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The Physics of Galaxy Clusters
Recap of last week’s lecture

⇒ last week, we learned how clusters form:

Hierarchical structure formation: bottom-up growth of structure is consequence
of shape of power spectrum/variance of density fluctuations

Non-linear evolution:
* need of numerical simulations because of non-linearity of the density contrast

(δ > 1) and high dimensionality
* clever algorithms to improve scaling with number of particles

Spherical Collapse:
* relates time (or redshift) at which the object collapses to its initial (linear)

overdensity
* it maps the collapse time (redshift) to the final density of dark matter halos that

formed by collapse

⇒ Today’s topic: we will learn how to count clusters and how clusters are built up.
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The halo mass function

How do the characteristic length scale R(M) and its associated mass M differ
from the characteristic length scale R(M∗) ≡ R∗ with its associated “non-linear
mass” M∗?

R and M are generic definitions for radius and mass

4π
3

R3ρcrΩm = M ⇒ R(M) =

(
3M

4πρcrΩm

)1/3
,

where Ωm = ρm/ρcr is the mass density parameter.

The “non-linear mass” M∗ has a characteristic length scale R(M∗) ≡ R∗ and is
defined via

σ2
R∗ = 4π

∫ ∞

0

k2dk
(2π)3

P(k)Ŵ 2
R∗ (k) = δ2

c ,

where δc = 1.686. Hence, if the density field is smoothed on the scale R∗ then
the variance of the resulting field is just equal to the collapse threshold.

This means that halos with mass M∗ are forming today (or at the redshift that the
analysis is performed at). Halos with M < M∗ have been abundantly forming in
the past because their variance is larger than the collapse threshold and halos
with M > M∗ are extremely rare (they must be large excursions) if they can form
at all ⇒ see “Simplified Form of the Mass Function”
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Gaussian density fluctuations

What is the physical basis for assuming that the density field obeys a Gaussian
random process?

Here, we need to consider the formation process of the density fluctuations. The
currently leading theory of “Cosmic Inflation” hypothesizes that quantum
fluctuations in the inflaton and the graviton field are inflated to macroscopic
perturbations with distinct properties. The inflaton is a hypothetical scalar field
that drives the accelerated expansion in the early universe shortly after the
Planck time, tP ≈ 10−43 s.

Since the inflaton energy density got eventually converted to radiation and matter
by means of the “reheating” process, inflaton fluctuations produce fluctuations in
the primordial density field (which are called “scalar” fluctuations because of the
scalar nature of the inflaton fields).

Since the density fluctuations arise from superpositions of enormous numbers of
statistically independent vacuum fluctuations of the inflaton field, they are
expected to be Gaussian because of the central limit theorem.
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The derivation of the halo mass function – 1

Justify the hypothesis of Press & Schechter that the probability of finding the
filtered density contrast at or above the linear density contrast for spherical
collapse, δ̄ > δc, is equal to the fraction of the cosmic volume filled with halos of
mass M.

If we consider consider a tessellation of the volume in the initial conditions and
separate regions above and below the collapse threshold, then only the volume
above the threshold is able to collapse into halos.

We can picture this the following way: imagine a density field in two spatial
dimensions that is visualized as a landscape with mountains and valleys.

If we fill in water into this landscape up to the point, where the surface equals the
collapse threshold δc, then the islands denominate the regions that will collapse
into halos. Hence, the probability of collapsing into such a halo equals the
likelihood of finding the islands, i.e., it is the fraction of surface area covered by
islands.
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The derivation of the halo mass function – 2
The probability of finding a filtered density contrast δ̄(x) at x is

p(δ̄, a) =
1√

2πσ2
R(a)

exp

[
−

δ̄2(x)
2σ2

R(a)

]
,

where the variance σ will depend on time or equivalently on the scale factor a
through the linear growth factor, σR(a) = σRD+(a) (D+(a) = a in the
Einstein-de-Sitter model with Ωm(a) = 1).

The probability of finding the filtered density contrast at or above the linear
density contrast for spherical collapse, δ̄ > δc, is equal to the fraction of the
cosmic volume filled with haloes of mass M,

F (M, a) =
∫ ∞

δc

dδ̄p(δ̄, a) =
∫ ∞

δc

dδ̄
1√

2πσ2
R(a)

exp

[
−

δ̄2(x)
2σ2

R(a)

]
We adopt the substitution

x =
1
√

2

δ̄

σR(a)
and dx =

1
√

2σR(a)
dδ̄

and obtain

F (M, a) =
1
2

2
√
π

∫ ∞

δc/[
√

2σR (a)]
dxe−x2

=
1
2

erfc

(
δc√

2σR(a)

)
,

where erfc(x) is the complementary error function.
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The derivation of the halo mass function – 3

Let’s work out explicitly the normalization of the Press-Schechter mass function
(Eq. 2.82).

The distribution of haloes over masses M (Eq. 2.81) reads

∣∣∣∣∂F (M)

∂M

∣∣∣∣ = 1
√

2π

δc

σRD+(a)

∣∣∣∣d lnσR

dM

∣∣∣∣ exp
(
−

δ2
c

2σ2
RD2

+(a)

)
.

We calculate the normalization of the Press-Schechter mass function:

∫ ∞

0

∣∣∣∣∂F (M)

∂M

∣∣∣∣ dM =
δc√

2πD+(a)

∫ ∞

0

dσR

σ2
R

exp

(
−

δ2
c

2σ2
RD2

+(a)

)

=
δc√

2πD+(a)

∫ ∞

0
dx exp

(
−

δ2
c

2D2
+(a)

x2

)

=
δc√

2πD+(a)

√
2π
2

√
D2
+(a)

δ2
c

=
1
2

where we adopted the substitutions σ−1
R = x so that dx = −dσR/σ

2
R .
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Halo formation as a random walk – 1
Progressive smoothing of the density field
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Halo formation as a random walk – 2

δ

−1

c

δ

0

_

R

Consider halo formation as a random walk ⇒ correct normalisation of the
Press-Schechter mass function

Given the density-contrast field δ, a large sphere is centred on some point x and
its radius gradually shrunk. For each radius R of the sphere, the density contrast
δ̄ averaged within R is measured and monitored as a function of R.
By choosing a window function WR whose Fourier transform has a sharp cut-off
in k space, δ̄ will undergo a random walk because decreasing R corresponds to
adding shells in k space which are independent of the modes which are already
included.
δ̄(x) is thus following a random trajectory. A halo is expected to be formed at x if
δ̄(x) reaches δc for some radius R.
If δ̄(x) < δc for some radius, it may well exceed δc for a smaller radius. Or, if
δ̄(x) ≥ δc for some radius, it may well drop below δc for a smaller radius.
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Halo formation as a random walk – 3

δ

−1

c

δ

0

_

R

Explain the physical reason for the missing factor of two and why this has been
missed in the first derivation.

We introduce an absorbing barrier at δc such that points x with trajectories δ̄(x)
vs. R which hit the barrier for some R are considered to be part of halos.
A trajectory meeting the boundary (for the first time) at radius R′ has equal
probability for moving above or below at smaller R. For any trajectory continuing
above the boundary (and thus being part of a halo), there is a mirror trajectory
that falls back below the boundary at R < R′.
However, as this latter trajectory has reached the boundary at R′ it will be part of
a halo with mass ∼ M(R′). Thus, for each trajectory piercing the barrier for the
first time at R′ and reaching δ̄(x) > δc at R there is another trajectory, which
reached the barrier at R′ but has δ̄(x) < δc at R. Thus, the integral in Eqn. (2.78)
recovers only half of the points that end up in a halo of mass ≥ M(R).
It missed the dark grey halo population below the barrier that have pierced (or
touched) the barrier at some smoothing radius R′ > R.
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We introduce an absorbing barrier at δc such that points x with trajectories δ̄(x)
vs. R which hit the barrier for some R are considered to be part of halos.
A trajectory meeting the boundary (for the first time) at radius R′ has equal
probability for moving above or below at smaller R. For any trajectory continuing
above the boundary (and thus being part of a halo), there is a mirror trajectory
that falls back below the boundary at R < R′.

However, as this latter trajectory has reached the boundary at R′ it will be part of
a halo with mass ∼ M(R′). Thus, for each trajectory piercing the barrier for the
first time at R′ and reaching δ̄(x) > δc at R there is another trajectory, which
reached the barrier at R′ but has δ̄(x) < δc at R. Thus, the integral in Eqn. (2.78)
recovers only half of the points that end up in a halo of mass ≥ M(R).
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Halo formation as a random walk – 4

δ

−1

c

δ

0

_
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Thus, the probability for reaching a point δ̄ < δc along trajectories exclusively
below the barrier after piercing the absorbing barrier is the probability for
reaching it along any trajectory, minus the probability for reaching its mirror point
δc + (δc − δ̄) = 2δc − δ̄ along trajectories that continue above the barrier,

ps(δ̄)dδ̄ =
1

√
2πσR

[
exp

(
−

δ̄2

2σ2
R

)
− exp

(
−
(2δc − δ̄)2

2σ2
R

)]
,

where σR is the variance of δ̄ on the scale R, as before.

This equation is the probability distribution for the averaged density contrast to
fall within [δ̄, δ̄ + dδ̄] and not to exceed δc when averaged on any scale. The
probability for δ̄ to exceed δc on some scale is thus

1 − Ps = 1 −
∫ δc

−∞
dδ̄ ps(δ̄) = erfc

(
δc√
2σR

)
,

without the factor 1/2 in the previous derivation.
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Simplified form of the mass function

For a power-law power spectrum with index n, Pδ(k) = Akn, the
Press-Schechter mass function is given by (m = M/M∗)

f (m, a)dm ≡
dN(m, a)

dm
dm ∝ mα−2 exp

(
−m2α

)
dm,

where we defined α = 1/2 + n/6 so that α = 0 for n = −3.
At small halo masses there is roughly an equal mass per log bin in halo mass,

m dN/d logm = m2dN/dm ≈ const.
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Halo density profiles
General remarks. Scrutinize the statement that a self-gravitating system of
particles does not have an equilibrium state.

The virial theorem demands that its total energy (E = K + V ) is minus half its
potential energy (V ),

2K + V = E + K = 0 ⇒ K = −E = −
V
2
.

so that we get V < 0 for self-gravitating systems.
The total energy of a system is conserved. When stars with positive kinetic
energy leave the self-gravitating cloud of particles, the energy remaining in the
particle cloud must become more negative, so the stars are more tightly bound
as the potential (energy) deepens.
This can happen through the ejection of a body by means of three-body
encounters. As the halo becomes more tightly bound, this in turn increases its
energy loss because the dynamical timescale is reduced by this contraction: as
the system ejects (kinetic) energy, it increases its potential energy which means
that a self-gravitating system has a negative heat capacity.
Assume that you have a globular cluster of 106 stars and size 10 pc. Explain
what happens to the system when you eject one star after each other. What is
the theoretical end state?
A binary star, but this state is never reached because of the slow timescales
(dynamical friction).
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Singular isothermal sphere
Show explicitly that a power-law ansatz in ρ(r) yields the expression for the
singular isothermal sphere,

d
dr

(
r2 d ln ρ

dr

)
= −

4πGm
kBT

r2ρ .

Adopting a power-law ansatz ρ = Cr−α implies

ln ρ = lnC − α ln r ⇒
d ln ρ

dr
= −

α

r
.

Inserting this into the ordinary differential equation yields

d
dr

(−αr) = −α = −4π
Gm
kBT

Cr2−α

This has the solution

α = 2 and C =
kBT

2πGm

or

ρ(r) =
σ2

2πGr2
with σ2 ≡

kBT
m

.
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Isothermal sphere

What is the problem of the singular isothermal sphere at small and larger radii?

The density diverges for r → 0 (clear) and the contained mass diverges for
r → ∞. Let’s demonstrate this explicitly by integrating the radial mass density
profile over volume.

The mass profile for the singular isothermal sphere

ρ(r) =
σ2

2πGr2
with σ2 ≡

kBT
m

is given by

M(< r) = 4π
∫ r

0
ρ(r ′)r ′2dr ′ =

2σ2

G
r =

2kBT
Gm

r ,

which diverges for r → ∞. We need to truncate it at some radius by confining it
with an external “pressure” that in practise is provided by the accretion of mass.

Simulations of collapsing collisionless dark matter show a dark matter density
profile that differs from the isothermal sphere. Instead, the profile is better fit by
Navarro-Frenk-White (NFW) density profile.
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Navarro-Frenk-White density profile

What is the logarithmic slope, d log ρ/d log r , of the NFW profile at the center, the scale
radius rs and at large radii?

ρ(r) =
ρs

x(1 + x)2
, x ≡

r
rs

x ≪ 1: ρ(r) = ρsx−1 and the logarithmic slope is d log ρ/d log x = −1

x = 1:

d log ρ

d log x
= −x

d
dx

log
[
x(1 + x)2

]
= −x

(1 + x)2 + 2x(1 + x)
x(1 + x)2

= −
(1 + x) + 2x

1 + x
= −

1 + 3x
1 + x

x=1−→ −2

x ≫ 1: ρ(r) = ρsx−3 and the logarithmic slope is d log ρ/d log x = −3
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Navarro-Frenk-White density profile

The NFW density profile is given by

ρ(r) =
ρs

x(1 + x)2
, x ≡

r
rs

Let’s derive the mass profile M(< r) of the NFW profile by using the identity
x/(1 + x)2 ≡ (1 + x)−1 − (1 + x)−2.

M(< r) = 4π
∫ r

0
ρ(r ′)r ′2dr ′ = 4πρsr3

s

∫ r/rs

0
x(1 + x)−2dx

= 4πρsr3
s

[
ln

(
1 +

r
rs

)
+

1
1 + r/rs

− 1
]

= 4πρsr3
s

[
ln

(
1 +

r
rs

)
−

r/rs

1 + r/rs

]

Compare the different definitions for halo mass, M200, M200m, and M500 and
order them by increasing size,

M500 < M200 < M200m.
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Navarro-Frenk-White density profile
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Sketch qualitatively the scaled NFW density profiles log(ρ/ρ200) for two different
halos which only differ by their concentration parameters. What do you observe?
Which halo is on average more massive?

More concentrated halos have a larger density at small radii and are on average
less massive because of the concentration-mass relation, c200 ∝ M−0.1

200 .
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The Physics of Galaxy Clusters
Recap of today’s lecture

⇒ We learned how to count clusters and how clusters are built up:

The Press-Schechter mass function
* probability of high-density excursions in the filtered density contrast on scale

R = fraction of volume filled with halos of mass M
* correct normalization: considering halo formation as a random walk and

identify collapse threshold δc as absorbing barrier

Halo density profiles:
* self-gravitating systems have a negative heat capacity: once they cool they

become hotter
* singular/cored isothermal sphere is a simple model for spherically-symmetric,

self-gravitating systems of single-temperature particles
* Navarro-Frenk-White (NFW) density profile is a two-parameter model

(normalization + scale radius or halo mass + concentration) measured in
dark-matter simulations
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