
The Physics of Galaxy Clusters
11th Lecture

Christoph Pfrommer

Leibniz Institute for Astrophysics, Potsdam (AIP)

University of Potsdam

Lectures in the International Astrophysics
Masters Program at Potsdam University





The Physics of Galaxy Clusters
Recap of last week’s lecture

Heat conduction:
* Collective action of small-angle scatterings is more important (by a factor of 70)

in comparison to close-by large-angle scattering events
* conductive heat flux scales ∝ T 7/2: very important in hot, high-mass clusters

Thermal instability – Field length:
* thermal instability only occurs on scales larger than the Field length λF

below which thermal conduction smooths out temperature inhomogeneities
* if bremsstrahlung dominates gas cooling, then λF only depends on entropy
* the gas of NCC clusters is always above the instability threshold, the gas in

CC centers is thermally unstable so that conduction cannot balance cooling

Thermal instability with magnetic fields:
* magnetic fields fundamentally change the convective stability criteria of

weakly collisional plasmas such as the ICM
* CC cluster centers are subject to the heat-flux driven buoyancy instability
* the outskirts of all clusters are subject to the magneto-thermal instability
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Multi messenger approach for non-thermal processes
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Hadronic cosmic ray proton interaction
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What we hope to learn from non-thermal emission

understanding plasma astrophysics in high-beta plasmas:
shock and particle acceleration
large-scale magnetic fields
turbulence

dynamical state → cluster cosmology?
non-thermal pressure support: hydrostatics + Sunyaev-Zel’dovich effect
history of individual clusters: cluster archaeology
illuminating the process of structure formation

consistent picture of non-thermal processes:
radio, soft/hard X-rays, γ-rays
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Giant radio halo in the Coma cluster

thermal X-ray emission

(Snowden/MPE/ROSAT)

radio synchrotron emission

(Deiss/Effelsberg)
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Radio mini halo in the Perseus cluster

thermal X-ray emission

(ROSAT; NASA/IoA/A.Fabian et al.)

radio synchrotron emission

(Pedlar/VLA)
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Giant radio relics in merging clusters

CIZA J2242.8+5301 (“sausage relic”)

(X-ray: XMM; radio: WSRT; Ogrean+ 2013)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Observing magnetic fields in clusters – 1
Synchrotron emission:

Charged particles emit electromagnetic
radiation when accelerated, e.g. due to
the Lorentz force of a magnetic field.

This emission is axisymmetric with
respect to the acceleration direction in
the particle’s rest frame.

If the particles move relativistically, then
the emission in the lab frame is beamed
into a forward cone of an opening angle
θ ∼ γ−1 (where γ is the Lorentz factor).

Because the emission (= transverse
electromagnetic wave) propagates in a
narrow cone, it is linearly polarized.

The typical synchrotron frequency is

νsynch =
3eB

2π mec
γ2 ≃ 1 GHz

B
µG

(
γ

104

)2
.

Power-law cosmic ray electron
momentum distributions imply power-law
(radio) synchrotron spectra.
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Observing magnetic fields in clusters – 2

Faraday rotation:
Faraday rotation describes rotation of a linearly polarized electro-magnetic wave
in the presence of a line-of-sight (LOS) magnetic field because of the birefringent
property of a plasma.

This can be seen by splitting the linearly polarized wave into right- and left-hand
circularly polarized waves, which propagate at slightly different speeds.

The observed polarization angle ϕobs is modified from its intrinsic position angle,
ϕintrinsic.

The rate of rotation scales with the
wavelength squared and is given by

ϕobs(x⊥) = λ2RM(x⊥) + ϕintrinsic(x⊥),

RM(x⊥) =
e3

2π m2
ec4

∫ d

0
ne(x⊥, l)B · dl

= 812
rad
m2

B
µG

ne

10−3cm−3

d
Mpc

.
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Observing magnetic fields in clusters – 3

Faraday rotation:
The rate of rotation scales with the
wavelength squared and is given by

ϕobs(x⊥) = λ2RM(x⊥) + ϕintrinsic(x⊥),

RM(x⊥) =
e3

2π m2
ec4

∫ d

0
ne(x⊥, l)B · dl

= 812
rad
m2

B
µG

ne

10−3cm−3

d
Mpc

.

If you decrease the magnetic coherence length while leaving the gas density and
magnetic field strength invariant, what happens to the value of RM?
⇒ RM decreases because of the cancellation of RM due to alternating magnetic
polarities along the LOS (B · dl) so that only the “last turbulent cell” survives and
yields a signal

Explain the phenomenon of the nπ ambiguity for the observable polarization
angle. What could you do to circumvent it?
⇒ measure the RM signal more finely spaced in frequency within a given
radio band
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Origin and growth of magnetic fields

The general picture:
Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which
the kinetic (turbulent) energy is
converted into magnetic energy: the
mechanism relies on magnetic fields to
become stronger when the field lines are
stretched

Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions
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The Biermann battery – 1
Electron and proton momenta change due to the Lorentz force, the pressure and
viscous forces:

me
dve

dt
= −e

(
E +

ve

c
× B +

1
ene

∇Pe

)
−

νviscme

ne
(ve − vp),

mp
dvp

dt
= e

(
E +

vp

c
× B +

1
enp

∇Pp

)
.

If Tp = Te, we can neglect the proton equation because protons move on
average slower than electrons by a factor

√
mp/me.

Viscous forces are very small on large scales: we drop the term ∝ νvisc.

We assume a steady state (i.e., τ > ω−1
pl , where ω2

pl = 4πnee2/me is the plasma
frequency) and solve for E :

E = −
ve × B

c
−

∇Pe

ene
.

Multiplying this equation by −c, taking the curl of it and using Faraday’s law, we
obtain

∂B
∂t

= −c∇× E = ∇× (ve × B) +
c
e
∇×

(
∇Pe

ne

)
. (1)
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The Biermann battery – 2
Using Pe = nekBTe and the identities ∇× (f∇g) ≡ ∇f ×∇g and
∇×∇f ≡ 0, we can rewrite the second term of Eq. (1):

1
kB

∇×
(
∇Pe

ne

)
= ∇×

[
1
ne

∇(neTe)

]
= ∇× (∇Te) +∇×

(
Te

ne
∇ne

)
= ∇

(
Te

ne

)
×∇ne =

1
ne

∇Te ×∇ne −
Te

n2
e
∇ne ×∇ne

=
1
ne

∇Te ×∇ne.

Hence, we obtain the Biermann battery equation,

∂B
∂t

= ∇× (ve × B)−
ckB

ene
∇ne ×∇Te.

This equation shows that if there is no magnetic field to start with (i.e., a
vanishing first term on the right-hand side), then the magnetic field can be
generated by a baroclinic flow with ∇ne ×∇Te ̸= 0.

This could be achieved in shocks of the interstellar medium, in ionization fronts,
or similar astrophysical sites; in general, baroclinic flows are sourced by
rotational motions at shocks of finite extent such as the chaotic collapse of a
proto-galaxy.
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The Biermann battery – 3

Consider a shock of finite extent that propagates into zero-pressure medium.

Christoph Pfrommer The Physics of Galaxy Clusters



The Biermann battery – 4

Magnetic fields generated through this process have very small field strengths:
adopting a characteristic density and temperature gradient length of L of a
proto-galaxy and assuming gravitational collapse on the free-fall time,
τ ∼ 1/

√
Gρ, we obtain

B ∼
ckBTe

e
τ

L2
∼

ckBTe

e
1√

GρL2

∼ 10−20G
(

Te

104 K

)(
n

1 cm−3

)−1/2 ( L
kpc

)−2
.

Naively, going to smaller length scales L should increase B. However, in order to
explain the coherence on scales of several kpcs, we would have to evoke a
process such as a small-scale wind that moves the magnetic fields back to kpc
scales and in that process we would have to account for adiabatic losses that
accompany the expansion from small to large scales: in the end we would gain
nothing from running a Biermann battery on smaller scales.

This solves the cosmological magneto-genesis problem, but the big challenge
remains in growing coherent large-scale magnetic fields from a small-amplitude,
small-scale fields: this is a major challenge of dynamo theory!
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Cosmological magneto-genesis: the Biermann battery

Cosmological simulations of the Biermann battery during the epoch of
reionization with a state-of-the-art galaxy formation model find magnetic field
generation at reionization fronts and at supernova-driven outflows (Attia+ 2021)

Christoph Pfrommer The Physics of Galaxy Clusters



The induction equation – 1

To derive the equations of magneto-hydrodynamics, we need
1. an evolution equation of the magnetic field embedded in a fluid flow, and
2. work out the magnetic force and stress.

In the frame that is comoving with the fluid, the electric field E ′ is equal to the
resistivity η times the current j ′ (Ohm’s law):

E ′ = η j ′.

If the fluid moves with the velocity v relative to the observer, we have the
component of the electric field parallel to the flow, E∥ = E · v/v , and
perpendicular to the flow, E⊥ = E − E∥v/v . The Lorentz transformation into
observer’s frame (unprimed quantities) is given by

E ′
∥ = E∥,

E ′
⊥ = γ

(
E⊥ +

v
c
× B

)
,

where γ = (1 − v2/c2)−1/2 is the Lorentz factor.
In the non-relativistic limit (j ′ = j and γ = 1), we have Ohm’s law in the
observer’s frame:

E = −
v
c
× B + η j.
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The induction equation – 2
Let’s recall Ohm’s law:

E = −
v
c
× B + η j,

Using Faraday’s Law,
∂B
∂t

= −c ∇× E , we get

∂B
∂t

= ∇× (v × B)−∇× (c η j).

Using Ampère’s law at small frequencies, ∇× B = 4π j/c, we get

∂B
∂t

= ∇× (v × B)−
c2

4π
∇× (η∇× B).

Assuming η = const., using the identity ∇× (∇× B) ≡ ∇(∇ ·B)−∇2B and
the solenoidal condition, ∇ ·B = 0, we arrive at the induction equation:

∂B
∂t

= ∇× (v × B) + D∇2B, where D =
c2 η

4π
.

At small frequencies (when the displacement current in Ampère’s law is
negligible), the induction equation has changed character: from Faraday’s law
describing the generation of voltages by changing magnetic fields in coils, we
found an evolution equation of the magnetic field embedded in a fluid flow.
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The induction equation – discussion

The magnetic induction equation reads:

∂B
∂t

= ∇× (v × B) + D∇2B, where D =
c2 η

4π
. (2)

1st term: the “convective term” states that the field is frozen into the flow (as we
will see momentarily): an important property for astrophysical plasmas!

2nd term: the “diffusive term” represents the diffusive leakage of magnetic field
lines across the conducting field, which is important for changing the magnetic
topology, e.g. in reconnection.

The “diffusive term” can be neglected for infinite conductivity σ = η−1 or for large
magnetic Reynolds numbers Rem → ∞:

Rem =
|convective term|
|diffusive term|

=
L−1v B
D L−2B

=
L v
D

Christoph Pfrommer The Physics of Galaxy Clusters



The induction equation – discussion

The magnetic induction equation reads:

∂B
∂t

= ∇× (v × B) + D∇2B, where D =
c2 η

4π
. (2)

1st term: the “convective term” states that the field is frozen into the flow (as we
will see momentarily): an important property for astrophysical plasmas!

2nd term: the “diffusive term” represents the diffusive leakage of magnetic field
lines across the conducting field, which is important for changing the magnetic
topology, e.g. in reconnection.

The “diffusive term” can be neglected for infinite conductivity σ = η−1 or for large
magnetic Reynolds numbers Rem → ∞:

Rem =
|convective term|
|diffusive term|

=
L−1v B
D L−2B

=
L v
D

Christoph Pfrommer The Physics of Galaxy Clusters



Magnetic force and stress – 1
Using Ampère’s law at low frequencies, ∇× B = 4πj/c, we will now show that the
Lorentz force density can be written as follows:

f L =
1
c

j × B =
1

4π
(∇× B)× B =

1
4π

(B ·∇)B −
1

8π
∇B2 = −∇ ·M,

where
Mij = −

1
4π

Bi Bj +
1

8π
B2δij

is the magnetic stress tensor: it plays a role analogous to the fluid pressure in ordinary
fluid mechanics (explaining the minus sign introduced in its definition).

We have
(∇× B)× B|i = εijkεjlm(∂l Bm)Bk = εkijεjlm(∂l Bm)Bk

= (δklδim − δkmδil )(∂l Bm)Bk = (∂k Bi )Bk − (∂i Bk )Bk

=

[
(B ·∇)B −

1
2
∇B2

]
i
.

Because ∇ ·B = 0, we can rewrite this, yielding

1
4π

[
(B ·∇)B −

1
2
∇B2

]
i
=

1
4π

∂k

(
Bi Bk −

1
2

B2δik

)
= −∂k Mik .

In this notation, the magnetic curvature force and the magnetic pressure force
are not separated.
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Magnetic force and stress – 2
In order to fully separate the effects of magnetic curvature and pressure we write
B = Bb, where b is the unit vector in the direction of B and obtain

f L =
1

4π
(B ·∇)B −

1
8π

∇B2

=
B2

4π
(b ·∇)b +

1
8π

b(b ·∇)B2 −
1

8π
∇B2

=
B2

4π
(b ·∇)b −

1
8π

∇⊥B2 ≡ f c + f p,

where we define the gradient perpendicular to the magnetic field lines,
∇⊥ = (1 − bb) ·∇.

The second term, f p, acts like a pressure force perpendicular to the magnetic
field lines and the first term, f c, is the magnetic curvature force that also acts in a
plane orthogonal to the field line.
To see this, we locally identify a curved field line with its curvature circle so that
we can locally define an azimuthally directed field B = Beφ in cylindrical
coordinates (R, φ, z). Hence, in this case we obtain

(b ·∇)b = (eφ ·∇)eφ = −
eR

R

so that the curvature force always points towards the center of the curvature
circle and aims to reduce the curvature by pulling the field line straight with a
force that is the greater the smaller the curvature radius is.
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Magnetic force and stress – 3

To get a better understanding, we show that the surface force (per unit area) exerted by
a bounded volume V on its surroundings is given by

f S = n ·M = −
1

4π
BBn +

1
8π

B2n,

where Bn = B ·n is the component of B along the outward normal n to the surface of
the volume.

The net Lorentz force acting on a volume V of fluid can be written as an integral
of a magnetic stress vector acting on its surface,∫

V
f LdV =

∫
V

1
4π

(∇× B)× B dV = −
∫

V
∇ ·M dV = −

∮
S

n ·M dS.

To get the force f S exerted by the volume on its surroundings, we need to add a
minus sign to the last term,

f S = n ·M = −
1

4π
BBn +

1
8π

B2n,

where Bn = B ·n.
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Magnetic force and stress – 4

Spruit (2013)

We take a uniform magnetic field (B = Bez ) and compute the surface forces f S
exerted by a rectangular volume that is aligned with the magnetic field.

Symmetry limits the surface forces to two different types: 4 with a normal
perpendicular to B and 2 with a normal that is (anti-)parallel to B.

Which magnetic forces (pressure or tension) contribute to these surface forces?
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Magnetic force and stress – 5

Take the surface perpendicular to the x axis on the right-hand side of the box:

n = ex : f right = ex ·M,

fright, x = −
1

4π
Bx Bz +

1
8π

B2 =
1

8π
B2, fright, y = fright, z = 0.

The stress exerted by the magnetic field at the top of the surface element is

n = ez : f top = ez ·M, note that we have here: B2 = B2
z ,

ftop, z = −
1

4π
BzBz +

1
8π

B2 = −
1

8π
B2, ftop, x = ftop, y = 0.

The stress is also perpendicular to the surface and of equal magnitude to that of
the magnetic pressure exerted at the vertical surfaces, but of opposite sign!
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Magnetic force and stress – 6

Conclusions:

The magnetic pressure causes the fluid volume to expand in the perpendicular
directions to the magnetic field (in x and y for a field in z direction)

Because there are no magnetic monopoles (i.e., ∇ ·B = 0), magnetic field lines
have no ‘ends’. Hence, the contraction along the magnetic field under magnetic
stress does not happen in practice because the tension at its top and bottom
surfaces is exactly balanced by the tension in the magnetic lines continuing
above and below the box.

The effects of tension in a magnetic field manifest themselves through the
curvature of field lines.
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Magneto-hydrodynamics
For a collisional fluid on scales larger than the particle mean-free path and on
time scales longer than the inverse plasma frequency, τ > ω−1

pl , the evolution of
the magnetic vector field B is given by magneto-hydrodynamics (MHD).

Ideal MHD assumes an inviscid (i.e., no viscosity), ideally conducting fluid.

To derive MHD, we add the Lorentz force to the momentum evolution equation
(the Euler equation) and supplement the system of conservation equations of
mass, momentum and entropy by the equation for magnetic induction, Eq. (2)
without the diffusion term and obtain the equations of ideal MHD:

∂ρ

∂t
+∇ · (ρv) = 0,

ρ

(
∂v
∂t

+ v ·∇v
)

= −∇P + j × B = −∇ ·
[(

P +
B2

8π

)
1̄ −

1
4π

BBT

]
,

∂s
∂t

+ v ·∇s = 0,

∂B
∂t

−∇× (v × B) = 0, subject to the constraint ∇ ·B = 0,

where ρ = ρ(x , t), P = P(x , t), v = v(x , t), j = j(x , t), s = s(x , t), and
B = B(x , t) are the density, pressure, velocity, electric current, entropy, and
magnetic field.
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Ideal MHD assumes an inviscid (i.e., no viscosity), ideally conducting fluid.

To derive MHD, we add the Lorentz force to the momentum evolution equation
(the Euler equation) and supplement the system of conservation equations of
mass, momentum and entropy by the equation for magnetic induction, Eq. (2)
without the diffusion term and obtain the equations of ideal MHD:

∂ρ

∂t
+∇ · (ρv) = 0,

ρ

(
∂v
∂t

+ v ·∇v
)

= −∇P + j × B = −∇ ·
[(

P +
B2

8π

)
1̄ −

1
4π

BBT

]
,

∂s
∂t

+ v ·∇s = 0,

∂B
∂t

−∇× (v × B) = 0, subject to the constraint ∇ ·B = 0,

where ρ = ρ(x , t), P = P(x , t), v = v(x , t), j = j(x , t), s = s(x , t), and
B = B(x , t) are the density, pressure, velocity, electric current, entropy, and
magnetic field.
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Magnetic flux freezing – 1
To show that the magnetic flux is “frozen” into the plasma, we start with the
induction equation (2) without the diffusion term:

∂B
∂t

= ∇× (v × B),

Using ∇ ·B = 0, we obtain

∂B
∂t

= (B ·∇)v − (v ·∇)B − (∇ · v)B,

which can be rearranged to yield

dB
dt

≡
∂B
∂t

+ (v ·∇)B = (B ·∇)v − (∇ · v)B.

With the continuity equation
dρ
dt

= −(∇ · v) ρ, we get

dB
dt

≡
∂B
∂t

+ (v ·∇)B = (B ·∇)v +
B
ρ

dρ
dt

.

Multiplying this equation by ρ−1 and rearranging terms yields

d
dt

(
B
ρ

)
=

1
ρ

dB
dt

−
B
ρ2

dρ
dt

=

(
B
ρ
·∇
)

v ,

This is the flux-freezing equation of magnetic fields.
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Magnetic flux freezing – 2

Spruit (2013)

Flux freezing condition:
d
dt

(
B
ρ

)
=

(
B
ρ
·∇
)

v

Consider the evolution of δx which connects two neighboring points in the fluid:

∆x(t) = δx

∆x(t +∆t) = δx + (δx ·∇) v ∆t +O(∆t2)

dδx
dt

=
∆x(t +∆t)−∆x(t)

∆t
= (δx ·∇) v

B/ρ and δx satisfy the same ordinary differential equation, hence if initially
δx = εB/ρ, the same relation will hold for all times. If δx connects two particles
on the same field line then they remain on the same field line.
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Magnetic flux freezing – 3

Flux freezing condition:
d
dt

(
B
ρ

)
=

(
B
ρ
·∇
)

v

What does this flux-freezing condition imply for a uniform contraction/expansion
of the plasma?

The plasma resides in a sphere of radius r and conserves mass and magnetic
flux dΦ = B · dA (where dA is the surface element on the sphere). Thus, both
ρr3 and Br2 are constant and we obtain

B ≡
√

⟨B⟩ ∝ r−2 ∝ ραB , αB =
2
3
,

for isotropic contraction or expansion, independent of the magnetic topology.

Note that the scaling exponent αB depends on the type of symmetry invoked
during collapse (whether it is isotropic or not) and can differ for contraction along
a homogeneous magnetic field (αB = 0) or perpendicular to it (αB = 1).

Thus, flux freezing alone predicts a tight relation between B and ρ. Moreover, it
has a surprising property called magnetic draping.
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What is magnetic draping?
Interaction of an obstacle (Earth, star, galaxy, . . . ) with a magnetized plasma
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What is magnetic draping?
Interaction of an obstacle (Earth, star, galaxy, . . . ) with a magnetized plasma

Is magnetic draping similar to ram
pressure compression?
→ no, the density is not increased in
magnetic draping as shown by ideal
MHD simulations (right)

Is magnetic flux still frozen into the
plasma?
yes, but plasma can also move along
field lines while field lines get stuck at
obstacle
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Applications of magnetic draping

Solar-wind magnetic field is draped around the magnetopause of Earth: this
protects Earth from cosmic rays during times of spin flip of the magnetic poles

draping of solar-wind magnetic field
at other moons and planets of the
solar system: plasma physics

hydrodynamic stability of underdense
radio bubbles

sharpness (Te, ne) of cold fronts:
without B, smoothed out by diffusion
and heat conduction on ≳ 108 yrs

Guicking et al. (2010): magnetic draping around Venus

magnetic draping on spiral galaxies in galaxy clusters: method for detecting the
orientation of cluster magnetic fields

Christoph Pfrommer The Physics of Galaxy Clusters



Hydrodynamic waves
Going back to our derivation of the dispersion relation for sound waves by
perturbing the mass, momentum and entropy equation of a hydrodynamic fluid
without conduction and viscosity. How many equations do you have and how
many eigenvalues does the linearized system of equations allow for?

The hydrodynamic system of five equations reads (without viscosity and heat
conduction) ∂ρ

∂t
+∇ · (ρv) = 0,

∂

∂t
(ρv) +∇ ·

(
ρvvT + P1̄

)
= 0,

∂s
∂t

+ v ·∇s = 0.

Combining the equations for mass and momentum yields (exercise sheet 3)

ω2 =
δP̂
δρ̂

k2 =⇒ ω = ±

√
δP̂
δρ̂

k ,

i.e., the sound wave is a degenerate solution and accounts for four eigenvalues.
Perturbing the entropy equation yields to first order in Fourier space

iωδŝ − δv̂ ·∇s0 = 0

=⇒ ω = 0 and s0 = const.

The entropy mode is a compressible zero-frequency mode with eigenfunctions
δP = δv = δB = 0 and δT/T = −δρ/ρ = 2δs/5.
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Magneto-hydrodynamic waves – 1

Add magnetic fields to the system in the ideal MHD approximation. How many
equations and eigenvalues do you have now?

∂ρ

∂t
+∇ · (ρv) = 0,

ρ

(
∂v
∂t

+ v ·∇v
)

= −∇P + j × B = −∇ ·
[(

P +
B2

8π

)
1̄ +

1
4π

BBT

]
,

∂s
∂t

+ v ·∇s = 0,

∂B
∂t

−∇× (v × B) = 0, subject to the constraint ∇ ·B = 0,

where ρ = ρ(x), P = P(x), v = v(x), j = j(x), s = s(x), and B = B(x) are the
density, pressure, velocity, electric current, entropy, and magnetic field.

There are a total of 8 equations: 5 hydrodynamics equations plus 3 components
of the induction equation. However, the constraint equation, ∇ ·B = 0, reduces
the dimensionality to seven degrees of freedom.
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Magneto-hydrodynamic waves – 2
In a magnetized plasma, there are seven different wave modes:

2 shear Alfvén waves: incompressible (δρ = 0) and transverse polarized
waves; restoring force provided by magnetic tension; propagate obliquely and
parallel to B with va = B/

√
4π ρ

2 fast magnetosonic waves: compressible, longitudinal waves; restoring force
provided by (thermal and magnetic) pressure; propagate parallel and
perpendicular to B; equivalent to sound waves in high-β plasmas, where
β = Pth/PB = 2cs/va
2 slow magnetosonic waves: compressible, longitudinal waves; restoring
force provided by thermal pressure; propagate only parallel to B; equivalent to
compressible Alfvén waves in high-β plasma
entropy mode: zero-frequency mode with fluctuations in n and T such that the
thermal pressure P = const.

fast magnetosonic wave fast or slow sound wave shear Alfvén wave

Christoph Pfrommer The Physics of Galaxy Clusters

M
ig

no
ne

(2
01

7)



Magneto-hydrodynamic waves – 2
In a magnetized plasma, there are seven different wave modes:

2 shear Alfvén waves: incompressible (δρ = 0) and transverse polarized
waves; restoring force provided by magnetic tension; propagate obliquely and
parallel to B with va = B/

√
4π ρ

2 fast magnetosonic waves: compressible, longitudinal waves; restoring force
provided by (thermal and magnetic) pressure; propagate parallel and
perpendicular to B; equivalent to sound waves in high-β plasmas, where
β = Pth/PB = 2cs/va
2 slow magnetosonic waves: compressible, longitudinal waves; restoring
force provided by thermal pressure; propagate only parallel to B; equivalent to
compressible Alfvén waves in high-β plasma
entropy mode: zero-frequency mode with fluctuations in n and T such that the
thermal pressure P = const.

fast magnetosonic wave fast or slow sound wave shear Alfvén wave

Christoph Pfrommer The Physics of Galaxy Clusters

M
ig

no
ne

(2
01

7)



Alfvénic turbulence – the picture

B

wave packets

Interacting Alfvén wave

packets.

Alfvénic turbulence is incompressible:

δvA

vA
=

δB
B

What happens when the two wave packets are
interacting?

The down-going packet causes field line wandering
such that the upward going packet is broken apart
after a distance L∥(λ).

In other words, the travel time across this wave
package in the direction of the mean magnetic field
equals the eddy turn-over time in the perpendicular
direction.

This gives rise to the critical balance condition of
Alfvénic turbulence
(Goldreich & Shridhar 95, 97, Lithwick & Goldreich 01)
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Alfvénic turbulence – the scaling

B

λλ

| λ(   )

b

|L

Geometrical interpreta-

tion of the “critical bal-

ance” condition.

The critical balance condition reads:

L∥ =
λB
bλ

In Kolmogorov turbulence, the energy flux of the
fluctuating field at scale λ is constant, b2

λ/tλ = const.
Equating the wave travel time along B, t∥, with the
eddy turn-over time in the perpendicular direction, tλ,
we get

t∥ =
L∥

va
=

λB
va bλ

= tλ ∝ b2
λ,

Because B ∝ va = const. in incompressible
turbulence, we obtain the scaling of Alfvénic
turbulence:

bλ ∝ λ1/3 or L∥ ∝ λ2/3 L1/3
MHD

⇒ the smaller the scale λ, the more anisotropic is the
turbulent scaling and the more elongated are the
eddies (L∥/λ ∝ λ−1/3) whose long axis is aligned with
the local ⟨B⟩!
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The Physics of Galaxy Clusters
Recap of today’s lecture

Non-thermal processes:
* radio relics and halos prove the existence of volume-filling magnetic fields and

relativistic electrons in the ICM
* the radial extent radio relics that propagate on the sky enables to estimate

the magnetic field strength via a cooling length argument
* what powers radio halos? hadronic interactions or Fermi-II reacceleration?

Magnetic forces and magneto-hydrodynamics:
* Biermann battery can generate B field from a baroclinic flow without B0

* magnetic pressure causes the fluid to expand perpendicular to the mean
magnetic field if PB = B2/8π > Pth

* magnetic curvature forces always points towards the center of the curvature
circle and aims to reduce the curvature by pulling the field line straight

* magnetic flux is frozen into the thermal plasma

Magnetic waves and turbulence:
* MHD supports 4 modes: Alfvén waves, slow- and fast magnetosonic waves,

and the zero-frequency entropy mode
* MHD turbulence has an anisotropic cascade where eddies become more

elongated towards smaller scales
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