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The Physics of Galaxy Clusters
Recap of last week’s lecture

Entropy generation by accretion
* entropy of accreted cluster gas increases with time as K ∝ t2/3

* smoothly accreting cluster never convects but builds stable atmosphere
* simulated clusters show K ∝ r1.1, lower normalization due to clumpy accretion

Cluster scaling relations
* scaling relations relate different observables to mass that depends on cosmo-

logical parameters via the mass function: clusters as cosmological probes
* observed Y (M) and TX(M) obey self-similar relations
* M⋆(M), Mgas(M), LX(M) show deviations due to baryonic physics
* suggested solutions: pre-heating, AGN feedback, and radiative cooling
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Radiative physics

Three-dimensional hydrodynamics simulations of galaxy clusters span an
enormous range in scales and track a plethora of physical processes: formidable
computational challenge. Typically, we simulate a periodic box of side length L
that contains a representative volume of the universe and is large enough to host
enough objects of interest to provide a sufficiently large statistical sample.

L ≳ 300 Mpc ∼ 1027 cm. This large volume is necessary in order to get a few
sites of constructive interference of long wavelength modes which evolve into a
few massive (M ∼ 1015 M⊙) galaxy clusters.

lgal ∼ 30 kpc ∼ 1023 cm. The simulation needs to resolve the diameter lgal of
galaxies by at least 10 resolution elements. Such a Eulerian mesh would then
have [L/(0.1lgal)]

3 ∼ 1015 individual cells—too many elements for current
state-of-the-art simulations. Solution: introduce adaptive grid-refinement in
Eulerian codes (which increase the numerical resolution where needed, i.e.,
inside collapsing objects) or Lagrangian frameworks that discretize the simulated
mass rather than simulation space.

l⋆ ∼ 3 pc ∼ 1019 cm ∼ size of star forming regions. The resulting dynamical
range of the simulation volume, (L/l⋆)3 ∼ 1024, is too large to be reliably
included in first-principle simulations. Instead, this requires a subgrid prescription
of star formation physics to include the necessary dynamical back-reaction
effects on the resolved larger scales.
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Radiative cooling – 1

At high temperatures (kBT ≳ 2 keV) the light- and intermediate-mass elements
of the ICM are fully ionized so that the only cooling process for them is free-free
emission (thermal bremsstrahlung). Below kBT ∼ 2 keV recombination-line
cooling of heavy elements (Fe, . . . ) starts to dominate the cooling process (and
the associated X-ray emission, assuming typical heavy element abundances
relative to hydrogen, which are ∼ 0.3 times those found in the Sun).

The physics of bremsstrahlung emission is simple: electrons scatter off of ions
and are deflected in the Coulomb field of the ions. They radiate because of their
acceleration and thus lose energy, i.e., they “cool”.

The spectral X-ray emissivity jν is defined as as the amount of energy emitted in
photons of frequency ν per unit frequency interval dν, per unit time and per unit
plasma volume, jν = d3E/(dνdtdV ). It must scale with the product of electron
and ion number density (because it is a two-body interaction), with the time
available for the scattering process, t ∼ l/∆v ∼ l/

√
kBT/m̄, where ∆v is the

relative velocity of electron and ion, and with the Boltzmann factor for the
distribution of energy at a given temperature. Hence we get

jν =
d3E

dνdtdV
= C̃

n2√
kBT

e−hν/kBT , C̃ = const.
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Radiative cooling – 2
Recall the spectral X-ray emissivity jν :

jν =
d3E

dνdtdV
= C̃

n2√
kBT

e−hν/kBT , C̃ = const.

The volume emissivity is the integral of jν over frequency (Z = 0.3Z⊙.),

j ≡
d2E
dtdV

=

∫ ∞

0

d3E
dνdtdV

dν = C̃
n2√
kBT

kBT
h

∫ ∞

0
e−x dx

= Cn2
√

kBT = 2.5 × 10−23
(

nH

1 cm−3

)2 ( T
108 K

)1/2 erg
cm3 s

.

Comparing the thermal energy content to the total (frequency-integrated) X-ray
emissivity defines the cooling time

tcool =
εth

|ε̇brems|
=

3nkBT
2j

≈ 0.66
(

kBT
1 keV

)1/2 ( ne

3 × 10−2 cm−3

)−1
Gyr (CC cluster)

≈ 13.3
(

kBT
4 keV

)1/2 ( ne

3 × 10−3 cm−3

)−1
Gyr ∼ tHubble, (NCC cluster)

where n = ρ/(µmp), ne is the electron number density, and µ = 0.588 is the
mean molecular weight of a fully ionized primordial gas.
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Radiative cooling – 3
Recall the expression for the cooling time:

tcool =
εth

|ε̇brems|
=

3nkBT
2j

≈ 0.66
(

kBT
1 keV

)1/2 ( ne

3 × 10−2 cm−3

)−1
Gyr, (CC center).

At larger radii, the potential becomes shallower and the density decreases.
Hence, the cooling time increases towards larger radii and tcool is minimized at
the center: we obtain tcool < 1 Gyr in centers of CC clusters.
Is this a problem? Let’s check the time evolution of εth:

ε̇brems =
dεth

dt

∣∣∣∣
brems

= −
εth

tcool

⇒ εth(t) = εth,0e−t/tcool

This means that after 2tcool, the thermal energy has dropped by an order of
magnitude. As a result, gas would be quickly flowing from larger radii towards
the center, maintaining pressure equilibrium.
If gas in pressure equilibrium cools, it becomes denser and cools even faster.
This is a run-away process that should lead to a large amount of cold gas and
star formation at rates of ∼ 1000 M⊙ yr−1—in conflict with observations. This is
the famous “cooling flow problem” .
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Radiative cooling – 4
We can gain further insight if we rewrite tcool in terms of the cluster entropy
Ke ≡ kBTn−2/3

e . We define t0 = 2 Gyr, kBT0 = keV, and n0 = 10−2 cm−3, to
obtain

tcool = t0

(
kBT
kBT0

)1/2 n0

ne
= t0

(
Ke

K0

)3/2 kBT0

kBT
,

where K0 = 21.5 keV cm2 is a typical value for the central entropy in CC clusters.
Because t0 ≪ tHubble ≈ 14 Gyr the cooling ICM needs additional energy injection
that stabilizes it against the cooling catastrophe.

This demonstrates that clusters with similar temperatures (or potential depths)
have longer cooling times if the central entropy is larger. We can derive a critical
entropy

Kc(T ) ≈ 80
(

tcool

14 Gyr

)2/3 (kBT
keV

)2/3
keV cm2,

that is large enough to avoid the cooling catastrophe in galaxy groups with
kBT ∼ keV.

Using kBT = kBT̃ (M200/M̃)2/3, where M̃ = 1015 M⊙ and kBT̃ = 6 keV, we
obtain

tcool = t0

(
Ke

K0

)3/2 kBT0

kBT
= 0.33

(
Ke

K0

)3/2 ( M200

1015 M⊙

)−2/3
Gyr.

Christoph Pfrommer The Physics of Galaxy Clusters



Radiative cooling – 4
We can gain further insight if we rewrite tcool in terms of the cluster entropy
Ke ≡ kBTn−2/3

e . We define t0 = 2 Gyr, kBT0 = keV, and n0 = 10−2 cm−3, to
obtain

tcool = t0

(
kBT
kBT0

)1/2 n0

ne
= t0

(
Ke

K0

)3/2 kBT0

kBT
,

where K0 = 21.5 keV cm2 is a typical value for the central entropy in CC clusters.
Because t0 ≪ tHubble ≈ 14 Gyr the cooling ICM needs additional energy injection
that stabilizes it against the cooling catastrophe.

This demonstrates that clusters with similar temperatures (or potential depths)
have longer cooling times if the central entropy is larger. We can derive a critical
entropy

Kc(T ) ≈ 80
(

tcool

14 Gyr

)2/3 ( kBT
keV

)2/3
keV cm2,

that is large enough to avoid the cooling catastrophe in galaxy groups with
kBT ∼ keV.

Using kBT = kBT̃ (M200/M̃)2/3, where M̃ = 1015 M⊙ and kBT̃ = 6 keV, we
obtain

tcool = t0

(
Ke

K0

)3/2 kBT0

kBT
= 0.33

(
Ke

K0

)3/2 ( M200

1015 M⊙

)−2/3
Gyr.

Christoph Pfrommer The Physics of Galaxy Clusters



Radiative cooling – 4
We can gain further insight if we rewrite tcool in terms of the cluster entropy
Ke ≡ kBTn−2/3

e . We define t0 = 2 Gyr, kBT0 = keV, and n0 = 10−2 cm−3, to
obtain

tcool = t0

(
kBT
kBT0

)1/2 n0

ne
= t0

(
Ke

K0

)3/2 kBT0

kBT
,

where K0 = 21.5 keV cm2 is a typical value for the central entropy in CC clusters.
Because t0 ≪ tHubble ≈ 14 Gyr the cooling ICM needs additional energy injection
that stabilizes it against the cooling catastrophe.

This demonstrates that clusters with similar temperatures (or potential depths)
have longer cooling times if the central entropy is larger. We can derive a critical
entropy

Kc(T ) ≈ 80
(

tcool

14 Gyr

)2/3 ( kBT
keV

)2/3
keV cm2,

that is large enough to avoid the cooling catastrophe in galaxy groups with
kBT ∼ keV.

Using kBT = kBT̃ (M200/M̃)2/3, where M̃ = 1015 M⊙ and kBT̃ = 6 keV, we
obtain

tcool = t0

(
Ke

K0

)3/2 kBT0

kBT
= 0.33

(
Ke

K0

)3/2 ( M200

1015 M⊙

)−2/3
Gyr.

Christoph Pfrommer The Physics of Galaxy Clusters



Cooling versus heating – 1

We have seen that the cooling time in the core region of cool core clusters is
smaller than the Hubble time which would imply a cooling catastrophe if not
countered by energy feedback. To see how much feedback is needed, we first
compute the cooling rate and redefine the X-ray emissivity as an energy cooling
rate Λ(T ) according to

j = Cn2
H

√
kBT = Λ(T )n2

H, where

Λ(T ) = Λ0

(
kBT
kBT0

)1/2

= 2.5 × 10−23
(

T
108 K

)1/2 erg cm3

s
, (Z = 0.3Z⊙). (1)

We adopt a typical gas density profile as found in X-ray observations, the
so-called beta profile which is simply a King profile with the outer slope
parametrized by β ≈ 2/3 . . . 1:

n(r) = n0

[
1 +

(
r
rc

)2
]−3β/2

.
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Cooling versus heating – 2
We consider the X-ray luminosity as a proxy for the cooling luminosity:

LX =

∫ ∞

0
jdV = Λ0

√
kBT
kBT0

4π
∫ ∞

0
n2(r)r2dr

=
4π
3

r3
c n2

0Λ0

√
kBT
kBT0

× 3
∫ ∞

0

x2dx
(1 + x2)3β

=
4π
3

r3
c n2

0Λ0

√
kBT
kBT0

×


3π
16 for β = 1

3π
4 for β = 2/3

∼ 1044
(

rc

100 kpc

)3 ( n0

10−2 cm−3

)2 ( kBT
3 keV

)1/2
erg s−1,

where we adopted β = 1 in the last step. Note that to order of magnitude, it
suffices to assume a homogeneous sphere with radius rc and a density that is
equal to that of the core region to calculate LX.

This corresponds to our finding last week that radii around rc dominate LX:

dLX

d ln r
∝ r3ρ2T 1/2 ∼

{
ρ2

0r3 for r < rc,

ρ2
0r−1T 1/2 for r > rc.

This means that the density drops too fast for r > rc so that the virial radius
cannot be observed in the X-rays and the average density does not enter LX .
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Hence, a successful feedback process has to heat the ICM at an average rate of
1044 erg s−1 to balance the cooling losses.
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Cooling versus heating – 4
The density distribution of a cool core cluster is characterized by a double beta
profile,

n(r) =
∑

i=1,2

ni

1 +

(
r

rc, i

)2
−3βi/2

.

Plot the density profile of this cluster as a function of radius in a
double-logarithmic representation for β1,2 = 1, (n1, n2) = (10−1, 10−2) cm−3,
and rc, 1, rc, 2 = (10, 100) kpc.
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Cooling versus heating – 5
Recall the cooling time:

tcool ≈ 2.8
(

kBT
2 keV

)1/2 ( ne

10−2 cm−3

)−1
Gyr.

Plot the cooling time as a function of radius in a double-logarithmic
representation and assume a constant temperature of 2 keV.
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Cooling versus heating – 6
Recall the cooling time:

tcool ≈ 2.8
(

kBT
2 keV

)1/2 ( ne

10−2 cm−3

)−1
Gyr.

Plot the cooling time as a function of radius in a double-logarithmic
representation and assume a constant temperature of 2 keV.
The cooling radius for this cluster (which is the radius where the cooling time
equals 1 Gyr) is 14.4 kpc.
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Cooling versus heating – 7

The density distribution of a non-cool core cluster obeys a single beta profile. If
you drop the first term and only account for the second term (with subscripts 2),
plot the corresponding cooling time profile.

Hence, there is no cooling radius in a non-cool core cluster because
tcool > 1 Gyr everywhere. Unlike cool-core clusters, there is no severe
overcooling problem in a non-cool core cluster.
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Supernova explosion scenarios
Core-collapse SNe.

At the end of the lifetime of a massive star (M ≳ 10 M⊙) it
has used up its “fuel” (H, He, . . . ), i.e., the energy generated by nuclear burning
and it cannot anymore balance the gravitational attraction. As a result, the core
collapses and forms a black hole or a neutron star (pulsar). The envelope also
collapses to nuclear densities which triggers an outward traveling shock that
unbinds the envelope and ejects it. This enriches the surrounding medium with
intermediate-mass elements, so-called “α elements” which can be built from
α-particle nuclei (4He) such as 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 48Ti.

Thermonuclear SNe. The progenitor system of a type Ia supernova consists of
a binary with at least one massive (≈ 1 M⊙) carbon-oxygen white dwarf. The
double-degenerate scenario is a binary of two carbon-oxygen white dwarfs. At
the end of their evolution, they merge and cause a thermonuclear runaway
burning of carbon and oxygen in the more massive progenitor. Like
core-collapse SNe, the type Ia supernovae explosion delivers 1051 erg of energy
to the surrounding interstellar medium.

The single-degenerate scenario assumes that the companion of the white dwarf
is an evolved star. When the companion star becomes a red giant, it grows over
its Roche volume and transfers mass to the white dwarf. White dwarfs are
stabilized by the Fermi pressure of a degenerate electrons gas. This can only
stabilize masses up to 1.4 M⊙ against gravity. When the companion star feeds
the white dwarf beyond this limit, a thermonuclear runaway burning is eventually
triggered, which explodes the white dwarf. This scenario appears to be ruled out
for explaining the majority of type Ia supernovae.
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Feedback by supernovae – 1

To estimate the effect of SNe heating on the ICM, we make three simplifications.
We assume that 1. metals are fully mixed within the ICM, 2. neglect radiative
losses, and 3. assume solar abundances.

Since the metallicity Z of clusters is typically 0.3Z⊙ and radiative losses cause a
large fraction of this SNe energy to be radiated away, these numbers represent
the absolute upper limit that SNe can contribute to the heating which is plausibly
not reachable in the ICM.

Core-collapse SNe. The mass fraction of α elements for a gas of solar
abundance is

Mα

Mgas
≈ 0.02.

Hence the supernova energy per α element that is created by the SN is given by

ESNmp

Mα
∼

1051 erg mp

10 M⊙
∼

1051−24−34

2
erg

nucleon
∼ 50

keV
nucleon

.

Mixing this energy into the ICM (and neglecting radiative losses), we get

ESNmp

Mgas
∼ 1

keV
nucleon

.
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Feedback by supernovae – 2

We use the same assumptions as above to estimate the energetics of feedback
by thermonuclear SNe. We assume that 1. metals are fully mixed within the ICM,
2. neglect radiative losses, and 3. assume solar abundances.

Since the metallicity Z of clusters is typically 0.3Z⊙ and radiative losses cause a
large fraction of this SNe energy to be radiated away, these numbers represent
the absolute upper limit that SNe can contribute to the heating which is plausibly
no reachable in the ICM.

Thermonuclear SNe. The mass fraction of iron elements for a gas of solar
abundance is

MFe

Mgas
≈ 0.001 (solar abundance),

ESNmp

MFe
∼

1051 erg mp

1 M⊙
∼ 500

keV
nucleon

,

ESNmp

Mgas
∼ 0.5

keV
nucleon

.
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Feedback by supernovae – 3
Problems. As we will now show, there are two problems with this hypothetical picture
in which SNe provide the feedback energy: 1. the energetics is not sufficient and 2. the
radiative losses are too strong to solve the “cooling flow problem”.

For comparison we estimate the gravitational energy of a Milky Way-type galaxy
and a massive galaxy cluster

Egal ≈
mp

2
v2

gal ≈ 0.25
(

vgal

220 km s−1

)2
keV,

Ecluster ≈
mp

2
σ2

cluster ≈ 8
(

σcluster

1200 km s−1

)2
keV.

While SNe feedback can energetically modulate the star formation within
galaxies, it is (by about an order of magnitude even for the unrealistically
optimistic case) too weak in clusters to have any thermodynamic impact.

To avoid radiative losses, SNe heating has to raise the entropy of the gas it heats
to ≳ 100 keV cm2. An evenly distributed thermal energy input of order 1 keV
would have to go into gas significantly less dense than 10−3 cm−3 to avoid such
losses. But gas near the centers of present-day cluster (not to mention the
densities of the interstellar medium within galaxies where SNe occur) is denser
than that with average densities n̄ISM ∼ 1 cm−3, particularly at earlier times
when most of the star formation happened. Simulations that spread SNe
feedback evenly thus produce too many stars in clusters!
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AGN jet feedback

Paradigm: super-massive black holes with M ∼ (109 . . . 1010)M⊙ co-evolve with their

hosting cD galaxies at the centers of galaxy clusters. They launch relativistic jets that

blow bubbles, potentially providing energetic feedback to balance cooling. Key points:

energy source: release of non-gravitational
energy due to accretion on a black hole and
its spin

jet interaction with magnetized cluster
medium → turbulence

jet accelerates relativistic particles (cosmic
rays, CRs) → release from bubbles provides
source of heat

self-regulated heating mechanism to avoid
overcooling

Perseus cluster (NRAO/VLA/G. Taylor)
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Jet simulation: gas density, CR energy density, B field

Ehlert, Weinberger, CP+ (2018)
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Media File (video/mp4)



Simulating self-regulated AGN jet feedback
Jet simulation: gas density, entropy, cold gas (tcool < 30 Myr), X-ray surface brightness

Ehlert, Weinberger, CP+ (2022), movie by Jlassi
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AGN feedback – energetics

The mass of the stellar bulge and the SMBH obey the correlation

MSMBH ∼ 0.005Mbulge,

so that we obtain typical SMBH masses at the centers of clusters according to

M⋆,BCG ∼ 1012 M⊙ ⇒ MSMBH ∼ 5 × 109M⊙,

upon identifying M⋆,BCG with the bulge mass. This compares well with the latest
mass measurement of the SMBH in M87 of 6 × 109 M⊙ (M87 is the BCG in
Virgo, our closest galaxy cluster with DVirgo ∼ 17 Mpc).

The accretion power onto the SMBH can be estimated by the release of
gravitational energy with a radiative efficiency of η ∼ 0.1,

EAGN ∼ ηMSMBHc2 ∼ 1063
(

MSMBH

5 × 109 M⊙

)
erg

EAGNmp

Mgas
∼

1063 erg mp

1014 M⊙
∼

1063−14−24−33

2
erg

nucleon
∼ 5

keV
nucleon

.

From the energetic viewpoint, this is a much more promising heating source in
comparison to supernova feedback.
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AGN feedback – thermodynamics

Relativistic jets displace the ICM at the location of the cavities, i.e. they do pdV
work against the ICM, as well as supply internal energy to the cavities.

The total energy required to create the cavity equals its enthalpy:

H = U + PV =
1

γb − 1
PV + PV =

γb

γb − 1
PV = 4PV , with γb = 4/3

of which only 1PV is directly available for mechanical work on the surroundings
(3PV is stored as internal energy).

The work done on the ambient ICM by 2 bubbles in one outburst is

W = PV = 2
4
3
πr3 nICMkT ∼ 1059 erg

where r ∼ 20 kpc, nICM ∼ 10−2 cm−3, and kT ∼ 3 keV.

To obtain a heating rate, we estimate the heating time scale which corresponds
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AGN feedback: sound crossing and refill time

The sound crossing time of the distance from the cavity center to the SMBH
(using γa = 5/3 for the ambient ICM) is given by

ts =
R
cs

= R
√

µmp

γakBT
≈ 3.5 × 107

(
R

40 kpc

)(
kBT

3 keV

)−1/2
yr.

The time required to refill the volume as the bubble rises upward is

trefill ≈ 2R

√
r

GM(R)
≈ ts

√
2γar

R
≈ 1.3ts

(
2r
R

)1/2
.

In the third step, we used the potential of the SIS, ΦSIS = GM/R = 2kBT/(µmp).
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AGN feedback: buoyancy time scale
The buoyancy time is estimated by computing the buoyancy force acting upon
the bubble

F buoy = −gV (ρa − ρb),

where g is the gravitational acceleration (assuming hydrostatic equilibrium of the
ambient gas), V is the bubble volume, ρa and ρb denote the mass density of the
ambient gas and the bubble, respectively.

The ram pressure exerts a drag force on the bubble, oppositely directed to the
rise velocity,

F drag = −
C
2
σρav2 v

v
,

where σ is the cross section of the bubble, C is the drag coefficient that depends
on bubble geometry and Reynolds number (i.e., whether the flow is turbulent or
laminar): C ≈ 0.6 for a Mach number M ≈ 0.7.
In equilibrium, the terminal velocity is obtained via |F buoy| = |F drag|, yielding

v =

√
2gV
σC

ρa − ρb

ρa
≈
√

2gV
σC

,

where we assumed ρb ≪ ρa in the last step. For a singular isothermal sphere
(SIS), we can write down g ≈ v2

c /R = 2σ2/R = 2kBT/(µmpR). With σ = πr2

and V = 4πr3/3, we obtain

tbuoy ≈
R
v

= R

√
σC
2gV

≈ ts

√
3Cγa

16
R
r

≈ 0.6ts
(

R
2r

)1/2
.
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AGN feedback – luminosity

We found that the energy release time scale is of order the
sound crossing time ∼ buoyant rise time ∼ refill time of displaced bubble volume
∼ 3 × 107 yr.

The AGN heating rate is

LAGN ∼
PV
tbuoy

∼
1059 erg
1015 s

∼ 1044 erg
s

∼ LX

i.e., the heating rate is comparable to the X-ray luminosity ∼ cooling rate.

This is a necessary condition for balancing X-ray cooling losses and increasing
the core entropy Ke = kT/n2/3

e of the ambient ICM!
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How efficient is heating by AGN feedback?
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C.P., Chang, Broderick (2012)

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)
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Open questions on AGN jet feedback

How is accretion output thermalized?

dissipation of waves, turbulence, releasing potential energy, thermal
conduction, cosmic-ray heating

Is the heating/cooling balance thermally stable?
no: turbulence dissipation, conduction
yes: cosmic-ray heating

How is the accretion rate tuned?
The Schwarzschild radius of the supermassive black hole is

rSMBH =
2GMSMBH

c2
≃ 1015

(
MSMBH

5 × 109 M⊙

)
cm

cooling radius (20 kpc) ∼ 108 Schwarzschild radii

The AGN jets can reach across these scales, but the heating mechanism also
needs to provide self-regulation across these scales!
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The Physics of Galaxy Clusters
Recap of today’s lecture

Radiative cooling
* Thermal bremsstrahlung emission main cooling mechanism in massive clusters
* Cooling fastest in the cluster centers
* Cool core (CC) cluster: central cooling time tcool < 1 Gyr and central

entropy K0 < 30 keV cm2

* Non-cool core (NCC) clusters have no severe overcooling problem

Supernova feedback
* Supernova feedback not energetic enough to balance cooling rates
* radiative losses of ICM are too strong to solve the “cooling flow problem”

AGN jet feedback
* promising mechanisms for self-regulated feedback
* energetics and heating rate sufficient for balancing cooling losses, but not for

transforming CC to NCC clusters
* many open questions regarding the specific heating mechanism and tuning of

self-regulation across 8 orders of magnitude
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