The Physics of Galaxy Clusters 13th Lecture

Christoph Pfrommer

Leibniz Institute for Astrophysics, Potsdam (AIP) University of Potsdam

Lectures in the International Astrophysics Masters Program at Potsdam University

Morphology-density relation

plot shows fraction of galaxy types versus environmental density

Morphology-density relation

- plot shows fraction of galaxy types versus environmental density
- morphology-density relation: decreasing fraction of spirals and increasing fraction of ellipticals and galaxies with bulges at higher densities (→ clusters)

Butcher-Oemler effect

plot shows fraction of blue galaxies versus redshift

Butcher-Oemler effect

- plot shows fraction of blue galaxies versus redshift
- **Butcher-Oemler effect** (1987, 1984): cluster galaxies at intermediate redshifts ($0.3 \le z \le 0.5$) have increased fraction of blue galaxies in comparison to present-day clusters

Butcher-Oemler effect

- plot shows fraction of blue galaxies versus redshift
- **Butcher-Oemler effect** (1987, 1984): cluster galaxies at intermediate redshifts ($0.3 \le z \le 0.5$) have increased fraction of blue galaxies in comparison to present-day clusters
- effect is associated with an increasing spiral and star forming fraction with increasing redshift
 ⇒ strength of morphology-density relation redshift dependent

Galaxy transformations in clusters

Christoph Pfrommer The Physics of Galaxy Clusters

Galaxy transformations in clusters

- *tidal interactions* with other cluster galaxies or with the cluster potential can torque the stellar orbits and the gas distribution and cause a disturbed non-equilibrium morphology or even transform its type
- **dynamical friction** can cause the galaxy to slowly migrate to the cluster center and eventually to merge with the *brightest cluster galaxy (BCG)* that resides in the cluster center
- ram-pressure interactions of a galaxy with the hot, X-ray emitting ICM severely impacts the interstellar medium of a galaxy

Re-ignition of a passive elliptical

• where in a galaxy cluster is this happening and why is this condition not fulfilled for typical cluster ellipticals?

Re-ignition of a passive elliptical

- where in a galaxy cluster is this happening and why is this condition not fulfilled for typical cluster ellipticals?
- this needs a sufficient amount of cold gas: small t_{cool} , low galaxy velocity relative to the ICM \Rightarrow cD galaxies in the centers of cool core clusters

Antennae Galaxies

The merger hypothesis

the famous "merger hypothesis" suggests that strangely deformed pairs of galaxies result from galaxy mergers, which eventually leads to elliptical galaxies (Toomre & Toomre 1972)

AIP

The merger hypothesis

- the famous "merger hypothesis" suggests that strangely deformed pairs of galaxies result from galaxy mergers, which eventually leads to elliptical galaxies (Toomre & Toomre 1972)
- tidal interactions between group/cluster galaxies are mainly responsible for this transition
- other pathways (*ram-pressure* stripping, dynamical friction) can also transform spirals to passive lenticulars/ellipticals

Interacting Galaxies

Hubble Space Telescope • ACS/WFC • WFPC2

NASA, ESA, the Hubble Heritage (AURA/STScI)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

movie by Frank Summers (STScI) STScI-PRC08-16a

• *tidal interactions between two systems:* a perturber *P* modifies the orbit of a particle *q* in system *S* as a result of the gravitational interaction

- *tidal interactions between two systems:* a perturber *P* modifies the orbit of a particle *q* in system *S* as a result of the gravitational interaction
- the gravitational force due to *P* is not uniform over the body *S* ⇒ particle *q* experiences a tidal force per unit mass,

$$ilde{m{ extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf} extsf{ extsf} extsf{ extsf} exts$$

- *tidal interactions between two systems:* a perturber *P* modifies the orbit of a particle *q* in system *S* as a result of the gravitational interaction
- the gravitational force due to *P* is not uniform over the body *S* ⇒ particle *q* experiences a tidal force per unit mass,

$$ilde{m{F}}_{ ext{tide}}(m{r}) = - m{
abla} \phi_{m{
ho}}(|m{R} - m{r}|) + m{
abla} \phi_{m{
ho}}(m{R})$$

• as a result, the particle q gains energy at a rate per unit mass

$$rac{{\mathsf d}\epsilon_q}{{\mathsf d}t} = {oldsymbol v} \cdot {oldsymbol { ilde {oldsymbol {\mathsf f}}}_{\mathsf{tide}}}({oldsymbol r}),$$

where \boldsymbol{v} is the velocity of q with respect to the center of S

● the gravitational interaction between *S* and *P* enhances the gravitational multipole moments of both bodies ⇒ backreaction on their orbit (cf. Earth–Moon system)

▶ < Ξ >

- the gravitational interaction between S and P enhances the gravitational multipole moments of both bodies ⇒ backreaction on their orbit (cf. Earth–Moon system)
- let t_{tide} be the time for the tide to rise and $t_{\text{enc}} \approx R_{\text{max}}/\Delta v_{SP}$ is the time of the encounter where Δv_{SP} is the relative velocity between *S* and *P*, $R_{\text{max}} = \max(R_0, R_S, R_P)$, and R_0 is the minimum distance of the encounter

- the gravitational interaction between S and P enhances the gravitational multipole moments of both bodies ⇒ backreaction on their orbit (cf. Earth–Moon system)
- let t_{tide} be the time for the tide to rise and $t_{\text{enc}} \approx R_{\text{max}}/\Delta v_{SP}$ is the time of the encounter where Δv_{SP} is the relative velocity between *S* and *P*, $R_{\text{max}} = \max(R_0, R_S, R_P)$, and R_0 is the minimum distance of the encounter
- *t*_{enc} ≫ *t*_{lide}: internal structure of deformable bodies can adiabatically adjust to perturbation ⇒ *no transfer of energy*

- the gravitational interaction between *S* and *P* enhances the gravitational multipole moments of both bodies ⇒ backreaction on their orbit (cf. Earth–Moon system)
- let t_{tide} be the time for the tide to rise and $t_{\text{enc}} \approx R_{\text{max}}/\Delta v_{SP}$ is the time of the encounter where Δv_{SP} is the relative velocity between *S* and *P*, $R_{\text{max}} = \max(R_0, R_S, R_P)$, and R_0 is the minimum distance of the encounter
- *t*_{enc} ≫ *t*_{ide}: internal structure of deformable bodies can adiabatically adjust to perturbation ⇒ *no transfer of energy*

- Tidal radius the Roche problem: we consider a slow encounter and work out the "tidal radius" outside of which material can get stripped
- for simplification, we assume a circular galaxy orbit in a cluster ⇒ what is the fate of the stars inside this galaxy?

< ∃⇒

- Tidal radius the Roche problem: we consider a slow encounter and work out the "tidal radius" outside of which material can get stripped
- for simplification, we assume a circular galaxy orbit in a cluster ⇒ what is the fate of the stars inside this galaxy?
- the differential tidal force per unit mass between a star and the galaxy center is (by magnitude)

$$ilde{F}_{ ext{tide}}(R) = r rac{\mathsf{d}}{\mathsf{d}R} \left(rac{GM_{ ext{cluster}}(R)}{R^2}
ight)$$

the restoring force from the galaxy is

$$ilde{F}_{ ext{gal}}(r) = -rac{GM_{ ext{gal}}(r)}{r^2}$$

AIP

(

- Tidal radius the Roche problem: we consider a slow encounter and work out the "tidal radius" outside of which material can get stripped
- for simplification, we assume a circular galaxy orbit in a cluster ⇒ what is the fate of the stars inside this galaxy?
- the differential tidal force per unit mass between a star and the galaxy center is (by magnitude)

$$ilde{F}_{ ext{tide}}(R) = r rac{\mathsf{d}}{\mathsf{d}R} \left(rac{GM_{ ext{cluster}}(R)}{R^2}
ight)$$

the restoring force from the galaxy is

$$ilde{F}_{\text{gal}}(r) = -rac{GM_{\text{gal}}(r)}{r^2}$$

• the tidal radius in the galaxy is defined by equating both forces,
$$\tilde{F}_{tide} = \tilde{F}_{gal}$$
:

$$\frac{M_{\text{gal}}(r_{\text{tide}})}{r_{\text{tide}}^3} = -\frac{d}{dR} \left(\frac{M_{\text{cluster}}(R)}{R^2}\right) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}\right) \frac{M_{\text{cluster}}}{R^3}$$

AIP

1

• let's recall the equation for the tidal radius on the previous slide:

$$\frac{M_{\text{gal}}(r_{\text{tide}})}{r_{\text{tide}}^3} = -\frac{d}{dR} \left(\frac{M_{\text{cluster}}(R)}{R^2} \right) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R} \right) \frac{M_{\text{cluster}}}{R^3}$$
(1)

▲ 臣 ▶ ▲ 臣 ▶ .

• let's recall the equation for the tidal radius on the previous slide:

$$\frac{M_{\text{gal}}(r_{\text{tide}})}{r_{\text{tide}}^3} = -\frac{d}{dR} \left(\frac{M_{\text{cluster}}(R)}{R^2}\right) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}\right) \frac{M_{\text{cluster}}}{R^3}$$
(1)

this can be solved for the tidal radius,

$$r_{\text{tide}} = \left[\frac{M_{\text{gal}}}{M_{\text{cluster}}(R)} \frac{1}{2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}}\right]^{1/3} R$$

э

ヨトメヨト

Iet's recall the equation for the tidal radius on the previous slide:

$$\frac{M_{\text{gal}}(r_{\text{tide}})}{r_{\text{tide}}^3} = -\frac{d}{dR} \left(\frac{M_{\text{cluster}}(R)}{R^2}\right) = \left(2 - \frac{d\ln M_{\text{cluster}}}{d\ln R}\right) \frac{M_{\text{cluster}}}{R^3}$$
(1)

this can be solved for the tidal radius,

$$r_{\text{tide}} = \left[\frac{M_{\text{gal}}}{M_{\text{cluster}}(R)} \frac{1}{2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}}\right]^{1/3} R$$

equation (1) implies the "Roche criterion" for slow encounters:

$$\bar{\rho}_{\text{gal}}(r_{\text{tide}}) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}\right) \bar{\rho}_{\text{cluster}}(R)$$

 \Rightarrow isothermal cluster:

▶ < ∃ >

Iet's recall the equation for the tidal radius on the previous slide:

$$\frac{M_{\text{gal}}(r_{\text{tide}})}{r_{\text{tide}}^3} = -\frac{d}{dR} \left(\frac{M_{\text{cluster}}(R)}{R^2}\right) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}\right) \frac{M_{\text{cluster}}}{R^3}$$
(1)

this can be solved for the tidal radius,

$$r_{\text{tide}} = \left[\frac{M_{\text{gal}}}{M_{\text{cluster}}(R)} \frac{1}{2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}}\right]^{1/3} R$$

equation (1) implies the "Roche criterion" for slow encounters:

$$\bar{\rho}_{\text{gal}}(r_{\text{tide}}) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}\right) \bar{\rho}_{\text{cluster}}(R)$$

 \Rightarrow isothermal cluster: d ln M_{cluster} /d ln $R = 1 \Rightarrow \bar{\rho}_{\text{gal}}(r_{\text{tide}}) = \bar{\rho}_{\text{cluster}}(R)$

→ Ξ → < Ξ →</p>

• let's recall the equation for the tidal radius on the previous slide:

$$\frac{M_{\text{gal}}(r_{\text{tide}})}{r_{\text{tide}}^3} = -\frac{d}{dR} \left(\frac{M_{\text{cluster}}(R)}{R^2}\right) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}\right) \frac{M_{\text{cluster}}}{R^3}$$
(1)

this can be solved for the tidal radius,

$$r_{\text{tide}} = \left[\frac{M_{\text{gal}}}{M_{\text{cluster}}(R)} \frac{1}{2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}}\right]^{1/3} R$$

equation (1) implies the "Roche criterion" for slow encounters:

$$ar{
ho}_{\text{gal}}(r_{ ext{tide}}) = \left(2 - rac{d \ln M_{ ext{cluster}}}{d \ln R}
ight) ar{
ho}_{ ext{cluster}}(R)$$

⇒ isothermal cluster: d ln M_{cluster} /d ln R = 1 ⇒ $\bar{\rho}_{\text{gal}}(r_{\text{tide}}) = \bar{\rho}_{\text{cluster}}(R)$ ⇒ internal (stellar) distributions can adiabatically adjust to the perturbation because the dynamical time of these stars is smaller

프 🖌 🛪 프 🕨

• let's recall the equation for the tidal radius on the previous slide:

$$\frac{M_{\text{gal}}(r_{\text{tide}})}{r_{\text{tide}}^3} = -\frac{d}{dR} \left(\frac{M_{\text{cluster}}(R)}{R^2}\right) = \left(2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}\right) \frac{M_{\text{cluster}}}{R^3}$$
(1)

this can be solved for the tidal radius,

$$r_{\text{tide}} = \left[\frac{M_{\text{gal}}}{M_{\text{cluster}}(R)} \frac{1}{2 - \frac{d \ln M_{\text{cluster}}}{d \ln R}}\right]^{1/3} R$$

• equation (1) implies the "Roche criterion" for slow encounters:

$$ar{
ho}_{
m gal}(r_{
m tide}) = \left(2 - rac{{\sf d} \ln M_{
m cluster}}{{\sf d} \ln R}
ight)\,ar{
ho}_{
m cluster}(R)$$

 \Rightarrow isothermal cluster: d ln M_{cluster} /d ln $R = 1 \Rightarrow \bar{\rho}_{\text{gal}}(r_{\text{tide}}) = \bar{\rho}_{\text{cluster}}(R)$ \Rightarrow internal (stellar) distributions can adiabatically adjust to the perturbation because the dynamical time of these stars is smaller

 outside r_{lide}, stars are only loosely bound so that they can be "stripped off" by tidal forces exerted by the cluster core on the stars in the galaxy
 ⇒ resonance condition where the period of the stellar orbit in the galaxy at r_{tide} matches the period of the galaxy orbit inside the clusters:

$$P_{\star}(r_{\rm tide}) \approx P_{\rm gal}(R)$$

Tidal shocks

- now, we treat a *rapid encounter* in the impulse approximation and assume that the time of passing t_{enc} is much smaller than the internal dynamical time t_{lide}
- what is the relative change in energy due to an impulsive encounter?

Tidal shocks

- now, we treat a *rapid encounter* in the impulse approximation and assume that the time of passing tenc is much smaller than the internal dynamical time tide
- what is the relative change in energy due to an impulsive encounter?
- the derivation in the notes yields the result:

AIP

$$\frac{\Delta\epsilon_{S}}{\epsilon_{S}} = -\frac{4}{3} \frac{\bar{\rho}_{P}(b)}{\bar{\rho}_{S}(r)} \frac{v_{\text{parabolic}}^{2}}{v_{P}^{2}},$$

re we used $\bar{\rho}_{P}(b) = \frac{M_{P}(b)}{\frac{4}{3}\pi b^{3}}, \quad \bar{\rho}_{S}(r) = \frac{M_{S}(r)}{\frac{4}{3}\pi r^{3}}, \quad v_{\text{parabolic}}^{2} = \frac{GM_{P}}{b}$

wher

Tidal shocks

- now, we treat a *rapid encounter* in the impulse approximation and assume that the time of passing t_{enc} is much smaller than the internal dynamical time t_{lide}
- what is the relative change in energy due to an impulsive encounter?
- the derivation in the notes yields the result:

イロト イポト イヨト イヨト

$$\frac{\Delta\epsilon_{S}}{\epsilon_{S}} = -\frac{4}{3} \frac{\bar{\rho}_{P}(b)}{\bar{\rho}_{S}(r)} \frac{v_{\text{parabolic}}^{2}}{v_{P}^{2}},$$

here we used $\bar{\rho}_{P}(b) = \frac{M_{P}(b)}{\frac{4}{3}\pi b^{3}}, \quad \bar{\rho}_{S}(r) = \frac{M_{S}(r)}{\frac{4}{3}\pi r^{3}}, \quad v_{\text{parabolic}}^{2} = \frac{GM_{P}}{b}$

discussion:

wł

- if $v_P \sim v_{\text{parabolic}}$, we obtain $\Delta \epsilon \sim \epsilon$ for $\rho_P \sim \rho_S$, i.e., we recover the Roche criterion
- the formalism only applies to fast encounters, i.e., down to *r*_{tide}, below which the adiabatic case applies
- the cumulative effect of many encounters can strip stars to radii $r \ll r_{tide}$

Dynamical friction - 1

● when a heavy object of mass m₂ (e.g., a galaxy) moves through a large collisionless system that consists of particles of mass m₁ ≪ m₂ (e.g., dark matter particles), it experiences a drag force that is called dynamical friction ⇒ transfer of energy and momentum from the galaxy to the dark matter particles

Dynamical friction – 1

- when a heavy object of mass m₂ (e.g., a galaxy) moves through a large collisionless system that consists of particles of mass m₁ ≪ m₂ (e.g., dark matter particles), it experiences a drag force that is called dynamical friction ⇒ transfer of energy and momentum from the galaxy to the dark matter particles
- *reason: system evolves towards thermodynamic equilibrium* through energy exchange by means of two-body encounters

• if particles have different masses, thermodynamical equilibrium implies $m_1 \langle v_1^2 \rangle = m_2 \langle v_2^2 \rangle$; because $m_2 \gg m_1$ and dark matter particles at the same radius have similar orbital velocities, the galaxy has usually a larger kinetic energy than the dark matter particles it encounters

 \Rightarrow galaxy loses net energy and momentum

Dynamical friction – 2

- an alternative way to understand dynamical friction is to move in the rest system of the galaxy
- in this frame, dark matter particle are deflected through the gravity of the galaxy to form an overdensity of dark matter in the wake (a so-called "trailing enhancement")

 \Rightarrow the gravitational pull of this wake on the galaxy slows it down

Dynamical friction – 2

- an alternative way to understand dynamical friction is to move in the rest system of the galaxy
- in this frame, dark matter particle are deflected through the gravity of the galaxy to form an overdensity of dark matter in the wake (a so-called "trailing enhancement")

 \Rightarrow the gravitational pull of this wake on the galaxy slows it down

 in real systems with a gravitational potential, dynamical friction produces mass segregation and not equipartition: consider a massive galaxy on a circular orbit within a cluster that experiences dynamical friction

 \Rightarrow its energy loss causes it to transition inward to a tighter bound orbit and to move faster

 in a single encounter, the deflection angle due to gravity is (in the rest system of the galaxy with mass m₂)

$$\psi_1 = \frac{\Delta v_\perp}{v_2} \approx \underbrace{\frac{Gm_2}{b^2}}_{|\tilde{F}_\perp|} \underbrace{\frac{2b}{v_2}}_{t} \frac{1}{v_2} = \frac{2Gm_2}{bv_2^2}.$$
(2)

AIP

ヨトメヨト

< < >> < </>

 in a single encounter, the deflection angle due to gravity is (in the rest system of the galaxy with mass m₂)

$$\psi_1 = \frac{\Delta v_\perp}{v_2} \approx \underbrace{\frac{Gm_2}{b^2}}_{|\tilde{F}_\perp|} \underbrace{\frac{2b}{v_2}}_{t} \frac{1}{v_2} = \frac{2Gm_2}{bv_2^2}.$$
(2)

AIP

御下 《唐下 《唐下 》 唐

• momentum balance of the deflection yields (with $m_1 \ll m_2$, see figure):

$$\Delta v_{2,\parallel} = -\frac{m_1}{m_2} \,\Delta v_{1,\parallel} = -\frac{m_1}{m_2} \,v_2 \,(1 - \cos\psi_1) \approx -\frac{2G^2 m_1 m_2}{b^2 v_2^3}, \tag{3}$$

upon Taylor expanding $\cos \psi_1 = 1 - \psi_1^2/2 + O(\psi_1^4)$ and substituting Eq. (2), and we assume small-angle scatterings that dominate the total scattering rate

 only particles with speed v₁ < v₂ contribute to dynamical friction and are deflected by the galaxy with a differential rate that is given by

 $\mathrm{d}\Gamma = \mathit{n}(< \mathit{v}_2)\mathit{v}_2\mathrm{d}\sigma$

ヘロト ヘ戸ト ヘヨト ・ヨト

 only particles with speed v₁ < v₂ contribute to dynamical friction and are deflected by the galaxy with a differential rate that is given by

$$\mathsf{d} \Gamma = n(< v_2) v_2 \mathsf{d} \sigma$$

 here, dσ is the differential scattering cross section and the number density of light particles is

$$n(< v_2) = 4\pi \int_0^{v_2} f(v) v^2 dv,$$

where we assume that the distribution function f(v) is isotropic

 only particles with speed v₁ < v₂ contribute to dynamical friction and are deflected by the galaxy with a differential rate that is given by

$$\mathrm{d}\Gamma = n(< v_2)v_2\mathrm{d}\sigma$$

 here, dσ is the differential scattering cross section and the number density of light particles is

$$n(< v_2) = 4\pi \int_0^{v_2} f(v) v^2 dv,$$

where we assume that the distribution function f(v) is isotropic

• using Eq. (3), $\Delta v_{2,\parallel} \approx -\frac{2G^2m_1m_2}{b^2v_2^3}$, we obtain for the rate of change of the galaxy velocity

$$\begin{split} \frac{\mathrm{d} \mathbf{v}_2}{\mathrm{d} t} &= \int_{b_{\min}}^{b_{\max}} \Delta v_{2,\parallel} n(< v_2) v_2 2\pi b \mathrm{d} b \times \frac{\mathbf{v}_2}{|\mathbf{v}_2|} \\ &= -4\pi G^2 m_2 \rho(< v_2) \ln \Lambda \frac{\mathbf{v}_2}{|\mathbf{v}_2|^3}, \end{split}$$

where $\Lambda = b_{max}/b_{min}$, $\rho(< v_2) = m_1 n (< v_2)$ is the mass density of light particles moving slower than v_2

・ロト ・雪 ト ・ ヨ ト・

 only particles with speed v₁ < v₂ contribute to dynamical friction and are deflected by the galaxy with a differential rate that is given by

$$\mathrm{d}\Gamma = n(< v_2)v_2\mathrm{d}\sigma$$

 here, dσ is the differential scattering cross section and the number density of light particles is

$$n(< v_2) = 4\pi \int_0^{v_2} f(v) v^2 dv,$$

where we assume that the distribution function f(v) is isotropic

• using Eq. (3), $\Delta v_{2,\parallel} \approx -\frac{2G^2m_1m_2}{b^2v_2^3}$, we obtain for the rate of change of the galaxy velocity

$$\begin{split} \frac{\mathrm{d} \mathbf{v}_2}{\mathrm{d} t} &= \int_{b_{\min}}^{b_{\max}} \Delta v_{2,\parallel} n(< v_2) v_2 2\pi b \mathrm{d} b \times \frac{\mathbf{v}_2}{|\mathbf{v}_2|} \\ &= -4\pi G^2 m_2 \rho(< v_2) \ln \Lambda \frac{\mathbf{v}_2}{|\mathbf{v}_2|^3}, \end{split}$$

where $\Lambda = b_{max}/b_{min}$, $\rho(< v_2) = m_1 n(< v_2)$ is the mass density of light particles moving slower than v_2

symmetry causes the galaxy only to slow down and not to change direction

AIP

Discussion of the Chandrasekhar formula between galaxies and dark matter (DM):

$$\frac{\mathrm{d}\mathbf{v}_{\mathrm{gal}}}{\mathrm{d}t} = -4\pi G^2 m_{\mathrm{gal}} \rho(<\mathbf{v}_{\mathrm{gal}}) \ln \Lambda \frac{\mathbf{v}_{\mathrm{gal}}}{|\mathbf{v}_{\mathrm{gal}}|^3} \tag{4}$$

 the rate of change of the galaxy velocity, *v*_{gal}, is *independent of the DM mass* and only depends on the mass density *ρ*

▶ < Ξ >

Discussion of the Chandrasekhar formula between galaxies and dark matter (DM):

$$\frac{\mathrm{d}\mathbf{v}_{\mathrm{gal}}}{\mathrm{d}t} = -4\pi G^2 m_{\mathrm{gal}} \rho(<\mathbf{v}_{\mathrm{gal}}) \ln \Lambda \frac{\mathbf{v}_{\mathrm{gal}}}{|\mathbf{v}_{\mathrm{gal}}|^3} \tag{4}$$

- the rate of change of the galaxy velocity, \dot{v}_{gal} , is *independent of the DM mass* and only depends on the mass density ρ
- we find $\dot{v}_{gal} \propto m_{gal}$, implying that heavier galaxies experience a larger drag which moves them faster to the bottom of the cluster potential
 - \Rightarrow segregation of galaxy masses in a cluster

프 🖌 🛪 프 🕨

Discussion of the Chandrasekhar formula between galaxies and dark matter (DM):

$$\frac{\mathrm{d}\mathbf{v}_{\mathrm{gal}}}{\mathrm{d}t} = -4\pi G^2 m_{\mathrm{gal}} \rho(<\mathbf{v}_{\mathrm{gal}}) \ln \Lambda \frac{\mathbf{v}_{\mathrm{gal}}}{|\mathbf{v}_{\mathrm{gal}}|^3} \tag{4}$$

- the rate of change of the galaxy velocity, $\dot{v}_{\rm gal}$, is *independent of the DM mass* and only depends on the mass density ρ
- we find $\dot{v}_{gal} \propto m_{gal}$, implying that heavier galaxies experience a larger drag which moves them faster to the bottom of the cluster potential
 - \Rightarrow segregation of galaxy masses in a cluster
- we assume $v_{gal} \ll \sigma_{DM}$, where σ_{DM} is the DM velocity dispersion and a Boltzmann distribution for DM, $f(r, \mathbf{v}) = n(r)(2\pi\sigma_{DM}^2)^{-3/2} \exp(-\mathbf{v}^2/2\sigma_{DM}^2)$:

$$f \propto \exp\left(-rac{v^2}{2\sigma_{\mathsf{DM}}^2}
ight)
ightarrow 1, \quad ext{for} \quad v_{\mathsf{gal}} \ll \sigma_{\mathsf{DM}}$$

$$\implies \rho(< v_{\rm gal}) = 4\pi m_{\rm DM} \int_0^{v_{\rm gal}} f(r, v) v^2 \mathrm{d}v \propto \frac{v_{\rm gal}^3}{\sigma_{\rm DM}^3}$$

~

イロト イポト イヨト イヨト

(5)

AIP

 \Rightarrow this is a manifestation of Liouville's theorem

Discussion of the Chandrasekhar formula between galaxies and dark matter (DM):

$$\frac{\mathrm{d}\mathbf{v}_{\mathrm{gal}}}{\mathrm{d}t} = -4\pi G^2 m_{\mathrm{gal}} \rho(<\mathbf{v}_{\mathrm{gal}}) \ln \Lambda \frac{\mathbf{v}_{\mathrm{gal}}}{|\mathbf{v}_{\mathrm{gal}}|^3} \tag{4}$$

- the rate of change of the galaxy velocity, $\dot{v}_{\rm gal}$, is *independent of the DM mass* and only depends on the mass density ρ
- we find $\dot{v}_{gal} \propto m_{gal}$, implying that heavier galaxies experience a larger drag which moves them faster to the bottom of the cluster potential
 - \Rightarrow segregation of galaxy masses in a cluster
- we assume $v_{gal} \ll \sigma_{DM}$, where σ_{DM} is the DM velocity dispersion and a Boltzmann distribution for DM, $f(r, \mathbf{v}) = n(r)(2\pi\sigma_{DM}^2)^{-3/2} \exp(-\mathbf{v}^2/2\sigma_{DM}^2)$:

$$f \propto \exp\left(-\frac{v^2}{2\sigma_{\text{DM}}^2}\right) \to 1, \text{ for } v_{\text{gal}} \ll \sigma_{\text{DM}}$$

$$\implies \rho(< v_{\text{gal}}) = 4\pi m_{\text{DM}} \int_0^{v_{\text{gal}}} f(r, v) v^2 \mathrm{d}v \propto \frac{v_{\text{gal}}^3}{\sigma_{\text{DM}}^3}$$

0

(5)

< ∃⇒

AIP

- \Rightarrow this is a manifestation of Liouville's theorem
- substituting Eq. (5) into Eq. (4) yields

$$\dot{v}_{gal} \propto v_{gal}$$
 for $v_{gal} \ll \sigma_{DM}$,

 \Rightarrow this is also called Stokes friction

• we assume a singular isothermal sphere model for DM

$$\rho(r) = \frac{\sigma_1^2}{2\pi G r^2}, \quad M(r) = \frac{2\sigma_1^2}{G}r,$$

and adopt a galaxy circular orbit in the cluster $\forall r$:

$$\frac{v_{\rm c}^2}{r} = \frac{GM(r)}{r^2} \quad \Rightarrow \quad v_{\rm c} = \sqrt{2}\sigma_{\rm f}$$

▶ < Ξ >

• we assume a singular isothermal sphere model for DM

$$\rho(r) = \frac{\sigma_1^2}{2\pi G r^2}, \quad M(r) = \frac{2\sigma_1^2}{G}r,$$

and adopt a galaxy circular orbit in the cluster $\forall r$:

$$\frac{v_{\rm c}^2}{r} = \frac{GM(r)}{r^2} \quad \Rightarrow \quad v_{\rm c} = \sqrt{2}\sigma_1$$

• if we assume that dark matter locally follows a Maxwellian velocity distribution, the phase space distribution is given by

$$f(r, v) = \frac{n(r)}{(2\pi\sigma_1^2)^{3/2}} \exp\left(-\frac{v^2}{2\sigma_1^2}\right)$$

so that we obtain

$$n(r, < v_2) = 4\pi \int_0^{v_2} f(r, v) v^2 dv$$

= $n(r) \left[\operatorname{erf} \left(\frac{v_2}{v_c} \right) - \frac{2}{\sqrt{\pi}} \frac{v_2}{v_c} \exp \left(-\frac{v_2^2}{v_c^2} \right) \right] = 0.43 \, n(r)$

because on circular orbits in a singular isothermal sphere $v_2 = v_c$.

э

ロトス値とくほとくほど

the galaxy's binding energy per unit mass is

$$\frac{\Phi(r)}{M(r)} = \frac{Gm_{\text{shell}}(r)}{r} = 4\pi G \int_{r_0}^r \frac{r'^2 \rho(r') dr'}{r'} = 2\sigma_1^2 \int_{r_0}^r \frac{dr'}{r'} = 2\sigma_1^2 \ln \frac{r}{r_0}$$

so that the galaxy looses energy per unit mass at a rate

$$\dot{\epsilon} = \frac{d}{dt} \left(\frac{\Phi(r)}{M(r)} \right) = \frac{2\sigma_1^2}{r} \frac{dr}{dt}$$
(6)

the galaxy's binding energy per unit mass is

$$\frac{\Phi(r)}{M(r)} = \frac{Gm_{\text{shell}}(r)}{r} = 4\pi G \int_{r_0}^r \frac{r'^2 \rho(r') dr'}{r'} = 2\sigma_1^2 \int_{r_0}^r \frac{dr'}{r'} = 2\sigma_1^2 \ln \frac{r}{r_0}$$

so that the galaxy looses energy per unit mass at a rate

$$\dot{\epsilon} = \frac{d}{dt} \left(\frac{\Phi(r)}{M(r)} \right) = \frac{2\sigma_1^2}{r} \frac{dr}{dt}$$
(6)

 because the galaxy evolves according to dynamical friction, its energy loss per unit mass can also be calculated according to Chandrasekhar's formula,

$$\dot{\epsilon} = \mathbf{v}_2 \cdot \tilde{\mathbf{F}}_2 = \mathbf{v}_2 \cdot \frac{\mathrm{d}\mathbf{v}_2}{\mathrm{d}t} = -4\pi G m_2 \ln \Lambda \frac{0.43\sigma_1^2}{2\pi G r^2} \frac{1}{\sqrt{2}\sigma_1} = -0.61 \frac{G m_2 \sigma_1 \ln \Lambda}{r^2}$$
(7)

-∢ ≣ ▶

the galaxy's binding energy per unit mass is

$$\frac{\Phi(r)}{M(r)} = \frac{Gm_{\text{shell}}(r)}{r} = 4\pi G \int_{r_0}^r \frac{r'^2 \rho(r') dr'}{r'} = 2\sigma_1^2 \int_{r_0}^r \frac{dr'}{r'} = 2\sigma_1^2 \ln \frac{r}{r_0}$$

so that the galaxy looses energy per unit mass at a rate

$$\dot{\epsilon} = \frac{d}{dt} \left(\frac{\Phi(r)}{M(r)} \right) = \frac{2\sigma_1^2}{r} \frac{dr}{dt}$$
(6)

 because the galaxy evolves according to dynamical friction, its energy loss per unit mass can also be calculated according to Chandrasekhar's formula,

$$\dot{\epsilon} = \mathbf{v}_2 \cdot \tilde{\mathbf{F}}_2 = \mathbf{v}_2 \cdot \frac{\mathrm{d}\mathbf{v}_2}{\mathrm{d}t} = -4\pi G m_2 \ln \Lambda \frac{0.43\sigma_1^2}{2\pi G r^2} \frac{1}{\sqrt{2}\sigma_1} = -0.61 \frac{G m_2 \sigma_1 \ln \Lambda}{r^2}$$
(7)

equating Eqs. (6) and (7) yields

$$\frac{2\sigma_1^2}{r}\frac{\mathrm{d}r}{\mathrm{d}t} = -0.61\frac{Gm_2\sigma_1\ln\Lambda}{r^2}, \quad \text{or}$$

$$\frac{\mathrm{d}r^2}{\mathrm{d}t} = 2r\frac{\mathrm{d}r}{\mathrm{d}t} = -0.61\frac{Gm_2\ln\Lambda}{\sigma_1} = -\frac{Gm_2\ln\Lambda}{1.64\sigma_1r_0^2}r_0^2 \equiv -\frac{r_0^2}{t_{\text{dec}}}$$
AIP

recall the last equation on the previous slide:

$$\frac{\mathrm{d}r^2}{\mathrm{d}t} = -\frac{r_0^2}{t_{\mathrm{dec}}}, \quad \mathrm{where} \quad t_{\mathrm{dec}} = 1.64 \; \frac{\sigma_1 r_0^2}{Gm_{\mathrm{gal}} \ln \Lambda} = \frac{0.185}{\ln \Lambda} \; \frac{M(r_0)}{m_{\mathrm{gal}}} \; t_{\mathrm{orbit, \, init}}$$

and $t_{\rm orbit,\,init}=2\pi r_0/v_2=\sqrt{2}\pi r_0/\sigma_1$ and $m_2=m_{\rm gal}$

recall the last equation on the previous slide:

$$\frac{\mathrm{d}r^2}{\mathrm{d}t} = -\frac{r_0^2}{t_{\mathrm{dec}}}, \quad \text{where} \quad t_{\mathrm{dec}} = 1.64 \; \frac{\sigma_1 r_0^2}{Gm_{\mathrm{gal}} \ln \Lambda} = \frac{0.185}{\ln \Lambda} \; \frac{M(r_0)}{m_{\mathrm{gal}}} \; t_{\mathrm{orbit,\; init}}$$

and $t_{\text{orbit, init}} = 2\pi r_0 / v_2 = \sqrt{2}\pi r_0 / \sigma_1$ and $m_2 = m_{\text{gal}}$

integration gives

$$r^2 = r_0^2 \left(1 - \frac{t}{t_{\rm dec}} \right)$$

프 🖌 🛪 프 🕨

recall the last equation on the previous slide:

$$\frac{\mathrm{d}r^2}{\mathrm{d}t} = -\frac{r_0^2}{t_{\mathrm{dec}}}, \quad \text{where} \quad t_{\mathrm{dec}} = 1.64 \ \frac{\sigma_1 r_0^2}{Gm_{\mathrm{gal}} \ln \Lambda} = \frac{0.185}{\ln \Lambda} \ \frac{M(r_0)}{m_{\mathrm{gal}}} \ t_{\mathrm{orbit,\,init}}$$

and $t_{\rm orbit,\ init} = 2\pi r_0/v_2 = \sqrt{2}\pi r_0/\sigma_1$ and $m_2 = m_{\rm gal}$

integration gives

$$r^2 = r_0^2 \left(1 - \frac{t}{t_{\rm dec}}\right)$$

$$t_{
m dec} = rac{1.17}{\ln(M_{200}/m_{
m gal})} \, rac{M_{200}}{m_{
m gal}} \, rac{1}{10 H(z)} \propto m_{
m gal}^{-1} \, ,$$

which means that larger galaxies migrate faster to the center

프 🖌 🛪 프 🕨

recall the last equation on the previous slide:

$$\frac{\mathrm{d}r^2}{\mathrm{d}t} = -\frac{r_0^2}{t_{\mathrm{dec}}}, \quad \mathrm{where} \quad t_{\mathrm{dec}} = 1.64 \; \frac{\sigma_1 r_0^2}{Gm_{\mathrm{gal}} \ln \Lambda} = \frac{0.185}{\ln \Lambda} \; \frac{M(r_0)}{m_{\mathrm{gal}}} \; t_{\mathrm{orbit, \, init}}$$

and $t_{\text{orbit, init}} = 2\pi r_0 / v_2 = \sqrt{2}\pi r_0 / \sigma_1$ and $m_2 = m_{\text{gal}}$

integration gives

$$r^2 = r_0^2 \left(1 - \frac{t}{t_{\rm dec}} \right)$$

$$t_{
m dec} = rac{1.17}{\ln(M_{200}/m_{
m gal})} \; rac{M_{200}}{m_{
m gal}} \; rac{1}{10 H(z)} \propto m_{
m gal}^{-1} \, ,$$

which means that larger galaxies migrate faster to the center

• the dynamical friction decay time from the edge of a halo to the center is longer than the age of the universe for $M_{200}/m_{qal} \gtrsim 15$

・ロト ・同ト ・ヨト ・ヨト

recall the last equation on the previous slide:

$$\frac{\mathrm{d}r^2}{\mathrm{d}t} = -\frac{r_0^2}{t_{\mathrm{dec}}}, \quad \mathrm{where} \quad t_{\mathrm{dec}} = 1.64 \; \frac{\sigma_1 r_0^2}{G m_{\mathrm{gal}} \ln \Lambda} = \frac{0.185}{\ln \Lambda} \; \frac{M(r_0)}{m_{\mathrm{gal}}} \; t_{\mathrm{orbit,\; init}}$$

and $t_{\text{orbit, init}} = 2\pi r_0 / v_2 = \sqrt{2}\pi r_0 / \sigma_1$ and $m_2 = m_{\text{gal}}$

integration gives

$$r^2 = r_0^2 \left(1 - \frac{t}{t_{\rm dec}}\right)$$

$$t_{
m dec} = rac{1.17}{\ln(M_{200}/m_{
m gal})} \, rac{M_{200}}{m_{
m gal}} \, rac{1}{10 H(z)} \propto m_{
m gal}^{-1} \, ,$$

which means that larger galaxies migrate faster to the center

• the dynamical friction decay time from the edge of a halo to the center is longer than the age of the universe for $M_{200}/m_{gal}\gtrsim 15$

 \Rightarrow only the most massive galaxies are expected to sink to the center and to segregate by mass due to dynamical friction

・ロト ・ 日本 ・ 日本 ・ 日本

• recall the last equation on the previous slide:

$$\frac{\mathrm{d}r^2}{\mathrm{d}t} = -\frac{r_0^2}{t_{\mathrm{dec}}}, \quad \mathrm{where} \quad t_{\mathrm{dec}} = 1.64 \; \frac{\sigma_1 r_0^2}{G m_{\mathrm{gal}} \ln \Lambda} = \frac{0.185}{\ln \Lambda} \; \frac{M(r_0)}{m_{\mathrm{gal}}} \; t_{\mathrm{orbit,\; init}}$$

and $t_{\text{orbit, init}} = 2\pi r_0 / v_2 = \sqrt{2}\pi r_0 / \sigma_1$ and $m_2 = m_{\text{gal}}$

integration gives

$$r^2 = r_0^2 \left(1 - \frac{t}{t_{\rm dec}}\right)$$

$$t_{
m dec} = rac{1.17}{\ln(M_{200}/m_{
m gal})} \; rac{M_{200}}{m_{
m gal}} \; rac{1}{10 H(z)} \propto m_{
m gal}^{-1} \, ,$$

which means that larger galaxies migrate faster to the center

• the dynamical friction decay time from the edge of a halo to the center is longer than the age of the universe for $M_{200}/m_{gal}\gtrsim 15$

 \Rightarrow only the most massive galaxies are expected to sink to the center and to segregate by mass due to dynamical friction

⇒ this causes them to merge with the brightest cluster galaxy in the center: "galactic cannibalism"

- consider a *gas-rich spiral galaxy* with a disk of radius r_d moving through the ICM of mass density ρ_{ICM} with velocity ν
- for simplicity, we consider a face-on moving disk (i.e., v is parallel to the disk normal)

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

- consider a *gas-rich spiral galaxy* with a disk of radius r_d moving through the ICM of mass density \(\nu_{ICM}\) with velocity \(\nu\)
- for simplicity, we consider a face-on moving disk (i.e., v is parallel to the disk normal)
- the amount of ICM swept by the disk is

$$\dot{M}_{\rm ICM} = \sigma_{\rm d} \rho_{\rm ICM} v = \pi r_{\rm d}^2 \rho_{\rm ICM} v,$$

where $\sigma_{\rm d}$ is the disk cross section

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

- consider a *gas-rich spiral galaxy* with a disk of radius r_d moving through the ICM of mass density \(\nu_{ICM}\) with velocity \(\nu\)
- for simplicity, we consider a face-on moving disk (i.e., v is parallel to the disk normal)
- the amount of ICM swept by the disk is

$$\dot{M}_{\rm ICM} = \sigma_{\rm d} \rho_{\rm ICM} v = \pi r_{\rm d}^2 \rho_{\rm ICM} v,$$

where $\sigma_{\rm d}$ is the disk cross section

• if we assume that the interstellar medium (ISM) stops the wind, then the momentum transferred to the disk per unit time is

$$\dot{p} = \dot{M}_{\rm ICM} v = \pi r_{\rm d}^2
ho_{\rm ICM} v^2 = \pi r_{\rm d}^2 P_{\rm ram}$$

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

- consider a *gas-rich spiral galaxy* with a disk of radius r_d moving through the ICM of mass density \(\nu_{ICM}\) with velocity \(\nu\)
- for simplicity, we consider a face-on moving disk (i.e., v is parallel to the disk normal)
- the amount of ICM swept by the disk is

$$\dot{M}_{\rm ICM} = \sigma_{\rm d} \rho_{\rm ICM} v = \pi r_{\rm d}^2 \rho_{\rm ICM} v,$$

where $\sigma_{\rm d}$ is the disk cross section

• if we assume that the interstellar medium (ISM) stops the wind, then the momentum transferred to the disk per unit time is

$$\dot{p} = \dot{M}_{
m ICM} v = \pi r_{
m d}^2
ho_{
m ICM} v^2 = \pi r_{
m d}^2 P_{
m ram}$$

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

 \Rightarrow the ICM wind exerts a ram pressure $P_{\rm ram} = \rho_{\rm ICM} v^2$ onto the disk

• if the ram pressure $P_{ram} = \rho_{ICM}v^2$ exceeds the force per unit area that binds the ISM to the disk, then the gas gets stripped off

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

- if the ram pressure $P_{\text{ram}} = \rho_{\text{ICM}} v^2$ exceeds the force per unit area that binds the ISM to the disk, then the gas gets stripped off
- we assume that the mean surface density of interstellar gas is $\Sigma_{\rm ISM} \approx M_{\rm ISM}/(\pi r_{\rm d}^2)$ and that the mean mass density (dominated by stars) is $\Sigma_{\star} \approx M_{\star}/(\pi r_{\rm d}^2)$

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

- if the ram pressure $P_{\text{ram}} = \rho_{\text{ICM}} v^2$ exceeds the force per unit area that binds the ISM to the disk, then the gas gets stripped off
- we assume that the mean surface density of interstellar gas is $\Sigma_{\rm ISM} \approx M_{\rm ISM}/(\pi r_{\rm d}^2)$ and that the mean mass density (dominated by stars) is $\Sigma_{\star} \approx M_{\star}/(\pi r_{\rm d}^2)$

• the gravitational field of the disk (in the disk) is

$$\Phi_{
m grav}pprox 2\pi G\Sigma$$
 ,

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

- if the ram pressure $P_{ram} = \rho_{ICM}v^2$ exceeds the force per unit area that binds the ISM to the disk, then the gas gets stripped off
- we assume that the mean surface density of interstellar gas is $\Sigma_{\rm ISM} \approx M_{\rm ISM}/(\pi r_{\rm d}^2)$ and that the mean mass density (dominated by stars) is $\Sigma_{\star} \approx M_{\star}/(\pi r_{\rm d}^2)$

the gravitational field of the disk (in the disk) is

$$\Phi_{
m grav} pprox 2\pi G \Sigma$$
,

 hence, the gravitational force per unit area on the interstellar gas is

$$rac{F_{
m grav}}{A}pprox 2\pi G \Sigma_{\star} \Sigma_{
m ISM}$$

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

- if the ram pressure $P_{ram} = \rho_{ICM}v^2$ exceeds the force per unit area that binds the ISM to the disk, then the gas gets stripped off
- we assume that the mean surface density of interstellar gas is $\Sigma_{\rm ISM} \approx M_{\rm ISM}/(\pi r_{\rm d}^2)$ and that the mean mass density (dominated by stars) is $\Sigma_{\star} \approx M_{\star}/(\pi r_{\rm d}^2)$

the gravitational field of the disk (in the disk) is

$$\Phi_{
m grav} pprox 2\pi G \Sigma$$
,

 hence, the gravitational force per unit area on the interstellar gas is

$$rac{F_{
m grav}}{A}pprox 2\pi G \Sigma_{\star} \Sigma_{
m ISM}$$

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

AIP

• ram-pressure stripping of gas occurs if $P_{\text{ram}} > \frac{F_{\text{grav}}}{A}$, or $\rho_{\text{ICM}} > \frac{2\pi G \Sigma_{\star} \Sigma_{\text{ISM}}}{v^2}$

- if the ram pressure $P_{\text{ram}} = \rho_{\text{ICM}} v^2$ exceeds the force per unit area that binds the ISM to the disk, then the gas gets stripped off
- we assume that the mean surface density of interstellar gas is $\Sigma_{\rm ISM} \approx M_{\rm ISM}/(\pi r_{\rm d}^2)$ and that the mean mass density (dominated by stars) is $\Sigma_{\star} \approx M_{\star}/(\pi r_{\rm d}^2)$

the gravitational field of the disk (in the disk) is

$$\Phi_{
m grav} pprox 2\pi G \Sigma$$
,

 hence, the gravitational force per unit area on the interstellar gas is

$$rac{F_{
m grav}}{A}pprox 2\pi G \Sigma_{\star} \Sigma_{
m ISM}$$

Ram pressure stripping in the galaxies NGC 4522 and NGC 4402

• • • • • • • •

- ram-pressure stripping of gas occurs if $P_{\text{ram}} > \frac{F_{\text{grav}}}{A}$, or $\rho_{\text{ICM}} > \frac{2\pi G \Sigma_{\star} \Sigma_{\text{ISM}}}{v^2}$
- clearly this defines a minimum wind density of $n \gtrsim 3 \times 10^{-3}$ cm⁻³ which is only reached towards cluster cores and not in cosmic filaments

- P_{ram} will change as a function of time due to the eccentric orbit of a galaxy
- since Σ_{\star} and Σ_{ISM} decrease to the disk periphery, there will be critical radius beyond which ram pressure stripping will be effective

- P_{ram} will change as a function of time due to the eccentric orbit of a galaxy
- since Σ_{*} and Σ_{ISM} decrease to the disk periphery, there will be critical radius beyond which ram pressure stripping will be effective
- the stripped gas can form spectacular tails which gives rise to jellyfish galaxies

- P_{ram} will change as a function of time due to the eccentric orbit of a galaxy
- since Σ_{*} and Σ_{ISM} decrease to the disk periphery, there will be critical radius beyond which ram pressure stripping will be effective
- the stripped gas can form spectacular tails which gives rise to jellyfish galaxies
- draping of intracluster magnetic field forms a protective layer around the galaxy and its tail that shields the cold stripped ISM from the hostile hot ICM wind and enables ongoing star formation in the tails

Ram pressure stripping – 3

- P_{ram} will change as a function of time due to the eccentric orbit of a galaxy
- since Σ_{*} and Σ_{ISM} decrease to the disk periphery, there will be critical radius beyond which ram pressure stripping will be effective
- the stripped gas can form spectacular tails which gives rise to jellyfish galaxies
- draping of intracluster magnetic field forms a protective layer around the galaxy and its tail that shields the cold stripped ISM from the hostile hot ICM wind and enables ongoing star formation in the tails
- when spirals loose their gas, the potential for future star formation is reduced
 ⇒ ram-pressure stripping is considered important to explain the *quenching of star formation in clusters*

AIP

Ram pressure stripping – 3

- Pram will change as a function of time due to the eccentric orbit of a galaxy
- since Σ_{*} and Σ_{ISM} decrease to the disk periphery, there will be critical radius beyond which ram pressure stripping will be effective
- the stripped gas can form *spectacular tails* which gives rise to jellyfish galaxies
- Interpretended in the second secon forms a protective layer around the galaxy and its tail that shields the cold stripped ISM from the hostile hot ICM wind and enables ongoing star formation in the tails
- when spirals loose their gas, the potential for future star formation is reduced \Rightarrow ram-pressure stripping is considered important to explain the *quenching of star* formation in clusters
- if only parts of the outer disk gets stripped, star formation can continue until it runs out of its fuel after about a few Gyrs
 - \Rightarrow "strangulation" of a galaxy

・ロト ・ 同ト ・ ヨト ・ ヨト

AIP

Jellyfish galaxies in clusters

Christoph Pfrommer

The Physics of Galaxy Clusters

Protective layer: magnetic field of a jellyfish galaxy Observations of aligned *B* polarization vectors along the tail of galaxy JO206

Müller+ (2021, Nature Astronomy)

Christoph Pfrommer The Physics of Galaxy Clusters

Simulating a jellyfish galaxy

Müller+ (2021, Nature Astronomy), Sparre, CP+ (2020)

- a jellyfish galaxy experiences ram-pressure stripping as a result of its fast motion in the intracluster medium
- the turbulent wind magnetic field is wrapped around the galaxy and stretched in the wake by shear motions as well as cooling of thermally unstable mixed wind material
- the magnetic field facilitates the formation of long gaseous filaments

Interaction of a cold cloud with a hot wind Magnetic tension and pressure modify the dynamics of the interaction

Sparre, CP, Ehlert (2020)

Magnetic field configurations

Sparre, CP, Ehlert (2020)

AIP

Magnetic field alters dynamics of cloud shattering

KHI = Kelvin Helmholtz instability

Magnetic field alters dynamics of cloud shattering

A magnetic field suppresses the Kelvin-Helmholtz instability (KHI) in the wake of the cloud

Sparre, CP, Ehlert (2020)

Magnetic field alters dynamics of cloud shattering

AIP

A magnetic draping layer protects against instabilities

Magnetic pressure and tension forces alter the dynamics of the interaction

A turbulent **B** field extends cloud's lifetime

ъ

A uniform **B** field initially accelerates cloud more

- KHI instability shatters a small cloud into small pieces that mix with and dissolve into the hot wind
- magnetic field protects against instabilities and increases survival time by 30%, but does not halter the cloud's destruction (Sparre, CP, Ehlert 2020)

The growth regime

- ram-pressure stripped gas from a **large** cloud mixes with the hot wind to intermediate temperatures
- thermal instability causes further cooling and net accretion of hot gas to the cold tail (Armillotta+ 2017, Gronke & Oh 2018, 2019, Li+ 2019, Sparre+ 2020, Kanjilal+ 2020)
- momentum transfer from hot wind to cooling accreting material implies formation of long gaseous tail of the jellyfish galaxy!

The growth regime

 hot-wind cooling time sets transition radius and not the mixed-phase cooling time ⇒ cloud growth criterion (Sparre+ 2020):

$$rac{t_{ ext{cool}, ext{wind}}}{t_{ ext{cc}}} < 10 f(M, R_{ ext{cloud}}, n_{ ext{wind}}, v_{ ext{wind}})$$

э

Conclusions on magnetic fields dynamics

Interaction of a cold cloud with a hot wind:

- magnetic field provides tension on a moving object and decelerates it
- magnetic field protects against instabilities and increases the survival time
- destruction regime: transport of dense gas to several kpcs hard to explain because cloud shatters and dissolves in the wind
- growth regime: momentum transfer from hot wind to the cooling and accreting material implies formation of long gaseous tail of the jellyfish galaxy

Virial theorem

in the lecture notes, we derived the virial theorem,

$$\frac{1}{2}\frac{d^2}{dt^2}\left(\sum_{i=1}^N m_i |\mathbf{r}_i|^2\right) - \sum_{i=1}^N m_i |\dot{\mathbf{r}}_i|^2 = -\sum_{\substack{i,j=1\\i>j}}^N \frac{Gm_i m_j}{|\mathbf{r}_i - \mathbf{r}_j|},\\\\\frac{1}{2}\ddot{\mathbf{i}} = 2E_{kin} + E_{pot} = 0$$

in equilibrium

 here, we introduced the moment of inertia, *I*, the total kinetic energy, *E*_{kin}, and the total gravitational energy, *E*_{pot}, via

$$I = \sum_{i=1}^{N} m_i r_i^2$$
$$E_{kin} = \frac{1}{2} \sum_{i=1}^{N} m_i \dot{r}_i^2$$
$$E_{pot} = -\sum_{\substack{i,j=1\\i>j}}^{N} \frac{Gm_i m_j}{|r_i - r_j|}$$

э

프 🖌 🛪 프 🕨

 assumption 1: the system is close to equilibrium and not forming at the present time

э

▲ 臣 ▶ ▲ 臣 ▶ .

- assumption 1: the system is close to equilibrium and not forming at the present time
- assumption 2: the system is viewed from a random direction, i.e., the galaxies form a representative sample and are not biased by selection
 unbiased velocity estimator well behaved:

$$\left\langle v_{i}^{2} \right\rangle = 3 \left\langle v_{\log, i}^{2} \right\rangle$$
 with $2E_{kin} = 3 \left\langle \sum_{i=1}^{N} m_{i} v_{\log, i}^{2} \right\rangle$

 \Rightarrow unbiased estimator for the angular separation of two galaxies unreliable:

$$\frac{1}{r_{ij}} = \left\langle \frac{2}{\pi} \frac{1}{D\theta_{ij}} \right\rangle$$

→ Ξ → < Ξ →</p>

- assumption 1: the system is close to equilibrium and not forming at the present time
- assumption 2: the system is viewed from a random direction, i.e., the galaxies form a representative sample and are not biased by selection
 unbiased velocity estimator well behaved:

$$\left\langle v_{i}^{2} \right\rangle = 3 \left\langle v_{\log, i}^{2} \right\rangle$$
 with $2E_{kin} = 3 \left\langle \sum_{i=1}^{N} m_{i} v_{\log, i}^{2} \right\rangle$

 \Rightarrow unbiased estimator for the angular separation of two galaxies unreliable:

$$\frac{1}{r_{ij}} = \left\langle \frac{2}{\pi} \frac{1}{D\theta_{ij}} \right\rangle$$

• assumption 3: all particles are counted and all mass is in observed objects with mass $m_i = (M/L)L_i$, with the average mass-to-light ratio M/L and the individual galaxy luminosities L_i ; this implies

- no objects are excluded by selection, and
- all mass is in galaxies

AIP

イロト イポト イヨト イヨト

- assumption 1: the system is close to equilibrium and not forming at the present time
- assumption 2: the system is viewed from a random direction, i.e., the galaxies form a representative sample and are not biased by selection
 unbiased velocity estimator well behaved:

$$\left\langle v_{i}^{2} \right\rangle = 3 \left\langle v_{\log, i}^{2} \right\rangle$$
 with $2E_{kin} = 3 \left\langle \sum_{i=1}^{N} m_{i} v_{\log, i}^{2} \right\rangle$

 \Rightarrow unbiased estimator for the angular separation of two galaxies unreliable:

$$\frac{1}{r_{ij}} = \left\langle \frac{2}{\pi} \frac{1}{D\theta_{ij}} \right\rangle$$

• assumption 3: all particles are counted and all mass is in observed objects with mass $m_i = (M/L)L_i$, with the average mass-to-light ratio M/L and the individual galaxy luminosities L_i ; this implies

- no objects are excluded by selection, and
- all mass is in galaxies
- assumption 4: positions and velocities of objects are representative

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Virial theorem – application

 with the caveats following from these considerations we can weigh a cluster with galaxies to order of magnitude:

adopting a cluster radius $R_{cl} \sim 1$ Mpc, a galaxy velocity dispersion in a cluster, $v_{cl} \sim 1000 \text{ km s}^{-1}$, $N_{gal} \sim 200$ cluster galaxies with radius $R_{gal} \sim 3$ kpc and rotation velocities $v_{gal} \sim 150 \text{ km s}^{-1}$, we estimate the ratio of the mass in visible galaxies to the total cluster mass,

$$\frac{\sum_{i} m_{\text{gal}, i}}{M_{\text{cl}}} \sim \frac{N_{\text{gal}} m_{\text{gal}}}{M_{\text{cl}}} \sim \frac{N_{\text{gal}} R_{\text{gal}} v_{\text{gal}}^2}{R_{\text{cl}} v_{\text{cl}}^2} \sim N_{\text{gal}} \frac{R_{\text{gal}}}{R_{\text{cl}}} \left(\frac{v_{\text{gal}}}{v_{\text{cl}}}\right)^2 \sim 0.0135$$

글 🕨 🔺 글 🕨

Virial theorem – application

 with the caveats following from these considerations we can weigh a cluster with galaxies to order of magnitude:

adopting a cluster radius $R_{cl} \sim 1$ Mpc, a galaxy velocity dispersion in a cluster, $v_{cl} \sim 1000 \text{ km s}^{-1}$, $N_{gal} \sim 200$ cluster galaxies with radius $R_{gal} \sim 3$ kpc and rotation velocities $v_{gal} \sim 150 \text{ km s}^{-1}$, we estimate the ratio of the mass in visible galaxies to the total cluster mass,

$$\frac{\sum_{i} m_{\text{gal}, i}}{M_{\text{cl}}} \sim \frac{N_{\text{gal}} m_{\text{gal}}}{M_{\text{cl}}} \sim \frac{N_{\text{gal}} R_{\text{gal}} v_{\text{gal}}^2}{R_{\text{cl}} v_{\text{cl}}^2} \sim N_{\text{gal}} \frac{R_{\text{gal}}}{R_{\text{cl}}} \left(\frac{v_{\text{gal}}}{v_{\text{cl}}}\right)^2 \sim 0.0135$$

• hence, to get $\sum_i m_{gal} \sim M_{cl}$ you would need $R_{gal} \sim 0.2R_{cl}$: there are several theoretical solutions to this problem:

- most mass is not attached to galaxies,
- clusters are very far from equilibrium,
- galaxies are much more extended than light, or
- gravity is not Newtonian

AIP

・ロト ・ 同ト ・ ヨト ・ ヨト

Virial theorem – application

 with the caveats following from these considerations we can weigh a cluster with galaxies to order of magnitude:

adopting a cluster radius $R_{cl} \sim 1$ Mpc, a galaxy velocity dispersion in a cluster, $v_{cl} \sim 1000 \text{ km s}^{-1}$, $N_{gal} \sim 200$ cluster galaxies with radius $R_{gal} \sim 3$ kpc and rotation velocities $v_{gal} \sim 150 \text{ km s}^{-1}$, we estimate the ratio of the mass in visible galaxies to the total cluster mass,

$$\frac{\sum_{i} m_{\text{gal}, i}}{M_{\text{cl}}} \sim \frac{N_{\text{gal}} m_{\text{gal}}}{M_{\text{cl}}} \sim \frac{N_{\text{gal}} R_{\text{gal}} v_{\text{gal}}^2}{R_{\text{cl}} v_{\text{cl}}^2} \sim N_{\text{gal}} \frac{R_{\text{gal}}}{R_{\text{cl}}} \left(\frac{v_{\text{gal}}}{v_{\text{cl}}}\right)^2 \sim 0.0135$$

• hence, to get $\sum_i m_{gal} \sim M_{cl}$ you would need $R_{gal} \sim 0.2R_{cl}$: there are several theoretical solutions to this problem:

- most mass is not attached to galaxies,
- clusters are very far from equilibrium,
- galaxies are much more extended than light, or
- gravity is not Newtonian
- clearly, the first solution is right, but to see this we need to include gravitational lensing and hydrostatic mass estimates from the X-rays

・ロト ・ 同ト ・ ヨト ・ ヨト

Observational facts:

- * Morphology-density relation: increasing fraction of ellipticals in clusters
- * Butcher-Oemler effect: decreasing fraction of blue cluster galaxies with time
 - \Rightarrow galaxies seem to have transformed in clusters

Observational facts:

- * Morphology-density relation: increasing fraction of ellipticals in clusters
- * Butcher-Oemler effect: decreasing fraction of blue cluster galaxies with time ⇒ galaxies seem to have transformed in clusters

Tidal interactions:

- * gravitational interaction between two deformable bodies enhances the mutual gravitational multipole moments ⇒ backreaction on their orbit
- * if $t_{enc} < t_{tide}$ response of the bodies lags behind the tidal force \Rightarrow *tidal stripping* of stars outside the tidal radius: "tidal tails"

Observational facts:

- * Morphology-density relation: increasing fraction of ellipticals in clusters
- * Butcher-Oemler effect: decreasing fraction of blue cluster galaxies with time
 - \Rightarrow galaxies seem to have transformed in clusters

Tidal interactions:

- * gravitational interaction between two deformable bodies enhances the mutual gravitational multipole moments ⇒ backreaction on their orbit
- * if $t_{enc} < t_{tide}$ response of the bodies lags behind the tidal force \Rightarrow *tidal stripping* of stars outside the tidal radius: "tidal tails"

Oynamical friction:

- * a heavy object moving through a sea of light particles feels a drag force \Rightarrow transfer of energy/momentum from the galaxy to DM particles
- * most massive galaxies slowly migrate to the cluster center and segregate by mass to eventually merge with the cD galaxy: "galactic cannibalism"

Observational facts:

- * Morphology-density relation: increasing fraction of ellipticals in clusters
- * Butcher-Oemler effect: decreasing fraction of blue cluster galaxies with time
 - \Rightarrow galaxies seem to have transformed in clusters

Tidal interactions:

- * gravitational interaction between two deformable bodies enhances the mutual gravitational multipole moments ⇒ backreaction on their orbit
- * if $t_{enc} < t_{tide}$ response of the bodies lags behind the tidal force \Rightarrow *tidal stripping* of stars outside the tidal radius: "tidal tails"

Oynamical friction:

- * a heavy object moving through a sea of light particles feels a drag force \Rightarrow transfer of energy/momentum from the galaxy to DM particles
- * most massive galaxies slowly migrate to the cluster center and segregate by mass to eventually merge with the cD galaxy: "galactic cannibalism"

Ram-pressure stripping:

- * a gas-rich spiral moving through the ICM feels a ram pressure wind that can unbind the ISM, strip it off and form spectacular tails: "jellyfish galaxies"
- * magnetic draping forms a protective layer around the galaxy, shielding the stripped ISM from the hot ICM wind and enables some modest star formation
- * when spirals loose their gas, the potential for future star formation is reduced and their star formation is eventually quenched

