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The Physics of Galaxy Clusters
Recap of last week’s lecture

⇒ today: instabilities, vorticity, turbulence

⇒ last week: we studied adiabatic processes, conservation laws and filled gas into
dark matter potentials:

Adiabatic Processes and Entropy
* we made ourselves familiar with basic thermodynamics, entropy and derived

the equation of state

Basic Conservation Equations
* we derived the mass, momentum, energy equations from Boltzmann’s equation
* we discussed the anisotropic viscous stress tensor and the conductive heat flux

Gas in Dark Matter halo profiles
* in the exercises, you played with the NFW profile and derived the corresponding

potential
* we filled gas in the NFW potential and derived the density profile assuming an

isothermal gas in hydrostatic equilibrium
* we showed that this would cause the gas to dominate over dark matter at

large radii, violating the constraint ρgas/ρ → fb
⇒ isothermal assumption for gas not realistic!
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Buoyancy Instabilities – 1

Today, we are studying adiabatic hydrodynamic perturbations about an
atmosphere in hydrostatic equilibrium. The starting point are conservation
equations of mass, momentum, and internal energy (or equivalently entropy)
without viscosity and magnetic fields:

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂v
∂t

+ (v ·∇)v = −
∇P
ρ

+ g, (2)

ρT
ds
dt

= −∇ ·Q. (3)

Here, ρ(t , x) and v(t , x) are the density and velocity of the cosmic fluid at
position x and time t , g is a conservative force field per unit mass (such as the
gravitational acceleration), P is the thermal pressure, T is the temperature, s is
the entropy per unit mass and d/dt = ∂/∂t + v ·∇ is a Lagrangian time
derivative.
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Buoyancy Instabilities – 2

Derive the most general background temperature profile of a hydrostatic background.
Is this a strict constraint or can you violate it? If so, under which condition?

We assume that the background plasma is thermally stratified in the presence of
a uniform gravitational field in the vertical direction, g = −gez where ez is the
unit vector in the z direction.

Force balance implies dP0/dz = −ρ0g and v0 = 0 where the subscript 0
denotes background quantities which can only vary with height.

In order for the initial equilibrium to be in hydrostatic steady state, this implies
ds/dt = 0 and hence ∇ ·Q0 = 0.

If we adopt Fick’s law for the background heat flux Q0 = −χezdT0/dz, then

d2T0

dz2
= 0 =⇒ T0(z) = a + bz,

i.e., the temperature varies at most linearly with height.

While the steady state assumption is formally required, we note that as long as
the time scale for the evolution of the system is longer than the local dynamical
time, the general features of the instability described here are unlikely to depend
critically on this steady state assumption.
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Buoyancy Instabilities – 3
We perturb the stratified plasma and split the dynamical quantities into
background values and small perturbations: ρ = ρ0 + δρ, v = δv , P = P0 + δP,
and s = s0 + δs. To first order, we obtain for the time derivative of the entropy

∂s
∂t

=
1

γ − 1
kB

m̄
∂(lnPρ−γ)

∂t

=
1

γ − 1
kB

m̄

(
1

P0

∂δP
∂t

−
γ

ρ0

∂δρ

∂t

)
,

(4)

using

∂ lnP
∂t

=
1

P0 + δP
∂P
∂t

≈
1

P0

(
1 −

δP
P0

)
∂

∂t
(P0 + δP) ≈

1
P0

∂δP
∂t

−
�

�
��δP

P2
0

∂P0

∂t
.

Using Eqn. (4), we obtain to first order for our conservation equations (1) to (3)

∂δρ

∂t
+∇ · (ρ0δv) = 0, (5)

∂δv
∂t

−
δρ

ρ2
0
∇P0 +

∇δP
ρ0

= 0, (6)

1
γ − 1

(
∂δP
∂t

−
γkBT0

m̄
∂δρ

∂t

)
+ ρ0T0(δv ·∇)s0 = −∇ · δQ, (7)

where we have used g = ∇P0/ρ0 in Eqn. (6).
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Buoyancy Instabilities – 4
Transform the first-order conservation equations into Fourier space by decomposing all
dynamical variables into plane waves.

We can decompose all dynamical variables (δρ, δv , δs, δP, δQ) into plane
waves,

δρ(x , t) =
∫

d3k
(2π)3

δρ̂(k , ω) e−iωt+ik·x ,

introducing the Fourier amplitudes δρ̂(k , ω) which obey algebraic equations
rather than partial differential equations.

Plane waves form an orthonormal system on a homogeneous background but
our stratified hydrostatic background is not homogeneous ⇒ requiring that the
perturbations are small, a decomposition into plane waves is complete.

However, as we will see, the growth rate of the perturbations depends in general
on position (i.e., height in the gravitational potential), which renders this approach
inaccurate after some time because the wave vector will start to depend on
position and different wave vectors are not any more linearly independent.

The wave vector is defined as k = kx ex + ky ey + kzez and we define
k2
⊥ = k2

x + k2
y to be the wave vector perpendicular to the local gravitational field.

The WKB assumption requires kH ≫ 1, where H is the local scale height of the
system (which is given) and k = |k |. Hence you have to choose the wave
lengths (and wave numbers) that are on small enough scales (relative to the
cluster scale height) for the overall stratification not to matter!
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Buoyancy Instabilities – 5

The first term in the entropy equation is transformed according to:

∂δP
∂t

−
γkBT0

m̄
∂δρ

∂t
=⇒ −iω

(
δP̂ −

γkBT0

m̄
δρ̂

)

We can compare both terms by substituting the dispersion relation for sound
waves, δP̂/δρ̂ = ω2/k2 (proof in exercises)

δP̂ =
ω2

k2
δρ̂

!
≪ c2

s δρ̂ =
γkBT0

m̄
δρ̂ =⇒ ω

!
≪ kcs,

The inequalities imply that we discard time scales faster than the sound crossing
time (“Boussinesq approximation”), i.e., physics associated with propagating
sound waves. Hence, we effectively drop the δP term in the energy equation (but
not in the momentum equation).
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Buoyancy Instabilities – 6
Remember, the conservation equations are given by

∂δρ

∂t
+∇ · (ρ0δv) = 0,

∂δv
∂t

−
δρ

ρ2
0
∇P0 +

∇δP
ρ0

= 0,

1
γ − 1

(
∂δP
∂t

−
γkBT0

m̄
∂δρ

∂t

)
+ ρ0T0(δv ·∇)s0 = −∇ · δQ,

Using the Fourier transformation

δρ(x , t) =
∫

d3k
(2π)3

δρ̂(k , ω) e−iωt+ik·x ,

we transform the conservation equations in the Boussinesq approximation,

−iωδρ̂+ (δv̂ ·∇)ρ0 + iρ0k · δv̂ = 0, (8)

−iωδv̂ −
δρ̂

ρ2
0
∇P0 + ik

δP̂
ρ0

= 0, (9)

iω
γ

γ − 1
P0

δρ̂

ρ0
+ ρ0T0(δv̂ ·∇)s0 = −ik · δQ̂. (10)
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Buoyancy Instabilities – 7
Why is the gas nearly incompressible? What are the underlying approximations?

We define a displacement vector ξ = iδv̂/ω so that ξ = |ξ| = δv̂/ω has
dimensions of length and measures the displacement of the perturbations over a
characteristic timescale.
The perturbed continuity equation reads in Fourier space

−iωδρ̂+ (δv̂ ·∇)ρ0 + iρ0k · δv̂ = 0

∣∣∣∣∣×
(

i
ρ0ω

)
An order of magnitude analysis of the perturbed continuity equation yields

δρ̂
ρ0

+ 1
ρ0

(ξ ·∇)ρ0 − k · δv̂
ω = 0,

δρ̂
ρ0

∼ ξ
H ≪ kξ since kH ≫ 1,

which follows from the WKB approximation.
Thus, the last term dominates over the first two terms and leaves us with the
near incompressibility condition:

k · δv̂ = 0 =⇒ k⊥δv̂⊥ + kzδv̂z = 0.

This is a direct consequence of the requirement that perturbations of our
stratified hydrostatic background need to remain small so that a Fourier
decomposition into plane waves is complete and phases of different k modes
grow independently and do not mix.
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Buoyancy Instabilities – 8
We multiply the perturbed momentum equation by k from the left:

k ·
∣∣∣∣∣ −iωδv̂ −

δρ̂

ρ2
0
∇P0 + ik

δP̂
ρ0

= 0, (11)

and obtain

−iωk · δv̂ −
δρ̂

ρ2
0

k ·∇P0 + ik · k
δP̂
ρ0

= 0,

Using g = −gez = ∇P0/ρ0 and ez · k = kz , we obtain a purely vertical
equation:

−iωk · δv̂ = 0 = −
δρ̂

ρ0
gkz − ik2 δP̂

ρ0
,

The perpendicular part of Eqn. (11) is obtained after taking the scalar product
with e⊥ and reads (∇P0 has only a vertical component)

δP̂
ρ0

= ω
δv̂⊥
k⊥

.
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Buoyancy Instabilities – 9
Combining the vertical and perpendicular momentum equations

−iωk · δv̂ = 0 = −
δρ̂

ρ0
gkz − ik2 δP̂

ρ0

∣∣∣∣∣×
(

1
gkz

)

and
δP̂
ρ0

= ω
δv̂⊥
k⊥

yields

δρ̂

ρ0
= −

iω
g

k2

kz

δv̂⊥
k⊥

or iω
δρ̂

ρ0
=

ω2

g
k2

kz

δv̂⊥
k⊥

.

Substituting this into the perturbed entropy equation (assuming k · δQ̂ = 0) gives

iω
γ

γ − 1
P0

δρ̂

ρ0
+ ρ0T0(δv̂ ·∇)s0 = 0

iω
γ

γ − 1
P0

δρ̂

ρ0
+ ρ0T0

(
δv̂⊥

�
��∂s0

∂x⊥
+ δv̂z

∂s0

∂z

)
= 0

∣∣∣∣∣×
(
γ − 1
γP0

)
ω2

g
k2

kz

δv̂⊥
k⊥

+
γ − 1
γ

ρ0T0

P0

∂s0

∂z
δv̂z = 0

∣∣∣∣∣×
(

g
kz

k2

)
ω2 δv̂⊥

k⊥
+

γ − 1
γ

m̄
kB

g
kz

k2

∂s0

∂z
δv̂z = 0.
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Buoyancy Instabilities – 10
Let’s recap the last equation (after reordering the second term):

ω2 δv̂⊥
k⊥

+

(
γ − 1
γ

m̄
kB

g
∂s0

∂z

)
kz

k2
δv̂z = 0.

We define the Brunt-Väisälä frequency, N, via

N2 =
γ − 1
γ

m̄
kB

g
∂s0

∂z
=

g
γ

∂ lnK
∂z

, (12)

where K = Pρ−γ and use the incompressibility condition:

k⊥δv̂⊥ + kzδv̂z = 0 =⇒ δv̂z = −
k⊥
kz

δv̂⊥.

Hence, we obtain the dispersion relation for gravity waves,

ω2 δv̂⊥
k⊥

= N2 k⊥
k2

δv̂⊥,

ω2 = N2 k2
⊥

k2
. (13)
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Dispersion relation for gravity waves
The dispersion relation for gravity waves reads:

ω2 = N2 k2
⊥

k2
, N2 =

g
γ

∂ lnK
∂z

.

and has important consequences:

For a stably stratified atmosphere where the entropy is increasing outward
(∂s/∂z > 0 or ∂K/∂z > 0), ω is positive and the displaced fluid parcel oscillates
with the Brunt-Väisälä frequency, N, around the equilibrium position.

If the entropy is decreasing outward, we have an imaginary solution for ω and an
instability because δs ∝ δŝ exp(−iωt): displacing high-entropy gas in such an
atmosphere upwards causes it to rise further until the entropy profile is inverted
and stably stratified, defining a new equilibrium.

Since k⊥ ≤ |k |, g-modes have a maximum possible frequency of ωmax = N at
which point k⊥ = |k | and kz = 0. If the Brunt-Väisälä frequency is a decreasing
function of height z, g-modes of a given frequency ω will be confined/trapped
below the height at which N(z) = ω.

Bonus: Derive the entropy condition for a stably stratified atmosphere (the
“Schwarzschild condition”) purely through thermodynamical considerations. How
do these two derivations differ in their assumptions? ⇒ Appendix A.2
Which result teaches us more about the stratified atmosphere and why?

Note: magnetic fields complicate this picture significantly!
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Vorticity – 1

Why can an incompressible vector field be described as a pure vortex field?

An incompressible flow is characterized by ∇ · v = 0.

We can prove that this implies that the velocity field has to be a pure vortex field,
v = ∇× A where A is a vector potential.

To this end, we introduce the Levi-Civita symbol which is totally antisymmetric in
all the indices, i.e., when any two indices are interchanged the symbol is negated

εijk = −εikj .

Hence, if the Levi-Civita symbol is combined with an expression that is
symmetric in any two indices, say εijk aj ak then the result must be identical to
zero because by exchanging the indices j and k , the expression must be equal to
its negative value (which is only possible for zero).

Let’s prove the property of an incompressible flow. Adopting Einstein’s sum
convention, i.e., we sum over identical indices, and using the short-hand notation
∂i = ∂/∂xi , we obtain:

(∇ ·∇× A)i = ∂iεijk∂j Ak = εijk∂i∂j Ak ≡ 0

because the expression ∂i∂j is symmetric in i and j .
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Vorticity – 2
Let’s prove the identity

(v ·∇)v ≡
1
2
∇(v2)− v × ω,

where ω = ∇× v is defined as the vorticity.

This is most easily done within the Levi-Civita formalism and using the Kronecker
symbol δij which is unity for i = j and zero otherwise. We obtain

[v × (∇× v)]i = εijk vjεklm∂l vm

= (δilδjm − δimδjl )vj∂l vm

= vm∂i vm − vl∂l vi

=
1
2
∂i v2 − (v ·∇)vi q.e.d.

Equivalently, you can show that

∇× [(v ·∇)v ] = −∇× (v × ω)

= −(ω ·∇)v + ω(∇ · v) + (v ·∇)ω

since ∇ ·ω ≡ 0.
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Vorticity – 3
Derive the evolution equation for vorticity in general and in the subsonic regime,
M = v/cs ≪ 1 (where c2

s = γP/ρ).

If we apply the curl operator to the momentum equation and adopt the definition
of vorticity, ω = ∇× v , we obtain

∂ω

∂t
+∇× [(v ·∇)v ] = −∇×

(
∇P
ρ

)
−∇×∇Φ =

1
ρ2

∇ρ×∇P

since ∇×∇ϕ ≡ 0 where ϕ is a scalar field (in our case Φ or P).
Using the identity on the previous slide, we obtain the vorticity evolution equation,

dω
dt

=
∂ω

∂t
+ (v ·∇)ω = (ω ·∇)v − ω(∇ · v) +

1
ρ2

∇ρ×∇P.

Hence, high Mach number, supersonic (compressible) flows generate vorticity.
In the subsonic regime (M ≪ 1), we obtain to linear order

∂ω

∂t
=

1
ρ2

∇ρ×∇P.

Hence, vorticity production is associated with departures between surfaces of
constant density and those of constant pressure. Given that ∇P is in the vertical
direction (as defined by the local gravitational field), the term ∇ρ×∇P and
hence the generated vorticity will lie principally in the horizontal plane.
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Turbulence – 1
The Navier-Stokes equation in the non-conservative form reads

∂v
∂t

+ (v ·∇)v = g −
1
ρ
∇P +

1
ρ
∇ · Π̄.

Assuming a “Newtonian fluid” we have

Πij = ηDij + ξδij (∇ · v), where

Dij =
∂vi

∂xj
+

∂vj

∂xi
−

2
3
δij (∇ · v)

is the deformation tensor, η and ξ are the coefficients of shear and bulk viscosity.

Assuming an incompressible fluid with ∇ · v = 0, we obtain for the x component
of the viscous shear force:

1
η
(∇ · Π̄)x =

∂

∂x

(
2
∂vx

∂x

)
+

∂

∂y

(
∂vx

∂y
+

∂vy

∂x

)
+

∂

∂z

(
∂vx

∂z
+

∂vz

∂x

)
=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
vx = ∇2vx = ∆vx ,

where we made use of the ∇ · v = 0 constraint.
If we introduce the kinematic viscosity ν = η/ρ we obtain

∂v
∂t

+ (v ·∇)v = g −
1
ρ
∇P + ν∆v .
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Turbulence – 2

Explain the physical meaning of the Reynolds number.

We compare the time scales for advection, tadv, and for viscous dissipation, tdiss:

tadv =
L
v

and tdiss =
L2

ν
,

where L and v are characteristic length and velocity scales of the (macroscopic)
system.

To order of magnitude, the viscosity is the particle mean free path times the
thermal particle velocity, ν ∼ λmfpvth: thermal particles moving a mean free path
collide and randomize their velocities, which we call generation of heat, or
dissipation of kinetic energy.

It turns out that the particle mean free path is the typical length over which the
fluid can communicate changes in its shear stress. A fluid with a longer mean
path length therefore more easily opposes changes to its local shear velocity,
i.e., is more viscous.
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Turbulence – 3

Explain the physical meaning of the Reynolds number.

We compare the time scales for advection, tadv, and for viscous dissipation, tdiss:

tadv =
L
v

and tdiss =
L2

ν
,

where L and v are characteristic length and velocity scales of the (macroscopic)
system.

We define the Reynolds number to be the ratio of dissipative-to-advective time
scale,

Re =
tdiss

tadv
=

Lv
ν

=
L

λmfp

v
vth

,

This shows that Re is the product of the ratios of macroscopic-to-microscopic
length and velocity scales.
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Turbulence – 4

Note that the assumption of an incompressible flow

v(x , t) =
∫

v̂(k , ω)ei(k·x−ωt)d3kdω,

∇ · v = 0 =⇒ k · v̂ = 0

does not allow for longitudinal disturbances (sound waves), but only for rotational
flows, so-called “eddies” and implies subsonic velocities (since supersonic
velocities would cause the formation of shocks, which necessarily have
∇ · v ̸= 0).

If Re ≫ 1, advection is much faster than dissipation which cannot stabilize the
dynamical growth. The vortical fluid motions interact non-linearly and turbulence
sets in.

In three dimensions, energy is being fed into the turbulent cascade on the
macroscopic “injection scale” L with a typical velocity v . Energy is being
transported from large to small scales as large eddies break up into smaller
eddies, thereby conserving vorticity in the absence of the baroclinic term.

The energy transport to small scales continues until the energy is dissipated
through the production of viscous heat on the microscopic “viscous” scale, λmfp,
which is of order the particle mean free path. The scales in between, for
λmfp < λ < L, are called the “inertial subrange”.
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Turbulence – 5

Richardson (1922): “Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.”

Kolmogorov’s theory of turbulence (1941):
Turbulence displays universal properties independent of initial and
boundary conditions.
Energy is added to the fluid on the integral scale and is dissipated as heat
on the dissipative scale.
Energy transfer between eddies on intermediate scales is lossless:

⇒ kinetic energy spectrum E(k) ∝ k−5/3 (proof: next slides)
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Turbulence – 6
Let λ be the size of an eddy and vλ the typical rotational velocity across the
eddy. The energy flow through that scale is the product of kinetic energy and the
eddy turnover rate on that scale,

ϵ̇ ≈
(

v2
λ

2

)(vλ
λ

)
≈

v3
λ

λ
.

In the inertial range, the energy flow must be independent on scale,
ϵ̇ = v3/L = const., because energy must not accumulate anywhere in steady
state: the only channel for the energy to be transferred is through non-linear
interactions with other eddies and hence, we obtain the velocity scaling via

ϵ̇ =
v3

L
≈

v3
λ

λ
=⇒ vλ ≈ v

(
λ

L

)1/3
.

The largest eddies assume the highest velocities (and thus the highest kinetic
energies), but the smallest eddies have the highest vorticity

|ω| ≈
vλ
λ

≈
v

(λ2L)1/3
.

Since the overall vorticity is approximately conserved this implies that turbulence
becomes more and more intermittent on smaller scales, i.e., less volume is filled
with turbulent eddies.
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Turbulence – 7

Derive the Kolmogorov power spectrum of driven turbulence.

To compute the power spectrum of eddy velocity, vλ ≈ (ϵ̇λ)1/3, we write down
the correlation function which scales as

ξv ∝ v2
λ ∝ (ϵ̇λ)2/3.

Note that the kinetic energy on a scale λ scales exactly as the correlation
function, ϵ ∝ v2

λ ∝ λ2/3. The correlation function ξv is the Fourier transform of
the velocity power spectrum, ξv ∝ k3Pv (see Sect. 2.2.1), which inherits the
scaling since k = 2π/λ,

Pv ∝ λ3ξv ∝ k−3
(
ϵ̇k−1

)2/3
∝ ϵ̇2/3k−11/3.

The power per linear and logarithmic interval in k -space scale as

Pv k2dk ∝ ϵ̇2/3k−5/3dk , and

Pv k3d ln k ∝ ϵ̇2/3k−2/3d ln k ,

which is the Kolmogorov turbulence spectrum of driven turbulence.
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(
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Turbulence – 8

We just talked about incompressible, subsonic (Kolmogorov) turbulence. The assumed
steady state implies a constant driving mechanism at the outer scale. By contrast, in
clusters we encounter decaying turbulence: a merger injects kinetic energy on scales
L ∼ rc, which will successively decay after a few eddy turnover time scales L/v . The
possible implications of turbulence in clusters is mainly

1 mixing of metals that have been injected by galactic winds,

2 explaining the magnetization in clusters: driving a turbulent dynamo of either
primordial magnetic fields or field that was injected by AGNs or galactic winds in
proto-clusters,

3 shredding AGN bubbles and mixing relativistic components with the ICM:
buoyantly rising bubbles (filled with light relativistic material) induce
Kelvin-Helmholtz instabilities at their interface with the ICM. This feeds into a
turbulent cascade that implies turbulent diffusion and energy dissipation,
eventually causing bubbles to resolve,

4 heating cool cores and possible arresting the over-cooling in them, provided the
coupling efficiency of PdV work to the turbulent cascade is high and the
dissipation is volume filling and thermally stable.
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smoke rises because of buoyant instability
(smoke traces a hot, dilute, high-entropy fluid)

small scales have Re ∼ L
λmfp

≲ 2000: laminar

flow

large scales have Re ≫ 2000: transition to
turbulent flow

turbulent energy cascades from large to small
scales

turbulent diffusion causes horizontal transport
and rarefies smoke until it dissolves in the
background
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The Physics of Galaxy Clusters
Recap of today’s lecture

Buoyancy Instabilities
* studied hydrodynamic perturbations in hydrostatic atmosphere
* atmosphere is stably stratified if entropy increases outwards:

perturbations oscillate at Brunt-Väisälä frequency N ∼ g/cs

* instability if entropy is decreasing outwards: buoyant motions until the entropy
profile is inverted and new stable equilibrium is established

* gravity waves can be trapped if Brunt-Väisälä frequency decreases with height

Vorticity
* vorticity is conserved in subsonic, polytropic (P = P(ρ)) flows
* vorticity produced by baroclinic term (∇ρ×∇P ̸= 0) in horizontal plane
* at high Mach numbers, compressible motions can also produce vorticity

Turbulence
* flow becomes turbulent if outer and inner (viscous) scales have large separation
* incompressible turbulence describes non-linear interactions of rotational

motions (eddies)
* 3D: energy transport from large to small (viscous) scales at λmfp,

where kinetic energy is dissipated into heat
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