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The Physics of Galaxy Clusters
Recap of last week’s lecture

Buoyancy Instabilities
* studied hydrodynamic perturbations in hydrostatic atmosphere
* atmosphere is stably stratified if entropy increases outwards:

perturbations oscillate at Brunt-Väisälä frequency
* instability if entropy is decreasing outwards: buoyant motions until the entropy

profile is inverted and new stable equilibrium is established
* gravity waves can be trapped if Brunt-Väisälä frequency decreases with height

Vorticity
* vorticity is conserved in subsonic, polytropic (P = P(ρ)) flows
* vorticity produced by baroclinic term (∇ρ×∇P ̸= 0) in horizontal plane
* at high Mach numbers, compressible motions can also produce vorticity

Turbulence
* flow becomes turbulent if outer and inner (viscous) scales have large separation
* incompressible turbulence describes non-linear interactions of rotational

motions (eddies)
* 3D: energy transport from large to small (viscous) scales at λmfp,

where kinetic energy is dissipated into heat
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Shock formation – 1

Imagine the propagation of a sound wave with finite amplitude. The sound speed
is higher at higher temperature as c2

s ∝ kBT , so that the crest of the wave
gradually overtakes the colder trough (T ∝ ργ−1).

When faster moving gas overtakes slower gas, we would obtain a multivalued
solution that is inconsistent with the hydrodynamic equations. Instead, we get a
discontinuous change of density and velocity, a so-called “shock”. This
steepening happens even for γ = 1 because of the non-linear dependence on
the velocity in the equations.

Shocks can also be produced by any supersonic compressible disturbance (or
through non-linear interactions of subsonic compressible modes). This can result
from a supernova explosion within a galaxy, by gas accreting super-sonically
onto a cluster, or if two galaxy clusters merge to form a larger entity (as a result
of their mutual gravitational interactions).
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Shock formation – 2

In general, a shock wave is
1 propagating faster than the “signal speed” for compressible waves

(i.e., the fastest linear eigenmode of the system which is the sound
speed cs in a hydrodynamic fluid or the fast magnetosonic mode in
the high-beta magneto-hydrodynamic plasma of a galaxy cluster),

2 producing an irreversible change of the fluid state, i.e., an increase
in entropy, and

3 can either be caused by a pressure-driven compressive
disturbance, results from non-linear wave interactions, or is
caused by supersonic collisions of two streams of fluids.
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Shock waves

shock waves: sudden change in density, temperature,
and pressure that decelerates supersonic flow.

thickness ∼ mean free path λmfp

in air, λmfp ∼ µm,
on Earth, most shocks are mediated by collisions.

clusters/galaxies, Coulomb collisions set λmfp:
λmfp ∼ Lcluster/10, λmfp ∼ LSNR

Mean free path ≫ scales of interest!

→ shocks must be mediated without collisions,
but through interactions with collective fields
→ collisionless shocks

slide concept Spitkovsky
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Astrophysical shocks

astrophysical collisionless shocks can:

accelerate particles (electrons and ions) → cosmic rays (CRs)

amplify magnetic fields (or generate them from scratch)

exchange energy between electrons and ions

collisionless shocks ⇐⇒ energetic particles ⇐⇒ electro-magnetic waves

solar system shocks ∼ R⊙
coronal mass ejection (SOHO)

interstellar shocks ∼ 20 pc
supernova 1006 (CXC/Hughes)

cluster shocks ∼ 2 Mpc
giant radio relic (van Weeren)
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Conservation laws – 1

To understand fluid discontinuities, we consider the conservation laws of mass,
momentum, and internal energy in the absence of external gravitational forces
and conductive heat flux (which act on time scale that are much longer in
comparison to the transition times at shocks or tangential discontinuities),

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂v
∂t

+ (v ·∇)v = −
∇P
ρ

+
1
ρ
∇ · Π̄, (2)

∂

∂t
(ρϵ) +∇ · (ρϵv) = −P∇ · v + Π̄ : ∇v . (3)

Since we are interested how the total energy density, ρv2/2 + ρϵ, changes in a
given volume, we are supplementing the internal energy equation (Eq. 3) with a
conservation law for ρv2/2. To this end, we consider

∂

∂t

(
ρv2

2

)
=

v2

2
∂ρ

∂t
+ ρv · ∂v

∂t

and substitute Eqs. (1) and (2) to get

∂

∂t

(
ρv2

2

)
= −

v2

2
∇ · (ρv)− ρv · (v ·∇)v − v ·∇P + v · (∇ · Π̄).
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Conservation laws – 2

Let’s recap the last equation,

∂

∂t

(
ρv2

2

)
= −

v2

2
∇ · (ρv)− ρv · (v ·∇)v − v ·∇P + v · (∇ · Π̄).

Using the identity (v ·∇)v ≡ ∇v2/2, we obtain an equation for the
conservation of kinetic energy density

∂

∂t

(
ρv2

2

)
+∇ ·

(
1
2
ρv2v

)
= −v ·∇P + v · (∇ · Π̄). (4)

Using another identity ∇ · (vP) ≡ v ·∇P + P∇ · v , we can rewrite the
equation for the conservation of kinetic energy density

∂

∂t

(
ρv2

2

)
+∇ ·

(
1
2
ρv2v + vP

)
= P∇ · v + v · (∇ · Π̄),

i.e., the kinetic energy is conserved except for adiabatic losses due to converging
flows and work done by viscous shear forces.
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Conservation laws – 3

Let’s recap the last equation for the kinetic energy,

∂

∂t

(
ρv2

2

)
+∇ ·

(
1
2
ρv2v + vP

)
= P∇ · v + v · (∇ · Π̄).

Combining this equation with the internal energy equation (Eq. 3),

∂

∂t
(ρϵ) +∇ · (ρϵv) = −P∇ · v + Π̄ : ∇v

we derive the equation for total energy conservation

∂

∂t

(
ρϵ+

ρv2

2

)
+∇ ·

{
v ·
[(

ρϵ+ P +
1
2
ρv2
)

1̄ + Π̄

]}
= 0. (5)
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Shocks – 1

Consider a propagating fluid discontinuity in the rest frame of the discontinuity.
Fluid moves from upstream to downstream. We denote the upstream conditions
by ρ1, v1, T1 and downstream conditions by ρ2, v2, T2.

We would like to derive the relations (also known as “jump conditions”) between
ρ1, v1, T1 and ρ2, v2, T2 for a steady-state, plane-parallel geometry of a fluid
discontinuity such as a shock. First, we assume that the velocity is perpendicular
to the surface of the discontinuity. While this may seem to be a substantial loss
of generality, it captures the main effect of discontinuities as we will see by
generalizing this simplification in the last part of this section.

There are two types of discontinuities:
1 shocks that are characterized by a mass flux through their interface, and
2 tangential discontinuities which have no mass flux through their interface.
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Shocks – 2
If a shock is a true discontinuity in hydrodynamic quantities, are the partial derivatives
in our evolution equations for mass, momentum and energy well defined at the shock?
How does one deal with this issue in practice? What is really happening at a shock?

Within the shock front or “transition layer” on the scale of the effective mean free
path λeff, viscous effects are important and cause the shock in the first place,
i.e., dissipate kinetic energy and thus generate heat and entropy:

collisional shocks: λeff ∼ λmfp

collisionless shocks: λeff ≪ λmfp

In principle, by resolving the viscous/collisionless shock transition layer at scales
λ ≲ λmfp our partial derivatives would be well defined. But on scales λ < λmfp
the fluid description breaks down and we have to reside to kinetic theory! How
do we proceed here?

Hence, we must resort to the integrated equations and exchange the fluxes Q (of
mass, momentum and energy) across our discretized fluid elements.

Outside the layer, viscous effects are small on scales λ ≫ λeff. We will derive
conservation equations of the form

d
dx

Q(ρ, v ,P) = 0 =⇒ Q(ρ, v ,P) = const.

and although Q involves viscous terms, we can ignore these outside the shock
zone and can derive jump conditions from equations without viscosity terms.
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Shocks – 3
Let’s recap the four conservation equations (for mass, momentum, internal and
kinetic energy)

∂ρ

∂t
+∇ · (ρv) = 0,

∂v
∂t

+ (v ·∇)v = −
∇P
ρ

+
1
ρ
∇ · Π̄,

∂

∂t
(ρϵ) +∇ · (ρϵv) = −P∇ · v + Π̄ : ∇v ,

∂

∂t

(
ρv2

2

)
+∇ ·

(
1
2
ρv2v

)
= −v ·∇P + v · (∇ · Π̄).

We assume steady state (∂/∂t = 0) and plane-parallel geometry
(∂/∂y = ∂/∂z = 0, ∂/∂x = d/dx). The conservation laws simplify to

d
dx

(ρv) = 0, (6)

v
dv
dx

= −
1
ρ

dP
dx

+
1
ρ

d
dx

{(
4
3
η + ξ

)
dv
dx

}
, (7)

d
dx

(ρϵv) = −P
dv
dx

+

(
4
3
η + ξ

)(
dv
dx

)2
, (8)

d
dx

(
1
2
ρv2v

)
= −v

dP
dx

+ v
d

dx

{(
4
3
η + ξ

)
dv
dx

}
. (9)
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Shocks – 4
The equation for mass conservation (Eq. 6) gives

ρv = const. =⇒ ρ1v1 = ρ2v2 = j =⇒ [ρv ] = 0, (10)

where j is the current density and the brackets, [. . .], indicate differences
between the up- and downstream quantities. Note, that the up- and downstream
velocities, v1 and v2, are measured in the frame of the discontinuity!

Using

d
dx

(
ρv2
)
= ρv

dv
dx

+ v
d

dx
(ρv)

(10)
= ρv

dv
dx

allows Eq. (7) to be rewritten as

ρv
dv
dx

+
dP
dx

−
d

dx

{(
4
3
η + ξ

)
dv
dx

}
=

d
dx

{
ρv2 + P −

(
4
3
η + ξ

)
dv
dx

}
= 0

=⇒
[
ρv2 + P −

(
4
3
η + ξ

)
dv
dx

]
= 0

This demonstrates that within the transition zone (where η, ξ, and dv/dx are
non-zero) ρv2 + P ̸= const. However, in the pre- and post-shock zones, η, ξ, and
dv/dx are negligible, implying [

ρv2 + P
]
= 0.
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Using

d
dx

(
ρv2
)
= ρv

dv
dx

+ v
d

dx
(ρv)

(10)
= ρv

dv
dx

allows Eq. (7) to be rewritten as

ρv
dv
dx

+
dP
dx

−
d

dx

{(
4
3
η + ξ

)
dv
dx

}
=

d
dx

{
ρv2 + P −

(
4
3
η + ξ

)
dv
dx

}
= 0

=⇒
[
ρv2 + P −

(
4
3
η + ξ

)
dv
dx

]
= 0

This demonstrates that within the transition zone (where η, ξ, and dv/dx are
non-zero) ρv2 + P ̸= const. However, in the pre- and post-shock zones, η, ξ, and
dv/dx are negligible, implying [

ρv2 + P
]
= 0.
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Shocks – 5

In the shock transition zone, viscous forces dissipate the incoming kinetic energy
into thermal energy and generate entropy.

Adding the equations for thermal and kinetic energy, Eqs. (8) and (9), yields (for
the region outside the transition zone)

0 =
d

dx

{
v
(

1
2
ρv2 + ρϵ

)
+ Pv

}
=

d
dx

{
ρv
(

1
2

v2 + ϵ+
P
ρ

)}
=

(
1
2

v2 + ϵ+
P
ρ

)
d

dx
(ρv) + ρv

d
dx

(
1
2

v2 + ϵ+
P
ρ

)
.

Since d(ρv)/dx = 0 and ρv ̸= 0 for a shock, we obtain

d
dx

(
1
2

v2 + ϵ+
P
ρ

)
= 0 =⇒

[
1
2

v2 + ϵ+
P
ρ

]
= 0.
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Shocks – 6

Summarizing, we have the Rankine-Hugoniot jump conditions for a plane-parallel
shock in the shock rest frame:

[ρv ] = 0, (11)[
ρv2 + P

]
= 0, (12)[

1
2

v2 + ϵ+
P
ρ

]
= 0. (13)

Independent of the complicated physics within the transition layer, these
conditions simply follow from the conservation laws. The first follows from mass
conservation, the second from mass and momentum conservation, and the third
from mass and total energy conservation.

Using ϵi = Pi/{ρi (γi − 1)}, we can rewrite the energy jump condition to get

1
2

v2
1 +

γ1

γ1 − 1
P1

ρ1
=

1
2

v2
2 +

γ2

γ2 − 1
P2

ρ2

for a single-species gas that is described by a polytropic equation of state. In
principle, γ1 ̸= γ2, since a shock can e.g., dissociate molecules, or raise T so
that previously inaccessible degrees of freedom become accessible.
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Tangential discontinuities

How does a tangential discontinuity differ from a shock? Name at least two of the three
differences.

[ρv ] = 0 allows for two types of solutions. The first type is clearly
ρ1v1 = ρ2v2 = 0 and since ρ1 and ρ2 are non-zero, we have

v1 = v2 = 0,

[ρv2 + P] = 0 =⇒ P1 = P2 =⇒ [P] = 0

which follows from Eq. (12).

The constancy of the normal component of the velocity across such an interface
implies that there is no mass flux j = ρv through a tangential discontinuity. If
additionally the tangential velocity is also continuous, a special discontinuity is
present which is called a contact discontinuity.

At a tangential discontinuity, there can be an arbitrary jump of density, that
however needs to be compensated by the same jump of T , but in the opposite
direction (because P = n kBT is constant across a tangential discontinuity)!
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Shock Mach number – 1
The other type of solution requires ρ1v1 ̸= 0 so that we have a mass flux through
this type of discontinuity that we call a “shock”.

We define a dimensionless number that characterizes the shock strength, the
Mach number as the ratio of shock speed to upstream sound speed
c2

1 = γP1/ρ1,

M1 ≡
v1

c1
=

√
ρ1v2

1
γP1

=

√
m̄v2

1
γkBT1

, (14)

which can be interpreted as a ratio of ram pressure (ρ1v2
1 )-to-thermal pressure in

the pre-shock gas or equivalently a ratio of kinetic-to-thermal energy density.
We can rewrite the Rankine-Hugoniot jump conditions in terms of M1 (and
assuming γ1 = γ2 = γ which is applicable for the ionized plasma of the ICM)

ρ2

ρ1
=

v1

v2
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

γ=1−→ M2
1 (15)

P2

P1
=

ρ2kBT2

ρ1kBT1
=

2γM2
1 − (γ − 1)
γ + 1

γ=1−→ M2
1 (16)

T2

T1
=

[
(γ − 1)M2

1 + 2
] [

2γM2
1 − (γ − 1)

]
(γ + 1)2M2

1

γ=1−→ 1 (17)

Note, the brackets in these equations retrieve their usual meaning.
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Shock Mach number – 2

Let’s recap the Rankine-Hugoniot jump conditions:

ρ2

ρ1
=

v1

v2
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

P2

P1
=

ρ2kBT2

ρ1kBT1
=

2γM2
1 − (γ − 1)
γ + 1

T2

T1
=

[
(γ − 1)M2

1 + 2
] [

2γM2
1 − (γ − 1)

]
(γ + 1)2M2

1

Those relations simplify for strong shocks (M1 ≫ 1), yielding

ρ2

ρ1
=

v1

v2
≈

γ + 1
γ − 1

= 4,

P2 ≈
2γ

γ + 1
M2

1P1 =
2

γ + 1
ρ1v2

1 =
3
4
ρ1v2

1 ,

kBT2 ≈
2γ(γ − 1)
(γ + 1)2

kBT1M2
1 =

2(γ − 1)
(γ + 1)2

m̄v2
1 =

3
16

m̄v2
1 ,

where we used a non-relativistic ideal gas (γ = 5/3) in the last equalities.
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Shock Mach number – 3

In the shock rest frame, the post-shock kinetic and thermal specific energies are
(γ = 5/3, M ≫ 1)

v2 =
v1

4
=⇒

1
2

v2
2 ≈

1
32

v2
1 ,

kBT2 =
3

16
m̄v2

1 =⇒
3
2

kBT2

m̄
≈

9
32

v2
1 =

9
16

(
1
2

v2
1

)
.

So roughly half of the pre-shock kinetic energy is converted to thermal energy (in
the shock rest frame). The total specific energy ϵtot of the post-shock gas is

ϵtot,2 =
1
2

v2
2 +

3
2

kBT2

m̄
≈

10
16

(
1
2

v2
1

)
=

5
8
ϵkin,1 =

5
8
ϵtot,1

because in a strong shock, the upstream thermal energy is negligible in
comparison to the kinetic energy. Hence, ϵtot,2 is lower than ϵtot,1 (in the shock
rest frame): what about energy conservation?

The difference is explained by the PdV work done by pressure and viscosity on
the post-shock gas in compressing its volume. Note that this PdV term is absent
in the rest frame of the post-shock gas.
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Shock Mach number – 4
The post-shock Mach number is

M2 ≡
v2

c2
=

v1

c1

v2

v1

c1

c2
= M1

v2

v1

(
T1

T2

)1/2
.

This simplifies in the strong-shock limit, yielding

M2 ≈ M1
γ − 1
γ + 1

[
(γ + 1)2

2γ(γ − 1)M2
1

]1/2

=

(
γ − 1

2γ

)1/2
≈ 0.45.

A shock converts supersonic gas into denser, slower moving, higher pressure,
subsonic gas because (for strong shocks and γ = 5/3)

ρ2

ρ1
= 4,

v2

v1
=

1
4
,

P2

P1
=

5
4
M2

1 > 1,

M2 ≈ 0.45.
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Shock adiabatic curve – 1
The shock increases the specific entropy of the gas by an amount

s2 − s1 = cV ln

(
P2

ργ2

)
− cV ln

(
P1

ργ1

)

= cV ln

(
P2

P1

)
− cVγ ln

(
ρ2

ρ1

)
= cV ln

(
K2

K1

)
.

Hence, the shock shifts the gas to a higher adiabatic curve that is uniquely
labeled by K = Pρ−γ : gas can move adiabatically along an adiabatic curve
while changes in entropy move it from one adiabatic curve to another.

With the definition of the current density j = ρ1v1 = ρ2v2 = const., we obtain for
the 2nd Rankine Hugoniot condition (Eq. 12)

[ρv2 + P] =

[
j2

m̄
V + P

]
= 0 =⇒

j2

m̄
V1 + P1 =

j2

m̄
V2 + P2.

Hence, the slope of the shock adiabatic curve in the P-V diagram is

−
j2

m̄
= −

P2 − P1

V1 − V2
.
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Shock adiabatic curve – 2

>

The slope of the shock adiabatic curve in the P-V diagram is

−
j2

m̄
= −

P2 − P1

V1 − V2
= −

∆P
∆V

,

which connects the two adiabatic curves of the up- and down stream fluid.
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Oblique shocks – 1

Now, we generalize our plane-parallel shock geometry to account for the fluid to
impact the shock at some oblique angle. We define a velocity component parallel
to the shock normal, v∥ ≡ v ·n, as well as a perpendicular component, v⊥.

The momentum conservation equation

∂

∂t
(ρv) +∇ ·

(
ρvvT + P1̄ − Π̄

)
= 0.

defines a momentum current through a unit surface area with normal vector n
(neglecting viscosity outside the shock transition layer and splitting the flux into a
normal and a perpendicular component),

ρv(v ·n) + Pn.

The momentum current has to be continuous across the shock in order for the
forces that are acting on both sides of the shock on the gas to be identical. In our
case, n coincides with the shock normal and points along ex . Continuity of the x ,
y , and z components of the momentum current yields

[ρv2
x + P] = 0,

[ρvx vy ] = 0,

[ρvx vz ] = 0.
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Oblique shocks – 2
We recap the last set of equations:

[ρv2
x + P] = 0,

[ρvx vy ] = 0,

[ρvx vz ] = 0.

At a shock j = ρvx ̸= 0 and ρ ̸= 0 so that we get

[vy ] = 0 and [vz ] = 0,

i.e., the tangential velocities are continuous across the shock. Thus, only the
parallel velocity component is modified at a shock according to v∥,2 = v∥,1ρ1/ρ2
while the perpendicular component remains invariant, v⊥,1 = v⊥,2 = v⊥.
This implies a refraction of the (oblique) flow toward the shock surface.
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Oblique shocks – 3

If the flow impinges with a constant angle at a shock, it is deflected by the same
amount everywhere along the shock surface.

Consider now a curved shock: this implies a changing angle between v and n
along the shock surface and hence, the shock transition causes a different
amount of “shock deflection” of the velocity field.

As a result, there is shear injected at a shock because two infinitesimally
separated points on the shock surface experience a different amount of
deflection.

This implies subsonic (solenoidal) turbulence in the post-shock regime: the
vorticity is injected at the curvature radius of the shock and cascades down in
scale to the Kolmogorov scale where it gets dissipated. Hence, in a curved
shock, there is eventually more kinetic energy dissipated into heat in comparison
to an oblique shock without curvature that experiences the same amount of ram
pressure.
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Riemann problem
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Generalized Rankine-Hugoniot conditions

In the exercises, you derived the generalized Rankine-Hugoniot shock jump
conditions of mass, momentum, and energy conservation,

vs[ρ] = [ρu],

vs[ρu] = [ρu2 + P],

vs

[
ρ

u2

2
+ ε

]
=

[(
ρ

u2

2
+ ε+ P

)
u

]
.

Here vs and u denote the shock and the mean gas velocity measured in the
laboratory rest system.

Setting vs = 0 transforms us to the rest system of the shock. These generalized
Rankine-Hugoniot conditions are very useful for deriving the analytic solution of
the Riemann problem.
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The Physics of Galaxy Clusters
Recap of today’s lecture

General properties of shocks
* shocks are produced via sound wave steepening or via a supersonic

compressible disturbance (non-linearity of Navier Stokes equations)
* shocks: sudden change in density, temperature, and pressure that

decelerates a supersonic flow
* shocks are ubiquitous: cluster mergers, AGN jets, supernova explosions
* Rankine-Hugoniot jump conditions at the shock manifest conservation laws:
ρ jumps by 4 (γ = 5/3) at a strong shock, T and P are not bounded

Tangential discontinuities and curved shocks
* tangential discontinuity: P, v and mass flux ρv are all constant across
* oblique shock: deflects the (oblique) flow toward the shock surface
* curved shock: deflection angle changes along shock surface: generation of

shear and injection of vorticity

Astrophysical collisionless shocks can
* accelerate particles (electrons and ions) → cosmic rays (CRs)
* amplify magnetic fields (or generate them from scratch)
* exchange energy between electrons and ions
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