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The Physics of Galaxy Clusters
Recap of last week’s lecture

⇒ We learned how to count clusters and how clusters are built up:

The Press-Schechter mass function
* probability of high-density excursions in the filtered density contrast on scale

R = fraction of volume filled with halos of mass M
* correct normalization: considering halo formation as a random walk and

identify collapse threshold δc as absorbing barrier

Halo density profiles
* self-gravitating systems have a negative heat capacity: once they cool they

become hotter
* singular/cored isothermal sphere is a simple model for spherically-symmetric,

self-gravitating systems of single-temperature particles
* Navarro-Frenk-White (NFW) density profile is a two-parameter model

normalization + scale radius or halo mass + concentration) measured in
dark-matter simulations

⇒ today: adiabatic processes and conservation laws
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Specific heats – 1
How are the specific heat at constant pressure and at constant volume related?

First law of thermodynamics (energy conservation):

dq = T ds = dϵ+ PdṼ .

where Ṽ ≡ ρ−1 is the specific volume, q is the heat per unit mass, s is the
specific entropy, ϵ ≡ ε/ρ is the specific internal energy and ε is the internal
energy density.

The specific heat at constant volume is defined as

cV ≡
(

∂q
∂T

)
V
.

At constant volume, the internal energy can only be changed by adding or
releasing heat, dϵ = dq.

If ϵ depends only on temperature (and not density), ϵ(Ṽ ,T ) = ϵ(T ), then

cV ≡
(

∂q
∂T

)
V
=

(
∂ϵ

∂T

)
V
=

∂ϵ

∂T

implying
dq = cV dT + PdṼ .
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Specific heats – 2

First law of thermodynamics with cV :

dq = cV dT + PdṼ .

The pressure of a gas of particles with mean mass m̄ is given by

PṼ =
kBT
m̄

=⇒ PdṼ =
kB

m̄
dT .

Using dq = cV dT + PdṼ , the specific heat at constant pressure is

cP ≡
(

∂q
∂T

)
P
= cV + P

dṼ
dT

= cV +
kB

m̄
.

Why does changing the temperature at constant pressure require more heat
than at constant volume?
⇒ because some of the energy goes into PdṼ work
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Adiabatic index

What is the adiabatic index for a diatomic gas that has five degrees of freedom (3
translational and 2 rotational)?

The specific energy of a gas with fDOF number of degrees of freedom is

ϵ =
fDOF

2
kBT
m̄

=⇒ cV =

(
∂ϵ

∂T

)
V
=

fDOF

2
kB

m̄

=⇒ cP =
fDOF + 2

2
kB

m̄

=⇒ γ ≡
cP

cV
=

fDOF + 2
fDOF

Hence, γ = 7/5 for a diatomic gas with fDOF = 5.

In general, the equation of state for an ideal gas is given by

ϵ =
fDOF

2
kBT
m̄

=
1

γ − 1
kBT
m̄

Check out Appendix A.1 on “Equation of State and Mean Molecular Weight”,
which introduces the mean molecular weight µ = m̄/mH to relate the mean
particle mass m̄ and the mass of a hydrogen atom mH.
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Polytropic equation of state
Derive the polytropic equation of state from the first law of thermodynamics and the
equation of state for an ideal gas.

In general, the equation of state for an ideal gas is given by

ϵ =
1

γ − 1
kBT
m̄

=
1

γ − 1
P
ρ
.

The total differential of the equation of state of an ideal gas is

dϵ =
1

γ − 1

(
dP
ρ

−
P
ρ2

dρ
)
.

For adiabatic (dq = ds = 0) changes, we can combine this with the first law of
thermodynamics (Ṽ = ρ−1)

dϵ = −PdṼ =
P
ρ2

dρ

and find (after multiplying with ρ/P)

1
γ − 1

(
dP
P

−
dρ
ρ

)
=

dρ
ρ
,

implying
dP
P

= γ
dρ
ρ

=⇒ P = P0

(
ρ

ρ0

)γ

≡ Kργ .
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Entropy
How are the constant for adiabatic changes, K , and the thermodynamic entropy, s,
related? What is the advantage of using the quantity K ?

A polytropic equation of state (P ∝ ργ ) defines the quantities

K =
P
ργ

=
kBT

m̄ργ−1
, and

Ke =
kBTe

nγ−1
e

∝ K

which are constants upon adiabatic changes.
Ke which can be conveniently computed with the X-ray observables kBTe and ne
and has typical values of

Ke ∼ 100
(

kBTe

1 keV

) (
ne

10−3 cm−3

)−2/3
keV cm2.

For a single species gas, we have

s = cV ln(Pρ−γ) + const. =
kB

(γ − 1)m̄
lnK + const.

or

s = cV ln

(
K
K0

)
⇐⇒ K = K0 exp

(
s

cV

)
.
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Fluid description
When can a system be well described as a fluid? Is this justified in a low-mass and a
high-mass cluster (with kBT = 1 keV and 10 keV) on scales of a few kpc? What does
this imply for modelling clusters?

A system can be well described as a fluid, if the particle mean free path is much
shorter than the characteristic system size, λmfp ≪ L. The electron mean free
path is given by

λmfp =
1

nσ ln Λ
∼

1
nπr2

e ln Λ
∼

1
πn ln Λ

(
kBTe

Ze2

)2

∼ 12.6
(

n
10−3 cm−3

)−1 ( kBTe

10 keV

)2
kpc,

where ln Λ ≈ 40 is the Coulomb logarithm. Equivalently, we get λmfp = 0.14 kpc
for kBTe = 1 keV (which implies ln Λ ≈ 36). Since λmfp < L ∼ a few kpc, the fluid
description is justified for a small cluster according to standard text book
knowledge. However, in a massive cluster λmfp > L ∼ a few kpc and we would
have to use kinetic plasma theory.

In particular on small scales and in cluster outskirts, the fluid description is not
justified and would have to be supplemented by kinetic plasma physics.
Moreover, plasma physics on scales λmfp < 0.1 − 10 kpc could modify the
effective fluid prescription and could feedback on global cluster scales ⇒ subject
to active research!
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Conservation laws – 1
Why does the collision term on the right-hand side vanish for the mass, momentum and
energy equation?

The Boltzmann equation describes the evolution of the phase space distribution
function f (x ,u, t) and is given by

d
dt

f (x ,u, t) =
∂f
∂t

+ u ·∇f + g ·∇u f =
df
dt

∣∣∣∣
c
.

The term df/dt |c represents discontinuous motions of particles through phase
space as a result of collisions. While collisions happen at a fixed point in space,
they can instantaneously change particle velocities and thus cause particles to
jump in phase space.

We take mass, momentum, and energy moments of this equation to derive the
conservation laws. The right-hand side vanishes each time because of local . . .

1 mass conservation: collisions do not create or destroy particles at a fixed
position, they can only discontinuously shift them in velocity space.

2 momentum conservation: collisions do not create or destroy momentum
at a fixed position, the shift in momentum space is symmetric with respect
to the center of momentum (neglecting internal degrees of freedom such
as atomic or nuclear transitions during the interaction).

3 energy conservation: collisions do not create or destroy energy at a fixed
position (again neglecting internal degrees of freedom).
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3 energy conservation: collisions do not create or destroy energy at a fixed
position (again neglecting internal degrees of freedom).
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Conservation laws – 2

Show explicitly that the Navier-Stokes equation (Eq. 3.43) conserves momentum.

∂

∂t
(ρv) +∇ ·

(
ρvvT + P1̄ − Π̄

)
= ρg.

Integrating the Navier-Stokes equation over configuration space yields

∂

∂t

∫
Ω
ρvd3x +

∫
Ω
∇ · (ρvvT + P1̄ − Π̄)d3x =

∫
Ω
ρgd3x ,

∂ptot

∂t
+ lim

∂Ω→∞

∫
∂Ω

[(ρvvT + P1̄ − Π̄) ·n]d2A =
dptot

dt
=

∫
Ω
ρgd3x .

In the last line, we exchanged the total for the partial time derivatives since ptot
depends neither on position nor on velocity.

This demonstrates explicitly that the total momentum, ptot =
∫
ρvd3x is

conserved in the absence of an external force field g that acts as a source of
momentum.
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Anisotropic viscous stress tensor – 1

Why is the anisotropic viscous stress tensor, Π̄, traceless and symmetric?

The anisotropic viscous stress tensor, Π̄, is defined as

P ≡
1
3
ρ⟨|w |2⟩,

Πij ≡ Pδij − ρ⟨wi wj ⟩.

Πij is symmetric because the two terms are symmetric in i and j .

It is a traceless tensor because

tr
(
Π̄
)
≡ 3P − ρ⟨|w |2⟩ = ρ⟨|w |2⟩ − ρ⟨|w |2⟩ = 0.
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Anisotropic viscous stress tensor – 2

The momentum equation can be written as

∂v
∂t

+ (v ·∇)v = g −
1
ρ
∇P +

1
ρ
∇ · Π̄.

Explain, what viscosity does to shearing and interpenetration motion.

To see this, we adopt an ansatz for the viscous stress tensor and assume a
“Newtonian fluid”, i.e., we assume that Πij is linearly proportional to the velocity
gradient, ∂vi/∂xj . The most general symmetric tensor that is linear in ∂vi/∂xj is

Πij = ηDij + ξδij (∇ · v), where

Dij =
∂vi

∂xj
+

∂vj

∂xi
−

2
3
δij (∇ · v)

is the deformation tensor that vanishes for uniform expansion or contraction. η
and ξ are the coefficients of shear and bulk viscosity, respectively and have units
of g cm−1 s−1.

The term ηDij represents resistance to shearing motion and ξδij (∇ · v)
represents resistance to changes in volume. Hence, viscosity acts to oppose
shearing motion and interpenetration.
Bonus: derive the energy conservation equation.
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Conductive heat flux and entropy equation
Name and explain the condition for a non-vanishing conductive heat flux Q.

The conductive heat flux Q is defined as:

Q ≡
1
2
ρ
〈

w |w |2
〉
.

If the distribution of the random velocity component, w , is symmetric about zero,
then Q vanishes. If the distribution is skewed, then hot particles drift relative to
cold particles and produce a heat flux in the direction of the drift. In most cases,
a temperature gradient produces a conductive flux,

Q = −χ∇T .

Are the energy and entropy equations linearly independent?
⇒ No, since you can derive one from the other.
Compare energy and entropy equation for Q = 0 and Ψ = 0:

∂

∂t
(ρϵ) +∇ · (ρϵv) = −P∇ · v

ρT
ds
dt

= 0

−P∇ · v term has to conserve entropy and accounts for adiabatic changes:
converging flow has ∇ · v < 0 ⇒ energy is increased (adiabatic heating)
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System of hydrodynamic equations – 1

Write down the full system of hydrodynamic equations. How many equations do you
have for how many unknowns? Discuss whether you need additional information on
the medium properties.

The mass, momentum and energy conservation equations read:

∂ρ

∂t
+∇ · (ρv) = 0,

∂

∂t
(ρv) +∇ ·

(
ρvvT + P1̄ − Π̄

)
= ρg, where g = −∇Φ,

∂

∂t
(ρϵ) +∇ · (ρϵv) = −P∇ · v + Π̄ : ∇v −∇ ·Q.

Each of these equations is a continuity law, one for the mass, one for the
momentum, and one for the total energy. The equations hence form a set of
hyperbolic conservation laws (because of the divergence operator on the LHS).
In the form given above, they do not form a complete set because these are 5
equations for 7 unknowns: ρ, ϵ, P, v , Φ.

Hence, we need two further expressions that relate the pressure P and the
gravitational potential Φ to the other thermodynamic variables.
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System of hydrodynamic equations – 2
Write down the full system of hydrodynamic equations. How many equations do you
have for how many unknowns? Discuss whether you need additional information on
the medium properties.

The mass, momentum and energy conservation equations read:

∂ρ

∂t
+∇ · (ρv) = 0,

∂

∂t
(ρv) +∇ ·

(
ρvvT + P1̄ − Π̄

)
= ρg, where g = −∇Φ,

∂

∂t
(ρϵ) +∇ · (ρϵv) = −P∇ · v + Π̄ : ∇v −∇ ·Q.

The equations relating P and Φ to the other variables are the equation of state
and Poisson’s equation. For an ideal gas, the equation of state reads

P = (γ − 1)ρϵ

where γ = cp/cv is the ratio of specific heats. For a mono-atomic,
non-relativistic gas, we have γ = 5/3.
The gravitational potential obeys Poisson’s equation:

∇2Φ = 4πGρ

These 7 equations close the system of equations and make it well-posed.
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Gas in an NFW Halo – 1
The NFW density profile diverges in the center, i.e., for x → 0. Gas filled in the halo’s
gravitational potential Φ satisfies hydrostatic Euler’s equation

∇P
ρgas

= −∇Φ(r), (1)

where P is the gas pressure. Assuming an isothermal and ideal gas, determine the
gas density profile.

The ideal gas law is

P =
ρgaskBT

m̄
and we assume kBT = const.

Substituting into Eq. (1) we get

∇P
ρgas

=
kBT
m̄

∇ ln ρgas = −∇Φ since ∇T = 0

⇒ ln ρgas = −
m̄Φ

kBT
+ C and C = const.

⇒ ρgas = eC exp

(
−

m̄Φ

kBT

)
= A exp

(
−

m̄Φ

kBT

)
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Gas in an NFW Halo – 2
What is ρgas(r)? The gravitational potential of an NFW halo is

Φ(r) = −
GMs

rs

ln(1 + x)
x

with x =
r
rs

and Ms = 4πr3
s ρs.

For x → 0:

Φ(r) → −
GMs

rs
≡ Φ0 because

ln(1 + x)
x

→
x −

x2

2
+O(x3)

x
→ 1

Using the virial theorem (Epot = −2Ekin), we get

−m̄Φ0 = 2 ×
3
2

kBT

⇒
m̄Φ0

kBT
= −3

⇒ −
m̄Φ

kBT
= −

m̄Φ0

kBT
ln(1 + x)

x
= 3

ln(1 + x)
x

⇒ ρgas = A exp

(
−

m̄Φ

kBT

)
= A exp

(
3
ln(1 + x)

x

)
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GMs
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x

with x =
r
rs

and Ms = 4πr3
s ρs.
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GMs

rs
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ln(1 + x)
x
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x −

x2

2
+O(x3)
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3
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Gas in an NFW Halo – 3
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In the center we have

ρgas = A exp

(
3
ln(1 + x)

x

)
→ A exp(3)

which is finite.

Differences are due to gas pressure of hot gas instead of non-interacting cold
dark matter. What about large radii?
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Gas in an NFW Halo – 4

What happens to the gas-to-dark matter mass density ratio ρgas/ρ at large radii? Is this
a realistic behavior and if not, what would have to be changed in the model to make it
more realistic?

We consider the limit x → ∞:

ln ρgas = lnA + 3
ln(1 + x)

x
→ lnA for x → ∞

ln ρ = ln ρ0 + ln
[
x(1 + x)2

]−1
→ ln ρ0 − 3 ln x → −∞ for x → ∞

Hence, the gas to dark matter ratio

ln ρgas

ln ρ
→ ∞ for x → ∞

instead of approaching the universal baryon fraction ln fb ⇒ what is wrong?

Our assumption kBT = const. is unrealistic. Including ∇T ̸= 0 in Euler’s
equation will change the gas density profile so that the constraint ρgas/ρ → fb for
x ≫ 1 is fulfilled.
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The Physics of Galaxy Clusters
Recap of today’s lecture

⇒ We studied adiabatic processes, conservation laws and filled gas into dark matter
potentials:

Adiabatic Processes and Entropy
* we made ourselves familiar with basic thermodynamics, entropy and derived

the equation of state

Basic Conservation Equations
* we derived the mass, momentum, energy equations from Boltzmann’s equation
* we discussed the anisotropic viscous stress tensor and the conductive heat flux

Dark Matter halo profiles
* in the exercises, you played with the NFW profile and derived the corresponding

potential
* we filled gas in the NFW potential and derived the density profile assuming an

isothermal gas in hydrostatic equilibrium
* we showed that this would cause the gas to dominate over dark matter at

large radii, violating the constraint ρgas/ρ → fb
⇒ isothermal assumption for gas not realistic!

Christoph Pfrommer The Physics of Galaxy Clusters



The Physics of Galaxy Clusters
Recap of today’s lecture

⇒ We studied adiabatic processes, conservation laws and filled gas into dark matter
potentials:

Adiabatic Processes and Entropy
* we made ourselves familiar with basic thermodynamics, entropy and derived

the equation of state

Basic Conservation Equations
* we derived the mass, momentum, energy equations from Boltzmann’s equation
* we discussed the anisotropic viscous stress tensor and the conductive heat flux

Dark Matter halo profiles
* in the exercises, you played with the NFW profile and derived the corresponding

potential
* we filled gas in the NFW potential and derived the density profile assuming an

isothermal gas in hydrostatic equilibrium
* we showed that this would cause the gas to dominate over dark matter at

large radii, violating the constraint ρgas/ρ → fb
⇒ isothermal assumption for gas not realistic!

Christoph Pfrommer The Physics of Galaxy Clusters



The Physics of Galaxy Clusters
Recap of today’s lecture

⇒ We studied adiabatic processes, conservation laws and filled gas into dark matter
potentials:

Adiabatic Processes and Entropy
* we made ourselves familiar with basic thermodynamics, entropy and derived

the equation of state

Basic Conservation Equations
* we derived the mass, momentum, energy equations from Boltzmann’s equation
* we discussed the anisotropic viscous stress tensor and the conductive heat flux

Dark Matter halo profiles
* in the exercises, you played with the NFW profile and derived the corresponding

potential
* we filled gas in the NFW potential and derived the density profile assuming an

isothermal gas in hydrostatic equilibrium
* we showed that this would cause the gas to dominate over dark matter at

large radii, violating the constraint ρgas/ρ → fb
⇒ isothermal assumption for gas not realistic!

Christoph Pfrommer The Physics of Galaxy Clusters


