ learned how clusters form:

Hierarchical structure formation: bottom-up growth of structure is consequence
of shape of power spectrum/variance of density fluctuations

Non-linear evolution:
* need of numerical simulations because of non-linearity and high dimensionality
* clever algorithms to improve scaling with number of particles

Spherical Collapse:
* relates time (or redshift) at which the object collapses to its initial (linear)

overdensity
* it maps the collapse time (redshift) to the final density of dark matter haloes that

formed by collapse
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