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The Physics of Galaxy Clusters
Recap of last week’s lecture

Radiative cooling
* Thermal bremsstrahlung emission main cooling mechanism in massive clusters
* Cooling fastest in the cluster centers
* Cool core (CC) cluster: central cooling time tcool < 1 Gyr and central

entropy K0 < 30 keV cm2

* Non-cool core (NCC) clusters have no severe overcooling problem

Supernova feedback
* Supernova feedback not energetic enough to balance cooling rates
* radiative losses of ICM are too strong to solve the “cooling flow problem”

AGN jet feedback
* promising mechanisms for self-regulated feedback
* energetics and heating rate sufficient for balancing cooling losses, but not for

transforming CC to NCC clusters
* many open questions regarding the specific heating mechanism and tuning of

self-regulation across 8 orders of magnitude
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Heat conduction – 1

A system can be in hydrostatic equilibrium, but out of thermal equilibrium. In the
absence of viscosity, the entropy equation for smooth, differentiable flows reads

ρT
ds
dt

= ∇ · (κ∇T ) . (1)

Using dq = T ds and cP ≡ (dq/dT )P , we get

cPdT = Tds ⇒ ds = cPd lnT .

Hence, we can rewrite Eqn. (1) while assuming κ = const.,

ρcP
dT
dt

= κ∇2T or
dT
dt

= χ∇2T ,

where χ ≡ κ/(ρcP). This shows that the temperature of a smooth flow can only
change as a result of thermal conduction if ∇T ̸= 0 since the temperature
gradient is the source of free energy.

We now want to estimate the heat conductivity κ.
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Heat conduction – 2
To estimate κ, we consider a system in thermal equilibrium with a temperature T
and with particles moving randomly in all directions. ∆A denotes the area of a
screen perpendicular to the x axis. The number of particles that fly per unit time
with an rms velocity v through the screen from one side to the other is given by

∆N
∆t

=
nv∆A

6
,

where the factor of 6 arises because on average, 1/3 of all particles fly along the
x axis and of those, only 1/2 in either direction.

The particle mean free path is λmfp = 1/(nσ) where σ is the collisional cross
section. Particles at x − λmfp transport gas properties to x and vice versa. This
is particularly important for gradients in gas properties that will be smoothed out
as a result of such a transport.

Hence, in the presence of a density gradient, ∂n/∂x ̸= 0, the net number of
particles flying from the denser to the more dilute region is

∆N
∆t

=
n(x + λmfp)v∆A

6
−

n(x − λmfp)v∆A
6

≈
v∆A

6
∂n
∂x

2λmfp,

where we have expanded the density field to first order and have assumed that
the typical length of a gradient ∆x is much larger than the mean free path,
λmfp ≪ ∆x .
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Heat conduction – 3
The diffusion coefficient that relates the particle current j = ∆N/(∆t∆A) to the
number density gradient is given by

∆N
∆t∆A

!
= D

∂n
∂x

where D ≡
vλmfp

3
=

v
3nσ

.

If the temperature changes along x (i.e., ∂T/∂x ̸= 0), the particles transport
energy,

∆E
∆t∆A

=
nv
6
[E(x + λmfp)− E(x − λmfp)]

=
nvλmfp

3

(
∂E
∂T

∂T
∂x

)
=

nvcVλmfp

3
∂T
∂x

,

where cV is the heat capacity at constant volume. Hence, we find

∆E
∆t∆A

!
= κ

∂T
∂x

where κ =
nvcVλmfp

3
=

vcV

3σ
=

vkB

2σ
,

where we used the heat capacity at constant volume cV = 3kB/2 in the last step
(assuming an ideal, monoatomic gas) and the heat conductivity κ has units of
erg cm−1 s−1 K−1.
Heat is conducted by electrons since they move faster than ions by
ve/vi =

√
mi/me ≈ 43

√
Z (assuming Te = Ti which applies to the ICM except

for immediate post-shock regions). The electron mean free path is determined
by the ion number density and the scattering cross section, implying
λmfp = 1/(niσ). Protons transport momentum and mediate viscosity.
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Coulomb logarithm – 1
Electron scattering in the Coulomb field of an ion

If the deflection angle is small, θD ≪ 1, we can approximate θD by computing the
perpendicular impulse exerted by the ion’s Coulomb field, integrating along the
electron’s unperturbed straight line trajectory (the “Born approximation”)

meveθD =

∫ ∞

−∞
e⊥ ·∇⊥ϕi dt =

∫ ∞

−∞

∂

∂b

 Ze2√
b2 + v2

e t2

 dt

=

∫ ∞

−∞

Ze2bdt(
b2 + v2

e t2
)3/2

=
Ze2

ve

∫ ∞

−∞

b2dx
b3(1 + x2)3/2

=
Ze2

veb
x√

1 + x2

∣∣∣∣∣
∞

−∞

=
2Ze2

bve
,

where we substituted x = vet/b and b is the impact parameter of the electron’s
trajectory. Hence we obtain

θD =
b0

b
for b ≫ b0 ≡

2Ze2

mev2
e
.

If the dominant source of this electron deflection were a single large-angle
scattering event in the Coulomb field of an ion, then the relevant cross section
would be σ = πb2

0 (since all impact parameters ≲ b0 produce large-angle
scatterings) and the mean deflection frequency νD and time tD would be

νD = t−1
D = niσve = niπb2

0ve (for large-angle scattering). (2)
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Coulomb logarithm – 2
The cumulative, random-walk effects of many small-angle electron scatterings off
ions produce a net deflection of order a radian in a shorter time. As the directions
of the individual scatterings are random, the mean defection angle after many
scatterings vanish, ⟨θ⟩ = 0. However, ⟨θ2⟩ will not vanish and we have

⟨θ2⟩ =
∑

all encounters

θ2
D =

∑
all encounters

(
b0

b

)2
.

The number of encounters that occur with impact parameters between b and
b + db during time t is dN = nivet2πbdb. Hence the mean square deflection
angle accumulates up to

⟨θ2⟩ =
∫ bmax

bmin

(
b0

b

)2
dN = ni2πb2

0vet ln
(

bmax

bmin

)
.

While the integral diverges logarithmically, physics regularizes it quite naturally.
The minimum impact parameter,

bmin =
Ze2

kBT
,

equals the radius where the Coulomb energy of the electron in the field of the ion

vanishes, E = mv2
e /2 − Ze2/bmin

!
= 0.
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Coulomb logarithm – 3
The maximum impact parameter is given by the maximum distance over which
electric fields of individual particles can reach without being screened by the
oppositely charged particles in a plasma. This is known as the Debye length,

bmax = λD =

√
kBT

4πneZe2
.

Hence, we can define the Coulomb logarithm

ln Λ = ln

(
bmax

bmin

)
= ln

√
(kBT )3

4πneZ 3e6

= 35 −
1
2
ln

(
ne

10−2cm−3

)
+

3
2
ln

(
kBT
keV

)
.

The value of t that implies ⟨θ2⟩ ≈ 1 is the deflection time tD,

νei
D =

1
tei
D

= ni2πb2
0ve ln Λ =

8πniZ 2e4

m2
ev3

e
ln Λ (3)

and ln Λ ≈ 35 . . . 40 in the ICM.
This deflection frequency of small-angle scatterings is larger by a factor of
2 ln Λ ≈ 70 than the frequency of Eqn. (2), which is valid for a single large-angle
scattering event ⇒ small-scale, large-angle scatterings can be neglected!
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Heat conduction – 4
Back to our heat conductivity of electrons,

κ =
nevecVλmfp

3
=

nevecV

3σni
.

From the equation of the deflection time due to many small-angle scattering
events,

νei
D =

1
tei
D

= ni2πb2
0ve ln Λ =

8πniZ 2e4

m2
ev3

e
ln Λ,

we can read off σ by remembering νD = niσve:

σ = 2πb2
0 ln Λ =

8πZ 2e4 ln Λ

m2
ev4

e
.

This yields the heat conductivity of electrons that are scattered by ions in a
thermal gas,

κ =
neve

3
cV

m2
ev4

e

8πniZ 2e4 ln Λ
=

1
3

(
m2

e

8πZ 2e4

)(
ne

ni

)
cV v5

e

ln Λ
.
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Heat conduction – 5
Recap the expression for the heat conductivity of electrons,

κ =
neve

3
cV

m2
ev4

e

8πniZ 2e4 ln Λ
=

1
3

(
m2

e

8πZ 2e4

)(
ne

ni

)
cV v5

e

ln Λ
. (4)

The heat capacity at constant volume is cV = 3kB/2 and the thermal electron
velocity is ve =

√
2kBTe/me. Inserting these expressions into Eqn. (4) yields a

value for the heat conductivity

κ =
kB

2

(
m2

e

8πZ 2e4
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where we used values for the Coulomb logarithm in cool core regions in clusters.
The strong temperature dependence of κ is a consequence of the velocity
dependence (κ ∝ T 5/2 ∝ v5

e ). Four powers of which derive from the cross
section σ ∝ b2

0 where b0 ≡ 2Ze2/(mev2
e ) results from balancing the kinetic

energy with the potential energy during a scattering event and one power results
from κ ∝ veλmfp/3, so that the conductive heat flux scales as Q = κ∇T ∝ T 7/2.
The critical physics assumption behind this derivation of conduction is the
random walk of electrons (along a field line) ⇒ plasma physics modifies this!
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Thermal instability: Field length – 1

Cool star forming clouds should only appear in systems whose size is greater
than a critical length scale, known as the Field length below which thermal
conduction smoothes out temperature inhomogeneities.

Formally we would have to a Lagrangian perturbation analysis to derive this
length scale. Instead, we will derive the Field length heuristically by considering
thermal balance for a cool cloud of radius r embedded in a medium of
temperature T .

Electron thermal conduction sends energy into the cloud at a rate

Hcond ∼ r2κ(T )
T
r

∼ κ0fer
T 7/2

T 5/2
8

Here, T8 = 108 K, fe is a magnetic suppression factor that depends on the
topology of magnetic field lines connecting our cloud of consideration, and we
used the Spitzer conductivity (which assumes a value for the Coulomb logarithm
of ln Λ = 35),

κ = 6.2 × 1012
(

T
108 K

)5/2
fe

erg
s K cm

= κ0fe
(

T
T8

)5/2
.
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Thermal instability: Field length – 2
Radiative cooling can radiate away energy at a rate

Crad ∼ r3n2
HΛ0(T ) ∼ r3n2

HΛ0

(
T
T8

)1/2
, with

Λ0(T ) ≈ 2.5 × 10−23
(

T
T8

)1/2 erg cm3

s
.

Cooling and conduction are thus in approximate balance, Hcond ∼ Crad, for
systems with a radius of order the Field length

λF ≡
[

Tκ(T )

n2
HΛ0(T )

]1/2

=

(
κ0fex2

e

kBΛ0k2
BT 2

8

)1/2

K 3/2
e

≈ 6.6 kpc
(

Ke

20 keV cm2

)3/2
f 1/2
e ,

where we have used Ke = kBT/n2/3
e and the square of the hydrogen number

density is given by n2
H = X 2

Hρ
2/m2

p = n2
e/x2

e .

Through a coincidence of scaling, the Field length is a function of entropy
alone when free-free emission is the dominant cooling mechanism.
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Thermal instability: Field length – 3

We can translate this criterion in the entropy-radius plane by adopting
λF(K ) = r . This yields a thermal stability threshold that obeys a scaling with
radius of K ∝ r2/3f−1/3

e = λ
2/3
F f−1/3

e .

Gas that is below that threshold and resides within radius r constitutes a
subsystem with r > λF (at constant K ), i.e., the amount of entropy in the larger
cloud is too small to support fast enough conduction that is necessary to prevent
a cooling run-away, allowing multiphase gas to persist and star formation to
proceed.

Gas above the threshold resides in the region of thermal stability in which
conduction is fast enough and leads to evaporation of a cool cloud and
eventually homogeneity.
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Thermal instability: Field length – 4

While studying entropy generation by accretion, we found that the entropy profile
of the ICM at larger scales shows the behavior K ∝ r1.1. This leaves us with two
possibilities of cluster states in reality (which appear to be dynamical attractor
solutions of thermal stability considerations).

Clusters can have an entropy profile that always stays above the thermal stability
threshold. As a consequence, the steeper entropy profile on larger scale
necessarily needs to break at sufficiently large radii to join an elevated level of
central entropy. This defines the class of non-cool core clusters.

Clusters can have an entropy profile that continues to decrease toward smaller
radii until it drops below the thermal stability threshold. There the gas is subject
to thermal instability, and multiphase gas can form, potentially seeding star
formation. This constitutes the class of cool core clusters.
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Heating versus cooling: a visual stability analysis – 1

Formally one needs to do a perturbation analysis of the hydrodynamic
equations; here we will only sketch the concept and show the main ideas by
introducing a visual stability analysis.

Because we allow for thermal conduction, the entropy of a fluid element is not
any more conserved. Instead, we consider hydrostatic rearrangements that
conserve the thermal pressure P = nkBT and rewrite the energy deposition and
cooling rates as functions of temperature and pressure.

We consider radiative cooling (bremsstrahlung and free-free line emission,
denoted by Crad) and heating by conduction (Hcond), turbulent dissipation (Hturb),
and Coulomb and hadronic interactions of cosmic rays with the thermal gas
(Hhadr) and find the scaling of the volumetric cooling and heating rates with T :

Crad ∝ r3n2
[
T 1/2 + Λline(T )

]
∝ P

[
T−1/2 +

Λline(T )

T

]
,

Hcond ∝ r2κ(T )
T
r

∝ r T 7/2 ∝ P−1/3T 23/6,

Hturb ∝ r3n ∝ T 0,

Hhadr ∝ r3nncr ∝ fcr
P
T
,

where Λline(T ) ∝ Tαline , αline < 1/2 for kBT < 2 keV, and fcr = ncr/n = const.
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Heating versus cooling: a visual stability analysis – 2

However, Coulomb and hadronic interactions of cosmic rays with the thermal gas
are too slow ⇒ Hhadr ≪ Crad and we cannot find a thermal equilibrium.

More promising: cosmic ray streaming heating via the gyro-resonant excitation of
Alfvén waves and damping heats the surrounding plasma at a rate:

Hcr ∼ r3|vA ·∇Pcr|

where vA = B/
√

4πρ is the Alfvén velocity, B is the magnetic field, ρ is the mass
density, and Pcr is the cosmic ray pressure.

Assuming magnetic flux freezing for isotropic volume changes so that
B =

√
B2 ∝ n2/3, adiabatic cosmic rays so that Pcr ∝ n4/3, and r2 ∝ n−2/3, we

obtain:

Hcr ∝ r3 B
n1/2

Pcr

r
∝ n−2/3+2/3−1/2+4/3 ∝ n5/6 ∝

(
P
T

)5/6
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Heating versus cooling: a visual stability analysis – 3

We find the stability properties of the different heating processes by considering
the energy deposition and cooling rates as a function of temperature.

This clearly demonstrates that conductive and turbulent heating cannot be in
stable equilibrium with radiative cooling. By contrast, a heating mechanism with
an energy deposition rate that scales with T−5/6 (such as cosmic ray streaming
heating) allows for stable solutions.
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Heating versus cooling: a visual stability analysis – 4

Of course, the final state of the system depends on boundary conditions and
conservation laws as discussed in the following.

Thermal conduction. Here the free energy is borrowed from the temperature
gradient ∇T and heating comes to an end once a constant temperature profile
has been reached.

Turbulent dissipation causes the temperature to increase until 3kBT ∼ mv2 or
if all turbulent kinetic energy has been dissipated.

Cosmic ray streaming requires a source of cosmic rays close to the center and
a sufficiently steep pressure gradient to provide a large enough cosmic ray flux.
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Heating versus cooling: cosmic ray heating

In order to estimate the ability of cosmic ray streaming heating to balance
radiative cooling, we calculate the ratio of both rates:

Hcr

Ccool
=

|vA ·∇Pcr|
n2Λ(T )

∼
1

β1/2

Pcr

Pth

Hth

Hcr

τcool

τff
∼ O(1),

where β = Pth/PB is the plasma β parameter, i.e., the ratio of thermal to
magnetic pressure, Hth and Hcr are the scale heights of thermal and cosmic ray
pressures, respectively, τcool is the radiative cooling timescale of the ICM, and
τff = Hgas/csd is the free-fall timescale (assuming approximate hydrostatic
equilibrium and csd is the sound speed).

Given that (i) typically β ∼ 102, (ii) the cosmic ray pressure profile can be locally
much steeper than the thermal gas profile, (we assume Hth/Hcr ∼ 10 for the
sake of the argument), (iii) τcool/τff ∼ 10 when the gas is locally thermally
unstable as is often the case in cool cores, and (iv) the ratio of cosmic ray-to-gas
pressure is small (here assumed to be 10% for the sake of the argument), this
estimate shows that cosmic ray heating can be competitive with radiative cooling
for reasonable choices of model parameters.
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Thermal stability with magnetic fields

In a weakly collisional magnetized plasma which we encounter in a galaxy
cluster, electrons cannot move “freely” but are bound to follow and gyrate around
magnetic field lines. This modifies the convective stability criterion and the type
of instability depends on the sign of ∇T .

In the center, T (r) of a cool core cluster increases to reach a maximum at a
radius of around 0.2 R200 and decreases again towards larger radii.
As will explain now, the magneto-thermal instability (MTI, Balbus 2001) can only
be excited in the outer cluster regions where er ·∇T < 0. Conversely, the
heat-flux driven buoyancy instability (HBI, Quataert 2008) is excited in the
cooling core region where er ·∇T > 0.
Note that both types of buoyancy instabilities would be absent without magnetic
fields because the ICM is stably stratified according to the Schwarzschild
criterion of convective stability because dS/dr > 0.
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Magneto-thermal instability

We assume that magnetic fields are initially aligned horizontally (or only consider
the horizontal magnetic field component). Displacing a volume element upwards
in the gravitational potential would cause it to adiabatically expand and to cool in
the absence of conduction.

Instead, it is conductively heated from the hotter heat bath below to which it is
connected by the magnetic field. This causes further expansion and dilution so
that the volume element continues to rise as it remains lighter than the
surrounding ICM. Hence, this dynamics reinforces the cause of the evolution,
giving rise to instability.

Non-linear simulations of the MTI show that it does not quiescently saturate with
a radial field (as expected from the linear stability analysis) but in a turbulent
state. The reason for this is that the radial field configuration is overstable, i.e.,
the magnetic field always overshoots this radial configuration while its amplitude
continues to grow.
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Heat-flux driven buoyancy instability – 1

If the temperature gradient
is antiparallel to the
direction of gravity, the ICM
is susceptible to exciting
the HBI. To understand this
instability, we introduce the
displacement field
ξ ≡ iδv/ω ∝ δv .

We assume incompressible
gas, consider a Fourier
transformed background at
rest and perturbed
quantities, so that v0 = 0
and find

∇ · δv = 0

⇒ k · δv = 0

⇒ k · ξ = 0,

i.e., k is perpendicular to ξ.
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Heat-flux driven buoyancy instability – 2

If the temperature gradient
increases outwards, there
will be a background heat
flux Q0 pointing inwards
along the unperturbed
radial magnetic field lines
(our assumed initial state).

Oblique perturbations with
a wave vector k at some
angle with the magnetic
field yields δB ⊥ k
(because of ∇ · δv = 0).

In the figure, we work out
the perturbations to the
heat flux along the x
direction, δQx , in response
to the displaced component
of the magnetic field, Bx ,
that is flux-frozen into the
cluster plasma.
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Heat-flux driven buoyancy instability – 3

The figure demonstrates
that regions with a positive
displacement field, ξz > 0,
experience a converging
perturbation of the heat
flux, δQx which implies
heating. This causes the
upwards displaced fluid
elements to rise further,
which reinforces the
perturbation and causes an
instability.

Equivalently, regions with
ξz < 0 experience cooling.
They become denser,
heavier and continue to
sink in the gravitational
potential which reinforces
the perturbation and
causes an instability.
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Heat-flux driven buoyancy instability – 4

Simulations of the
non-linear stage of the
instability demonstrate that
the instability saturates
quiescently with the
magnetic field lines aligning
horizontally (as suggested
by the discussion of the
linear regime of the
instability), i.e., within the
gravitational equipotential
surfaces (shells of constant
radius for a spherically
symmetric cluster).

This suppresses the inward heat flux by a large factor and thermally insulates the
cooling core, which should reinforce the cooling catastrophe. Clearly, thermal
conduction is not the solution to the cooling flow problem.

The HBI is very vulnerable to external turbulence: only 1% turbulent pressure
support in comparison to the thermal pressure is sufficient to isotropize the
magnetic field and to quench the instability.
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Heat-flux driven buoyancy instability – 5

Do you have the heat-flux driven buoyancy instability (HBI) in a non-cool core
(NCC) cluster?

No, because a NCC cluster has a constant central temperature profile and in
order to trigger the HBI, you need an increasing temperature profile with radius.

Do you always have the magneto-thermal instability in clusters? To this end,
recap again our calculation of filling gas into an NFW potential.

Yes, because if you had a profile of constant temperature in the outskirts, the gas
density would decrease at a slower rate in comparison to the dark matter density
so that the gas-to-dark matter fraction would exceed the universal baryon
fraction, in contradiction with our cosmological concordance model.
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The Physics of Galaxy Clusters
Recap of today’s lecture

Heat conduction:
* Collective action of small-angle scatterings is more important (by a factor of 70)

in comparison to close-by large-angle scattering events
* conductive heat flux scales ∝ T 7/2: very important in hot, high-mass clusters

Thermal instability – Field length:
* thermal instability only occurs on scales larger than the Field length λF

below which thermal conduction smoothes out temperature inhomogeneities
* if bremsstrahlung dominates gas cooling, then λF only depends on entropy
* the gas of NCC clusters is always above the instability threshold, the gas in

CC centers is thermally unstable so that conduction cannot balance cooling

Thermal instability with magnetic fields:
* magnetic fields fundamentally change the convective stability criteria of

weakly collisional plasmas such as the ICM
* CC cluster centers are subject to the heat-flux driven buoyancy instability
* the outskirts of all clusters are subject to the magneto-thermal instability
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