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The Physics of Galaxy Clusters
Recap of today’s lecture

General properties of shocks
* shocks are produced via sound wave steepening or via a supersonic

compressible disturbance (non-linearity of Navier Stokes equations)
* shocks: sudden change in density, temperature, and pressure that

decelerates a supersonic flow
* shocks are ubiquitous: cluster mergers, AGN jets, supernova explosions
* Rankine-Hugoniot jump conditions at the shock manifest conservation laws:
ρ jumps by 4 (γ = 5/3) at a strong shock, T and P are not bounded

Tangential discontinuities and curved shocks
* tangential discontinuity: P, v and mass flux ρv are all constant across
* oblique shock: deflects the (oblique) flow toward the shock surface
* curved shock: deflection angle changes along shock surface: generation of

shear and injection of vorticity

Astrophysical collisionless shocks can
* accelerate particles (electrons and ions) → cosmic rays (CRs)
* amplify magnetic fields (or generate them from scratch)
* exchange energy between electrons and ions
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Entropy generation by accretion – 1

Motivate the connection between the phase space density and entropy. When is a gas
degenerate and why is the ICM very far from this?

The Uncertainty Principle is ∆px∆x = h, and statistical mechanics counts the
number of states with h−3d3xd3p. Hence the phase space density of cluster gas
is

f ∼
h3d6N
d3xd3p

∼ n
(

h
mpv

)3

∼ 6 × 10−35
(

n
10−3 cm−3

)(
v

103 km s−1

)−3
∝ K−3/2.

In the last step, we assumed thermal velocities with v2 ∝ kBT .

If this was unity, we would deal with a degenerate gas. Instead, this is extremely
small, making it the least degenerate (non-relativistic) gas in the Universe or
equivalently, the highest entropy gas (of equilibrium systems)!
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Entropy generation by accretion – 2

To describe accretion onto a galaxy cluster, we put ourselves into the post-shock rest
system – why?

Because the ICM in the cluster reflects the post-shock state, which is at rest.

We first consider the case of cold accretion (P and K of the incoming gas are
negligible) which implies the strong-shock regime (M1 ≫ 1). Conveniently, we
transform our Rankine-Hugoniot jump conditions to the rest frame of the
post-shock gas (where v2,post = 0), i.e., the cluster rest frame.

shock frame: v2 =
v1

4

post-shock rest frame: vacc = v1 − v2 = v1

(
1 −

1
4

)
=

3
4

v1

kT2 =
3

16
m̄v2

1 =
1
3

m̄v2
acc

If instead, the incoming gas has been heated before passing through the
accretion shock, the Mach number is smaller and the cluster entropy level
reflects both, the amount of pre-heating and entropy production at the accretion
shock.
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Entropy generation by accretion – 3
Suppose that mass accretes in a series of concentric shells, each with a baryon
fraction fb, that initially comoves with the Hubble flow as in the spherical collapse
model. In this simple model, a shell that initially encloses total mass M reaches
zero velocity at the turnaround radius rta and falls back through an accretion
shock at radius racc in the neighborhood of the virial radius rta/2.

The system of governing equations are

Ṁg =
dMg

dt
= 4πρ1r2

acc
dr
dt

∣∣∣∣
acc

= 4πρ1r2
accvacc = fbṀ, (1)

v2
acc =

GM
racc

=
2GM

rta
, (assuming ΩΛ = 0), (2)

kBT2 =
1
3

m̄v2
acc, m̄ = µmp, (3)

ρ2 = 4ρ1. (4)

Here, ρ1 is the pre-shock density, ρ2 and T2 are the post-shock density and
temperature, racc = rta/2 is the accretion radius.
In the post-shock frame, the post-shock thermal energy equals the pre-shock
ram pressure (+ initial thermal energy that we neglect here) and Eqn. (3) implies

ϵ2 =
3
2

kBT2

m̄
=

3
2

1
3

v2
acc =

v2
acc

2
= ϵ1, kin.
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Entropy generation by accretion – 4
Using Eqns. (3) and (4), we can compute the post-shock entropy that is
produced by smooth accretion

K2,sm ≡
kBT2

m̄ρ
2/3
2

=
v2

acc

3(4ρ1)2/3
. (5)

Combining Eqns. (1) and (2) yields

Ṁg = 4πr2
accρ1

(
GM
racc

)1/2
= fbṀ =⇒ ρ1 =

Ṁfb
4πr3/2

acc
√

GM
.

Inserting this equation and Eqn. (2) into Eqn. (5) yields

K2,sm =
v2

acc

3(4ρ1)2/3
=

1
3

[
π(GM)2

fbṀ

]2/3

=
1
3

(
πG2

fb

)2/3 (
d lnM
d ln t

)−2/3
(Mt)2/3. (6)

Because the entropy generated at the shock front increases monotonically with
time, such an ideal, smoothly accreting cluster never convects but rather
accretes shells of baryons as if they were onion skins.
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Entropy generation by accretion – 5

It is useful to cast Eqn. (6) into dimensionless form using a characteristic cluster
entropy K200,

K200 ≡
kBT200

m̄(200fbρcr)2/3
=

1
2

[
2π
15

G2M200

fbH(z)

]2/3

.

Note that we have adopted here the critical density of the Universe, ρcr, and the
characteristic temperature of a singular isothermal sphere, kBT200,

ρcr ≡
3H2(z)

8πG
,

kBT200 =
GM200m̄

2r200
=

m̄
2

[10GM200H(z)]2/3 .

Note that the mass of the singular isothermal sphere (SIS) is given by

M =
2σ2r

G
=

2rkBT
Gm̄

=⇒ kBT =
GMm̄

2r
. (7)
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Entropy generation by accretion – 6

Let’s recap the equations for K2,sm (Eqn. 6) and K200

K2,sm =
1
3

(
πG2

fb

)2/3 (
d lnM
d ln t

)−2/3
(Mt)2/3,

K200 ≡
kBT200

m(200fbρcr)2/3
=

1
2

[
2π
15

G2M200

fbH(z)

]2/3

.

Combining those equations allows to cast Eqn. (6) into dimensionless form

K2,sm

K200
=

2
3

(
15
2

H0

M200

)2/3 (d lnM
d ln t

)−2/3
(Mt)2/3. (8)

Thus, the entropy profile due to smooth accretion of cold gas depends entirely on
the mass accretion history M(t), and the entropy profiles of objects with similar
M(t) should be self-similar with respect to K200.
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Entropy generation by accretion – 7

Voit et al. (2003)

Extended Press-Schechter theory or
numerical simulations show that
clusters in the mass range
1014–1015 M⊙ grow roughly as
M(t) ∝ t to M(t) ∝ t2 in the
concordance model.

Inserting these growth times
t ∝ M0.5...1 into Eqn. (8) yields

K2,sm ∝ (Mt)2/3 ∝ M1...4/3.

Throughout a cluster, M encompassed by a given radius is approximately M ∝ r
(which is exact for the singular isothermal sphere, see Eqn. 7).
Assuming M ∝ Mg at large radii, we obtain the following radial entropy profile

K2,sm ∝ r1...4/3 (9)

which compares well with numerical simulations K2,sm ∝ r1.1.
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Entropy generation by accretion – 8

In real clusters the accreting gas is lumpy and not smooth which transforms the
nature of entropy generation. Incoming gas that is bound to accreting sublumps
of matter enters the cluster with a wide range of densities. There is no
well-defined accretion shock but rather a complex network of shocks as different
lumps of infalling gas mix with the intracluster medium of the main cluster.

Numerical simulations of cluster formation all agree on the baseline profile in
non-radiative gas simulations for r > 0.1r200,

Ksim = 1.32K200

(
r

r200

)1.1
.

For r < 0.1r200, there is more dispersion among the simulations and the answer
depends on the numerical technique, with grid codes showing an elevated
entropy core due to efficient “entropy mixing” (regime of radiative physics).

While the simulated entropy profiles resemble that from smooth accretion
models, there is a problem: the normalization of the smooth models is higher.
The likely reason is that smooth accretion maximizes the entropy production as
smoothing does not change the accretion velocity but reduces the mean density
of accreting gas lumps. Since the post-shock entropy scales as K2 ∝ v2

accρ
−2/3
1 ,

a smaller (smoothed) density implies larger entropy everywhere.
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of accreting gas lumps. Since the post-shock entropy scales as K2 ∝ v2

accρ
−2/3
1 ,

a smaller (smoothed) density implies larger entropy everywhere.
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Ideal cluster scaling relations – 1

In order to use clusters as cosmological probes, we need to relate the different
observables to a functional that is sensitive to cosmology. Traditionally this is
obtained by using the mass function.

The main assumption underlying this approach is the choice of an average
density of the matter so that this implicitly defines a cluster “radius” by

M∆ =
4
3
πr3

∆∆ρcr(z), ∆ = 100 . . . 500,

which also relates the temperature to this definition, T ∼ T∆.
Cautionary remarks: when considering X-ray emission, we encounter ρX, TX
which is not necessarily identical to ρ̄ = ∆ρcr and T∆ as it is degenerate with
observational biases.
Not accounting for these would break self-similarity as e.g., the presence of a
clumped multiphase medium may bias TX towards the dense, colder phase with
a higher X-ray emissivity.
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Ideal cluster scaling relations – 2

Recall that the definition of the critical density at scale factor a and today are
defined as

ρcr(a) ≡
3H2(a)

8πG
, ρcr0 ≡

3H2
0

8πG
, and

H2(a) ≡
(

ȧ
a

)2

≡ H2
0 E2(a) = H2

0

[
Ωr0a−4 +Ωm0a−3 +ΩΛ0 +ΩKa−2

]
is the Hubble function that derives from Friedmann’s equation and describes the
expansion rate of the universe and the cosmological parameters Ωi are defined
earlier. Note that scale factor and redshift are related via a = 1/(1 + z).

We assume hydrostatic equilibrium and obtain the scaling

kBT
m

∼ v2 ∼
GM∆

r∆
∝ M2/3

∆ ρ
1/3
cr ,

where we used r∆ ∝ M1/3
∆ ρ

−1/3
cr (z) in the last step. This immediately yields the

temperature-mass scaling

T∆ ∝ M2/3
∆ ρ

1/3
cr (z) ∝ [M∆E(z)]2/3.
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Ideal cluster scaling relations – 3

We assume that clusters are self-similar objects that only scale with M∆ = Mtot.
Consequently, the gas fraction, fgas(< r∆) = Mgas/Mtot, and stellar mass
fraction, f⋆(< r∆) = M⋆/Mtot, do not scale with cluster mass. Here,
Mtot = Mtot(< r∆) = Mdm + Mgas + M⋆ is the gravitational mass.

We get the gas and stellar mass scaling,

Mgas =

∫ r∆

0
ρgasdV ≈ M∆fgas ∝ M∆,

M⋆ ≈ M∆f⋆ ∝ M∆ =⇒ Ngals ∝ M∆.

Especially Ngals ∝ M∆ assumes a fair sampling of the luminosity function which
is not anymore the case on group scales with O(10) galaxies.

To obtain the Sunyaev-Zel’dovich scaling relation, we integrate the Compton-y
parameter over the solid angle Ω subtended by the cluster,

Y =

∫
Ω

ydA =
σT

mec2

∫
V

nekBTedV ,

Y ∝ MgasT∆ ∝ M5/3
∆ E(z)2/3.

Christoph Pfrommer The Physics of Galaxy Clusters



Ideal cluster scaling relations – 3

We assume that clusters are self-similar objects that only scale with M∆ = Mtot.
Consequently, the gas fraction, fgas(< r∆) = Mgas/Mtot, and stellar mass
fraction, f⋆(< r∆) = M⋆/Mtot, do not scale with cluster mass. Here,
Mtot = Mtot(< r∆) = Mdm + Mgas + M⋆ is the gravitational mass.

We get the gas and stellar mass scaling,

Mgas =

∫ r∆

0
ρgasdV ≈ M∆fgas ∝ M∆,

M⋆ ≈ M∆f⋆ ∝ M∆ =⇒ Ngals ∝ M∆.

Especially Ngals ∝ M∆ assumes a fair sampling of the luminosity function which
is not anymore the case on group scales with O(10) galaxies.

To obtain the Sunyaev-Zel’dovich scaling relation, we integrate the Compton-y
parameter over the solid angle Ω subtended by the cluster,

Y =

∫
Ω

ydA =
σT

mec2

∫
V

nekBTedV ,

Y ∝ MgasT∆ ∝ M5/3
∆ E(z)2/3.

Christoph Pfrommer The Physics of Galaxy Clusters



Ideal cluster scaling relations – 3

We assume that clusters are self-similar objects that only scale with M∆ = Mtot.
Consequently, the gas fraction, fgas(< r∆) = Mgas/Mtot, and stellar mass
fraction, f⋆(< r∆) = M⋆/Mtot, do not scale with cluster mass. Here,
Mtot = Mtot(< r∆) = Mdm + Mgas + M⋆ is the gravitational mass.

We get the gas and stellar mass scaling,

Mgas =

∫ r∆

0
ρgasdV ≈ M∆fgas ∝ M∆,

M⋆ ≈ M∆f⋆ ∝ M∆ =⇒ Ngals ∝ M∆.

Especially Ngals ∝ M∆ assumes a fair sampling of the luminosity function which
is not anymore the case on group scales with O(10) galaxies.

To obtain the Sunyaev-Zel’dovich scaling relation, we integrate the Compton-y
parameter over the solid angle Ω subtended by the cluster,

Y =

∫
Ω

ydA =
σT

mec2

∫
V

nekBTedV ,

Y ∝ MgasT∆ ∝ M5/3
∆ E(z)2/3.

Christoph Pfrommer The Physics of Galaxy Clusters



Ideal cluster scaling relations – 4

Finally, the X-ray scaling relation is obtained by assuming that free-free emission
(a two-body process) is the dominating radiative process. In this case, the
emissivity per unit volume is jX ∝ nenionT 1/2 and we obtain the following scaling
of X-ray luminosity with cluster mass,

LX ∝
∫

V
nenion

√
kBTedV ∝ MgasT 1/2

∆ ,

LX ∝ M4/3
∆ E(z)1/3 ∝ T 2

∆E(z)−1,

where we use the temperature-mass relation, T∆ ∝ [M∆E(z)]2/3.
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Cluster scaling relations: order of magnitudes – 1
Let’s recap all ideal cluster mass scaling relations:

T∆ ∝ [M∆E(z)]2/3, Y ∝ M5/3
∆ E(z)2/3,

Mgas ∝ M⋆ ∝ M∆, LX ∝ M4/3
∆ E(z)1/3.

A 1015 M⊙ cluster has a temperature of kT ≈ 6 keV, a gas mass of
Mgas ≈ 1.4 × 1014M⊙ and a stellar mass of M⋆ ≈ 2 × 1013M⊙ which
corresponds to Ngal ≈ 200 Milky-Way sized galaxies (M⋆, MW ≈ 1 × 1011M⊙).
Scaling these numbers at z = 0 yields

T200 ≈ 1.3 keV ×
(

M200

1014M⊙

)2/3
≈ 0.3 keV ×

(
M200

1013M⊙

)2/3
,

Mgas ≈ 1.4 × 1013M⊙ ×
(

M200

1014M⊙

)
≈ 1.4 × 1012M⊙ ×

(
M200

1013M⊙

)
,

M⋆ ≈ 2 × 1012M⊙ ×
(

M200

1014M⊙

)
≈ 2 × 1011M⊙ ×

(
M200

1013M⊙

)
,

Ngal ≈ 20 ×
(

M200

1014M⊙

)
≈ 2 ×

(
M200

1013M⊙

)
.

At z = 1 the temperatures are increased by 45% (since E(z = 1) = 1.76).
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Cluster scaling relations: order of magnitudes – 2

Argue for each wave band, why the halo mass scale of ∼ 1014 M⊙ is a good choice for
calling an object a galaxy cluster.

A 1013M⊙ halo contains 2 Milky-Way sized galaxies, which cannot be called a
cluster, but a group. In fact, the Local Group consists of the Milky Way and
Andromeda galaxy of nearly equal size. Typically one starts to speak of clusters
at the mass scale around 1014M⊙ which implies ∼ 20 galaxies.

Similarly, at around 1014M⊙, the ICM exceeds X-ray emitting particle energies of
keV so that one sensibly can speak of an X-ray emitting cluster.

A halo of 1013M⊙ has an SZ flux that is down by a factor of 0.015/3 ≈ 1/2000 in
comparison to a 1015M⊙ cluster. This cannot any more be detected on an
individual basis and many SZ decrements at the positions of optically identified
groups need to be stacked to detect a signal statistically.
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Real cluster scaling relations – 1

Observational scaling relations do not follow the self-similar prediction above.
One finds

LX ∝ T 3
X ,

d
dM

(
Mgas

M

)
> 0,

d
dM

(
M⋆

M

)
< 0,

where M is some observational proxy for M∆.

There is less gas and more stars in smaller cluster than predicted by the
self-similar scaling, and smaller clusters are dimmer in comparison to the
self-similar expectation: LX ∝ T 2

∆.

Y (M) and TX(M) are roughly in agreement with the self-similar prediction. It
appears that gas physics modifies these simple scale-invariant models and
imposes new scales to the otherwise scale-free gravity and hydrodynamics!
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Real cluster scaling relations – 2

Assume an isothermal gas in a cluster with a beta profile of the gas density:

ρ = ρ0

[
1

1 + (r/rc)2

]3/2β
,

where ρ0 is the central density, rc is the core radius, and β is the scaling parameter,
calculate the X-ray luminosity for β = 2/3 and 1 (typical values in the X-ray literature).
Compare your result to our approximation of Eqn. (3.170) and discuss it.

Let’s perform the integral for the X-ray luminosity rigorously, assuming spherical
symmetry and that bremsstrahlung (free-free emission) is the dominating
emission process, jX(r) = AT 1/2ρ2(r):

LX =

∫
V

jXdV = 4πAT 1/2ρ2
0

∫ ∞

0

r2dr[
1 + (r/rc)2

]3β
= 4πAT 1/2ρ2

0r3
c

∫ ∞

0

x2dx(
1 + x2

)3β = 4πAT 1/2ρ2
0r3

c f (β),

where f (β = 1) = π/16 and f (β = 2/3) = π/4.

Interestingly, in the notes we obtained this scaling without so much effort.
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Real cluster scaling relations – 3
Rigorous computation of the X-ray luminosity:

LX =

∫
V

jXdV = 4πAT 1/2ρ2
0r3

c f (β),

where f (β = 1) = π/16 and f (β = 2/3) = π/4.

In the notes we assume β = 2/3 and study the limiting cases for the X-ray
luminosity:

LX ∝
∫ R

0
ρ2T 1/2r2dr ,

dLX

d ln r
∝ r3ρ2T 1/2 ∼


ρ2

0r3 for r < rc,

ρ2
0r−1T 1/2 for r > rc and β =

2
3
.

Thus, the contribution to the X-ray luminosity per logarithmic bin in radius
increases steeply toward rc (because of the larger available volume) and then
drops beyond rc (after realizing that T ∼ r−1/2 in the peripheral cluster parts).
The radii around rc dominate LX and thus, we expect

LX ∝ ρ2
0T 1/2r3

c ,

which is the same scaling with ρ0 and rc.
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Real cluster scaling relations – 4
The density profile with β = 2/3 follows

ρ(r) = ρ∆

(
r

r∆

)−2
for r > rc

We define the cluster concentration parameter c = r∆/rc, implying
ρ(rc) ≡ ρc = c2ρ∆ and rewrite LX in terms of the concentration c:

LX ∝ ρ2
cT 1/2r3

c ≈ ρ2
∆cr3

∆T 1/2.

Using self-similar scalings T∆ ∝ M2/3
∆ and Mgas ∝ M∆ ∝ r3

∆, we obtain

LX ∝ cM4/3
∆ E(z)1/3 ∝ cT 2

∆E(z)−1.

⇒ If c is independent of mass, we recover the self-similar scaling. However,
radiative gas physics modifies c so that it assumes a mass dependence.

There have been three classes of models suggested to explain the deviation
from scale invariance:

1 “pre-heating” the gas by supernova winds or some other feedback
mechanism before falling into clusters,

2 heating the gas in the cluster, potentially through feedback by active
galactic nuclei (AGN),

3 cooling out the low-entropy gas at the cluster center and fueling central
star formation selectively removes the low-entropy gas.
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Real scaling relations – pre-heating

We define the cluster concentration parameter c = r∆/rc, implying ρ(rc) ≡ ρc = c2ρ∆
and found

LX ∝ cM4/3
∆ E(z)1/3 ∝ cT 2

∆E(z)−1.

Solution 1. “Pre-heating” the gas by supernova winds or some other feedback
mechanism before falling into clusters imprints an “entropy floor” in the gas
distribution – a minimum entropy level Kmin below which it cannot fall.

The clusters’ central entropy is K0 ∝ Tρ
−2/3
0 ∝ Tc−4/3. If all clusters have

K0 = Kmin = const., then

c ∝ T 3/4K−3/4
min =⇒ LX ∝ T 2.75.

Thus, an entropy floor leads to larger cores (relative to r∆),
rc = r∆/c ∝ (Kmin/T )3/4r∆, which is larger for smaller clusters (lower T ) and
thus to a steeper LX-T relation close to the observations.
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Real scaling relations – AGN feedback and cooling

Solution 2. An alternative possibility is that the gas gets heated after falling into
the cluster, potentially through feedback by active galactic nuclei (AGN).

This is however energetically much more expensive: to reach the same entropy
as in the pre-heating case, one needs more energy if it is injected at the center
by a factor

kBTcenter

kBTpre−heat
∼

Kcenter

Kpre−heat

[
ncenter

npre−heat

]2/3

∼ 102.

Here, we adopted typical values for ncenter ∼ 2 × 10−3 cm−3 and
npre−heat ∼ 10n̄ ∼ 2 × 10−6 cm−3.

However, AGNs can provide this energy if the energy can be effectively coupled
into the ICM.

Solution 3. Cooling out the low-entropy gas at the cluster center and fueling
central star formation selectively removes the low-entropy gas. The gas at larger
radii (and on higher adiabatic curves) flows in adiabatically and replaces the
condensed gas which leads to the formation of an entropy floor.

This process is observed to happen, but the star formation rate is only 10% of
what would be needed to explain the steeper LX-T slope.
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The Physics of Galaxy Clusters
Recap of today’s lecture

Entropy generation by accretion
* entropy of accreted cluster gas increases with time as K ∝ t2/3

* smoothly accreting cluster never convects but builds stable atmosphere
* simulated clusters show K ∝ r1.1, lower normalization due to clumpy accretion

Cluster scaling relations
* scaling relations relate different observables to mass that depends on cosmo-

logical parameters via the mass function: clusters as cosmological probes
* observed Y (M) and TX(M) obey self-similar relations
* M⋆(M), Mgas(M), LX(M) show deviations due to baryonic physics
* pre-heating, AGN feedback, and radiative cooling are suggested solutions
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