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Cluster X-ray emission

• probes hot intracluster gas (T ~ 107 - 108 K) 

• at high temperatures (≳ 2 keV) mostly free-free emission (electron-ion 
collisions) 

• at lower temperatures metal lines (e.g., Fe) 

• allows measuring gas density and temperature 

• emissivity ~ square of density 

• spectral shape depends on temperature
ESA/XMM-Newton/DSS-II/J. Sanders et al. 2019



Hydrostatic equilibrium

• Unless the intracluster gas gets continuously disturbed by (major) mergers, we 
expect the ICM to relax on a few sound crossing time scales: 

• What are typical values for the speed of sound in a galaxy cluster? How do 
they compare to typical galaxy velocities? What is the reason for this?



Hydrostatic mass estimates

• if the gas is in hydrostatic equilibrium in the gravitational potential 

➡ allows cluster mass measurement
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4.3 X-ray Cluster Astrophysics

4.3.1 Hydrostatic Equilibrium Masses and Biases

• Unless the intracluster gas gets continuously disturbed by (major)
mergers, we expect the ICM to relax on a few sound crossing time
scales, ts, of the clusters, where
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D
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Because ts is shorter than the age of a typical cluster, which is a
fraction of the Hubble time, the gas should be close to hydrostatic
equilibrium. However, because clusters are forming today, there
will always be a fraction of clusters that have experienced a recent
merger which causes them to be out of hydrostatic equilibrium.
Moreover, if AGN jets have recently injected energy into the cen-
tral regions, those should also be out of equilibrium. Hence, the
hydrostatic equilibrium assumption has to be used with great care.

• Assuming hydrostatic equilibrium, the pressure force of the gas
balances gravity,

rP = �⇢gasr� so that (4.119)
1
⇢gas

dP

dr
= �GM(r)

r2 for spherical symmetry, (4.120)

where M(r) is the total enclosed mass at radius r. Because this
is a single equation for ⇢gas and P, we must specify an equation
of state to close this equation. To this end, we assume an ideal
gas with P = ⇢gaskBT/m̄, where m̄ is the mean particle mass (i.e.,
m̄ = µmp with µ = 0.588 for the intracluster plasma) and obtain
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• The gas temperature defines the gas velocity dispersion along one
coordinate direction (e.g., the line of sight), �v,gas, via
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Hence, Eq. (4.121) becomes
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force balance

for spherical symmetry 



Consider gas parcel

Fx = P × A Fx = (P +
dP
dx

l) × A = P × A +
dP
dx

V-> <-Fgrav,x = ρV ⃗∇ Φ
x

ΔFx ≈
dP
dx

V

Why can the hydrodynamic force per unit volume can be written as ∇P? 

to cluster center



Hydrostatic mass estimates

• if the gas is in hydrostatic equilibrium in the gravitational potential 
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Gas particle vs. galaxy velocities
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     velocity dispersion
galaxies have similar kinematics 
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• Collisions between gas particles lead to thermal equilibrium and
to an isotropization of their velocity distribution. Galaxies repre-
sent a collisionless population and hence, do not equilibrate via
collisions. Instead, collisionless processes during the formation
of a galaxy cluster such as violent relaxation (Lynden-Bell 1967)
cause a redistribution of the kinetic energy of galaxies, which is
“forced” by temporal changes in the gravitational potential. It
is believed that this leads to an isotropic velocity distribution of
galaxies that we assume to be realized here.

• Galaxies with identical velocities share the same orbits as gas par-
ticles. Hence, galaxies should obey the same equation (4.124) for
the cluster mass as gas particles do,
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r�2
v,gal

G

0
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d ln�2
v,gal
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1
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• Combining both mass estimates of Eqs. (4.123) and (4.125) yields
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• In the following, we assume that galaxies have a comparable ve-
locity dispersion as the gas,

�2
v,gal = �

2
v,gas�, (4.127)

where � ⇠ 1 because they probe the same external gravitational
potential provided by dark matter.

• Introducing the ratio of specific energies

� ⌘
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enables us to rewrite Eq. (4.126) and leads to the expression
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• Combining Eqs. (4.128) and (4.129) to eliminate �2
v yields

d ln ⇢gas = �d ln ⇢gal + (� � 1)d ln T + d� (4.130)

or equivalently

⇢gas / ⇢�galT
��1 for � = const. (4.131)
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• Because the galaxy distribution follows a King profile,

⇢gal(r) = ⇢0
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, (4.132)

we obtain a beta profile for an isothermal gas according to
Eq. (4.131),
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• Because the X-ray emissivity jX / ⇢2
gas, we obtain

jX(r) = j0

2
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, (4.134)

which yields the X-ray surface brightness profile upon a line-of-
sight integration
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where S 0 / j0 is a constant. This functional form provides excel-
lent fits to the X-ray surface brightness maps of observed clusters
with � ⇡ 2/3 . . . 1, where the larger values correspond to deeper
X-ray observations, which reach out to larger cluster-centric radii.

• To obtain the mass profile M(r) we calculate
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For an isothermal cluster, we obtain from Eq. (4.123)

M(r) =
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Assuming isothermal gas in hydrostatic equilibrium and spherical
symmetry yields X-ray surface brightness profiles that are excel-
lently fit with a beta profile. However, the resulting mass profiles
are wrong at large radii because the mass of an NFW dark matter
profile scales as M(r) / ln r for large radii. The reasons for this
apparent inconsistency are the following:

– Many of the simplifying assumptions (isothermal gas, hy-
drostatic equilibrium and spherical symmetry) break down
in the cluster outskirts.

allows relating gas density to galaxy density profile (if isothermal & symmetric)
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Assuming isothermal gas in hydrostatic equilibrium and spherical
symmetry yields X-ray surface brightness profiles that are excel-
lently fit with a beta profile. However, the resulting mass profiles
are wrong at large radii because the mass of an NFW dark matter
profile scales as M(r) / ln r for large radii. The reasons for this
apparent inconsistency are the following:

– Many of the simplifying assumptions (isothermal gas, hy-
drostatic equilibrium and spherical symmetry) break down
in the cluster outskirts.

Beta 
profile



Cool core vs. non-cool core clusters
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Figure 4.9: Left: the density distribution of a cool core cluster (blue, double
beta profile) in comparison to a non-cool-core cluster (red, single beta profile).
Right: the corresponding cooling time profiles. Note that cool core clusters are
characterized by central cooling times with tcool < 1 Gyr.

– Shallow X-ray observations are mostly sensitive to regions
around the cluster core radius, which is often close to the
cluster scale radius rs of the dark matter density profile. The
dark matter imprints its structure onto the gas and scales at
this radius as ⇢DM / r

�2. Coincidentally, this is the asymp-
totic scaling of the gas density ⇢gas / r

�3� ⇠ r
�2 for � ⇠ 2/3.

– Deeper X-ray observations enable probing larger radii and
find a transition to larger values of � ⇠ 1. However, if they
reach regions around the virial radius, they also see an in-
creased level of clumping and asphericity. Masking all these
clumps yields an even steeper density profile.

• The kinetic-to-thermal pressure contribution substantially in-
creases towards and beyond the virial radius so that hydrostatic
cluster masses (that neglect the unobservable kinetic pressure
contribution) are biased low.

4.3.2 Cluster Population and Evolution

• The electron density distribution of a cool-core cluster is charac-
terized by a double beta profile,

ne(r) =
X

i=1,2

ni

2
666641 +
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rc, i

!2377775
�3�i/2

. (4.140)

Typical parameters of the density profile are �1,2 = 1, (n1, n2) =
(10�1, 10�2) cm�3, and rc, 1, rc, 2 = (10, 100) kpc (blue curve in
Fig. 4.9). The central dense core (light blue) is accompanied by
a central dip in temperature, that is lower by factor of about three
in comparison to the temperature maximum at 0.2R200.

• A non cool-core cluster shows a constant central temperature
plateau and no central density enhancement. Its density distribu-
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Typical parameters of the density profile are �1,2 = 1, (n1, n2) =
(10�1, 10�2) cm�3, and rc, 1, rc, 2 = (10, 100) kpc (blue curve in
Fig. 4.9). The central dense core (light blue) is accompanied by
a central dip in temperature, that is lower by factor of about three
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plateau and no central density enhancement. Its density distribu-

gas density profile:
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Figure 4.9: Left: the density distribution of a cool core cluster (blue, double
beta profile) in comparison to a non-cool-core cluster (red, single beta profile).
Right: the corresponding cooling time profiles. Note that cool core clusters are
characterized by central cooling times with tcool < 1 Gyr.
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– Deeper X-ray observations enable probing larger radii and
find a transition to larger values of � ⇠ 1. However, if they
reach regions around the virial radius, they also see an in-
creased level of clumping and asphericity. Masking all these
clumps yields an even steeper density profile.

• The kinetic-to-thermal pressure contribution substantially in-
creases towards and beyond the virial radius so that hydrostatic
cluster masses (that neglect the unobservable kinetic pressure
contribution) are biased low.

4.3.2 Cluster Population and Evolution

• The electron density distribution of a cool-core cluster is charac-
terized by a double beta profile,
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Typical parameters of the density profile are �1,2 = 1, (n1, n2) =
(10�1, 10�2) cm�3, and rc, 1, rc, 2 = (10, 100) kpc (blue curve in
Fig. 4.9). The central dense core (light blue) is accompanied by
a central dip in temperature, that is lower by factor of about three
in comparison to the temperature maximum at 0.2R200.

• A non cool-core cluster shows a constant central temperature
plateau and no central density enhancement. Its density distribu-

gas density profile: cooling time (assuming bremsstrahlung):
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creased level of clumping and asphericity. Masking all these
clumps yields an even steeper density profile.

• The kinetic-to-thermal pressure contribution substantially in-
creases towards and beyond the virial radius so that hydrostatic
cluster masses (that neglect the unobservable kinetic pressure
contribution) are biased low.
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Typical parameters of the density profile are �1,2 = 1, (n1, n2) =
(10�1, 10�2) cm�3, and rc, 1, rc, 2 = (10, 100) kpc (blue curve in
Fig. 4.9). The central dense core (light blue) is accompanied by
a central dip in temperature, that is lower by factor of about three
in comparison to the temperature maximum at 0.2R200.

• A non cool-core cluster shows a constant central temperature
plateau and no central density enhancement. Its density distribu-
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tion follows a single beta profile with parameters that are typically
given by the outer (red) beta profile of Fig. 4.9.

• These di↵erent density profiles imply a qualitatively di↵erent
cooling time distribution. Recall the definition of the cooling time
of Eq. (3.180), which compares the thermal energy content to the
total (frequency-integrated) X-ray emissivity,
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"th

"̇brems
⇡ 2.8
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◆�1
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The cooling time profile is obtained by replacing ne with the (dou-
ble) beta profiles for the gas density. Because tcool depends only
weakly on temperature, which only varies slowly with radius, we
assume a constant temperature of 2 keV and show the cooling
time profiles in Fig. 4.9.

• While tcool < 1 Gyr in the center of cool core clusters, the cen-
tral cooling time of non-cool-core clusters typically never reaches
values below 3 Gyr. These are typical time scales for mergers
or accretion of smaller groups to occur so that the injected tur-
bulence and shocks mix the cooling central gas with the hotter,
more dilute gas from the outskirts and increase thereby the central
cooling times, implying that non-cool core clusters do not su↵er
from the cooling flow problem. This consideration is formalized
by introducing the cooling radius, which is the radius where the
cooling time tcool = 1 Gyr. For the cool-core cluster in Fig. 4.9
we get rcool = 14.4 kpc, while there is no cooling radius in the
non-cool core cluster.

• What is the relative fraction of cool core and non-cool core clus-
ters and how does their abundance evolve with redshift? So far,
there has not been a volume-limited (all-sky) survey with the nec-
essary resolution to definitively answer these questions. However,
this will soon change with the eROSITA survey already taking
data. Instead, Cavagnolo et al. (2009) have analyzed 239 clusters
of the Chandra data archive1 and find that most ICM entropy pro-
files are well fitted by a model which is a power law at large radii
and approaches a constant value at small radii:

Ke(r) = K0 + K100

 
r

100 kpc

!↵
, (4.142)

where K0 quantifies the typical excess of core entropy above the
best-fitting power law found at larger radii, see Fig. 4.10.

1Note that this is by no means a uniform sample but su↵ers from a selection bias
driven by the scientific interest of proposing researchers and the eventually selected
cluster targets.

entropy profile typically well fit by
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Figure 4.10: Composite plots of entropy profiles for varying cluster temper-
ature ranges. Profiles are color-coded based on average cluster temperature.
The solid line is the pure-cooling model of Voit et al. (2002), the dashed line
is the mean profile for clusters with K0  50 keV cm2, and the dashed-dotted
line is the mean profile for clusters with K0 > 50 keV cm2. Panels from top
left to bottom right show all the entropy profiles, and entropy profiles selected
by average cluster temperature (indicated in the legends). Note that while the
dispersion of core entropy for each temperature range is large, as the kBTX
range increases so does the mean core entropy (Cavagnolo et al. 2009).)

Figure 4.11: Top panel: histogram of the best-fit K0 for all the clusters in the
Chandra data base. Bottom panel: cumulative distribution of K0 values for
the full sample. The distinct bimodality in K0 is present in both distributions,
which would not be seen if it were an artifact of the histogram binning. A
KMM test finds the K0 distribution cannot arise from a simple unimodal Gaus-
sian (Cavagnolo et al. 2009).

Cavagnolo et al. 2009
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best-fitting power law found at larger radii, see Fig. 4.10.

1Note that this is by no means a uniform sample but su↵ers from a selection bias
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Figure 4.10: Composite plots of entropy profiles for varying cluster temper-
ature ranges. Profiles are color-coded based on average cluster temperature.
The solid line is the pure-cooling model of Voit et al. (2002), the dashed line
is the mean profile for clusters with K0  50 keV cm2, and the dashed-dotted
line is the mean profile for clusters with K0 > 50 keV cm2. Panels from top
left to bottom right show all the entropy profiles, and entropy profiles selected
by average cluster temperature (indicated in the legends). Note that while the
dispersion of core entropy for each temperature range is large, as the kBTX
range increases so does the mean core entropy (Cavagnolo et al. 2009).)

Figure 4.11: Top panel: histogram of the best-fit K0 for all the clusters in the
Chandra data base. Bottom panel: cumulative distribution of K0 values for
the full sample. The distinct bimodality in K0 is present in both distributions,
which would not be seen if it were an artifact of the histogram binning. A
KMM test finds the K0 distribution cannot arise from a simple unimodal Gaus-
sian (Cavagnolo et al. 2009).

Cavagnolo et al. 2009
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X-ray surface brightness

• emissivity ~ square of density: 

• X-ray surface brightness profile is obtained upon a line-of-sight integration:
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Figure 4.12: Left panel: distribution of galaxy cluster masses and redshifts
used in the study of McDonald et al. (2017). Gray shaded regions represent
cuts for two subsamples: a large mass range at nearly fixed redshift and a large
redshift range at nearly fixed mass. Center panel: median density profiles for
clusters over a broad redshift range and narrow mass range showing a pseudo
evolution of the scaled density profile. Right panel: median density profiles
for clusters over a broad mass range and narrow redshift range. These me-
dian profiles are indistinguishable, suggesting that the median cluster profile
evolves self-similarly.

• Interestingly, the K0 distribution of the full archival sample is bi-
modal with a distinct gap between K0 ⇡ 30–50 keV cm2 and the
populations peak at K0 ⇠ 15 keV cm2 and K0 ⇠ 150 keV cm2, see
Fig. 4.11. This result is robust to e↵ects of point-spread function
smearing and angular resolution. The central entropy and cooling
time are connected via Eq. (3.182),

tcool = 1 Gyr
 

Ke

K0

!3/2
kBT0

kBT
, (4.143)

where K0 = 21.5 keV cm2 and kBT0 = 2 keV. Hence, for a given
cluster mass (or average temperature), the core entropy K0 is a
measure of cooling time in the core. The cluster population peak-
ing at K0 ⇠ 15 keV cm2 corresponds to cool core clusters and the
high-entropy systems are represented by non-cool core clusters.

• Combining Chandra X-ray observations of clusters at low red-
shift 0 < z < 0.1 with X-ray observations of clusters that are se-
lected from Sunyaev-Zel’dovich observations at higher redshifts
0.25 < z < 1.85 enables to constrain the evolution of the ICM
over the past 10 Gyr. McDonald et al. (2017) find that the bulk

of the ICM has evolved self-similarly over the full redshift range
probed, with the ICM density at r > 0.2R500 scaling like E(z)2,
which is the same redshift scaling as the critical density of the
universe, ⇢crit = 3H(z)2/(8⇡G) / E(z)2. Contrarily, the density in
the centers of clusters (r . 0.01R500) significantly deviates from
self-similarity (ne / E(z)0.2±0.5), consistent with no redshift de-
pendence. This can be shown by isolating clusters with overdense
cores (i.e., cool cores). Their average overdensity profile has not
evolved with redshift, that is, cool cores have not changed in size,

McDonald et al. 2017
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Figure 4.13: Left: expected density profiles (solid lines) for a self-similarly
evolving, non-cool core cluster (dashed black line) combined with a non-
evolving cool core (dotted colored lines). Because of the choice of scaling,
the non-evolving cool core term appears to be evolving. Right: same as left
panel but for the profiles in absolute physical units. Without any cosmological
scaling, the cool core now appears nearly static, while the bulk of the cluster
shows the expected self-similar evolution (McDonald et al. 2017).

density, or total mass over the past ⇠ 9–10 Gyr. This is demon-
strated in Figs. 4.12 and 4.13. In fact, the evolving “cuspiness”
of clusters in the X-ray, reported by several previous studies, can
be understood in the context of a cool core with fixed properties
embedded in a self-similarly evolving cluster.

• It may seem counterintuitive that a collapsed cluster profile
evolves with redshift because it has already decoupled from the
Hubble expansion and formed a gravitational potential that is
much deeper in comparison to the pull of the Hubble expansion
(see Section 2.3). This puzzle is resolved by realizing that the
background mass density is decreasing due to the Hubble ex-
pansion so that we need to increase the radius of the averaging
spheres with time to retain a mean density ⇢̄ = 200⇢cr that char-
acterizes the virial radius; this e↵ect is called “pseudo evolution”.

• The findings of McDonald et al. (2017) suggest that the two pop-
ulations of clusters (cool cores and non-cool cores) are distributed
roughly equally. The fact that the cool cores do not statistically
evolve with redshift may suggest that once a cluster has formed
a cool core, it remains in this state and does not transform to a
non-cool core system and vice versa, a non-cool core cluster only
evolves self-similarly with redshift but does not evolve into cool
core systems.

• This statistical inference is strengthened by correlating the ob-
served core entropy values of clusters, Ke,0, with the AGN cavity
energy Ecav = 4PV (for AGN bubbles filled with a relativistic
fluid or magnetic fields, i.e., for � = 4/3, see Fig. 4.14). This

McDonald et al. 2017



Can AGN outbursts destroy cool cores?CHAPTER 4. CLUSTER ASTROPHYSICS & COSMOLOGY 157

1 10 100

10-2

100

102

104

Eb, 2500(kTX = 0.7 keV)

Eb, 2500(kTX = 1.2 keV)

Eb, 2500(kTX = 2.0 keV)

Eb, 2500(kTX = 3.5 keV)

Eb, 2500(kTX = 5.9 keV)

cool cores non-cool cores

E
ca

v
=

4
P

V
to

t
[1

0
5
8

er
g]

Ke,0 [keV cm2]

1 10 100

0.01

0.10

1.00

10.00

100.00

cool cores non-cool cores

P
ca

v
[1

0
4
4

er
g

s�
1
]

Ke,0 [keV cm2]

Figure 4.14: Correlations of the observed core entropy values of clusters, Ke,0,
with the AGN cavity energy Ecav, as inferred from the volume work done by
the expanding bubbles (left) and with the cavity power Pcav = Ecav/tbuoyancy
(right). Color coding reflects average X-ray temperatures, the lower limit of
each color bin is labeled in the upper right of the left panel. Arrows denote
the gas binding energy contained within a spherical region of radius R2500 '
R200/3. While some AGN outbursts are energetic enough to unbind all or
a substantial fraction of the central gas, the energy is only slowly increased
and/or coupled to the surrounding cooling ICM so that its core entropy is only
mildly increased as a result of AGN feedback (Pfrommer et al. 2012).)

figure shows that very powerful AGN outbursts with cavity ener-
gies up to 1062 erg and powers of 1046 erg s�1 are in some cases
energetically capable of unbinding the gas in the entire core re-
gions (within R2500 ' R200/3). However, the mechanical energy
of these expanding cavities only heat the cluster core enough to
prevent a cooling catastrophe. On the buoyancy timescale, no
AGN outburst transforms a cool core to a non-cool core cluster.
This is apparent from the low core entropy values (with typically
K0 ⇠ 15 keV cm2) of typical cool core clusters.

4.3.3 Intracluster Medium Turbulence

• The X-ray band is uniquely suited to observe and characterize
ICM turbulence because of its excellent arcsecond angular reso-
lution and the ability to directly probe the dynamics of the hot
thermal plasma. As introduced in Section 3.1.5, turbulence cas-
cades kinetic energy from large to small scales and dissipates it
into heat. The source of the ICM turbulence are cluster merg-
ers that result from hierarchical growth as well as AGN feedback
in the centers of cool core clusters. Turbulent advection mixes
metals and thermal energy and as such this process is critical for
evolution of the ICM in galaxy clusters.

• Interestingly, ICM turbulence is stratified which implies that
large-scale radial gas motions are energetically disfavored be-
cause of the stably stratified entropy profile (see Section 3.1.3)

Pfrommer et al. 2012
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so that isotropic three-dimensional on small scales transitions to
preferentially non-radial two-dimensional turbulence on scales
larger than the pressure scale height (provided turbulence is
driven on such large scales). Moreover, ICM turbulence in the
centers of cool core clusters is multi-phase because of the short
cooling times and feedback heating (see Sections 3.2.1 and 3.2.2)
so that the mutual coupling of the hot and cold phase turbulence
needs to be understood, i.e., whether the cold filaments are pas-
sive tracers of the hot-phase turbulence or whether they actively
drive the gas motions in the hot phase.

• Whether a flow is turbulent or not is determined by the Reynolds
number,

Re =
Lv

⌫
=

L

�mfp

v

vth
. (4.144)

where L and v are characteristic length and velocity scales of the
(macroscopic) system and the kinematic viscosity ⌫ ⇠ �mfpvth
is to order of magnitude the product of the particle mean free
path and thermal velocity. Hence, Re is the product of the ratios
of macroscopic-to-microscopic length and velocity scales. The
transition to turbulence in a pipe flow takes place at a critical
Reynolds number around Re > Recrit ⇡ 2300, at which approx-
imate value the laminar-to-turbulence transition is also expected
in the ICM.

• The particle mean free path is given by

�mfp =
1

n� ln⇤
⇠ 1
⇡n ln⇤
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where we have assumed Z = 1, ln⇤ = 39. Hence, even for
trans-sonic flows v ⇠ vth during a cluster merger, we obtain for
an turbulent energy injection scale of L ⇠ 500 kpc a Reynolds
number of Re = 100, which is characteristic for a laminar flow.

• However, the existence of turbulent intracluster magnetic fields
complicates this picture. First, it causes incompressible turbu-
lence to become anisotropic towards scales much smaller than
the energy injection scale (see Section 3.3.2.5). Second, while the
mean free path along the field lines does not change, the charged
constituents of the intracluster plasma are confined to orbit around
individual field lines with typical proton Larmor radii of

rL =
mpv?c

ZeB
= 105 km

 
v?

103 km s�1

!  
B

1 µG

!�1

(4.147)

center NCC cluster ( ∼ 1 kpc) → n ∼ 10−2 cm−3, kBT ∼ 6 keV → 0.5 kpc

outskirts ( ∼ 1 Mpc) → n ∼ 10−4 cm−3 → 50.0 kpc

center CC cluster ( ∼ 1 kpc) → n ∼ 10−1 cm−3, kBT ∼ 3 keV → 0.01 kpc
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can be large compared to X-ray resolution
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of macroscopic-to-microscopic length and velocity scales. The
transition to turbulence in a pipe flow takes place at a critical
Reynolds number around Re > Recrit ⇡ 2300, at which approx-
imate value the laminar-to-turbulence transition is also expected
in the ICM.

• The particle mean free path is given by
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where we have assumed Z = 1, ln⇤ = 39. Hence, even for
trans-sonic flows v ⇠ vth during a cluster merger, we obtain for
an turbulent energy injection scale of L ⇠ 500 kpc a Reynolds
number of Re = 100, which is characteristic for a laminar flow.

• However, the existence of turbulent intracluster magnetic fields
complicates this picture. First, it causes incompressible turbu-
lence to become anisotropic towards scales much smaller than
the energy injection scale (see Section 3.3.2.5). Second, while the
mean free path along the field lines does not change, the charged
constituents of the intracluster plasma are confined to orbit around
individual field lines with typical proton Larmor radii of
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center NCC cluster ( ∼ 1 kpc) → n ∼ 10−2 cm−3, kBT ∼ 6 keV → 0.5 kpc

outskirts ( ∼ 1 Mpc) → n ∼ 10−4 cm−3 → 50.0 kpc

center CC cluster ( ∼ 1 kpc) → n ∼ 10−1 cm−3, kBT ∼ 3 keV → 0.01 kpc

can be large compared to X-ray resolution

-> Re ~ 20 to 100 
 laminar flow?
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so that isotropic three-dimensional on small scales transitions to
preferentially non-radial two-dimensional turbulence on scales
larger than the pressure scale height (provided turbulence is
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cooling times and feedback heating (see Sections 3.2.1 and 3.2.2)
so that the mutual coupling of the hot and cold phase turbulence
needs to be understood, i.e., whether the cold filaments are pas-
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drive the gas motions in the hot phase.

• Whether a flow is turbulent or not is determined by the Reynolds
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where L and v are characteristic length and velocity scales of the
(macroscopic) system and the kinematic viscosity ⌫ ⇠ �mfpvth
is to order of magnitude the product of the particle mean free
path and thermal velocity. Hence, Re is the product of the ratios
of macroscopic-to-microscopic length and velocity scales. The
transition to turbulence in a pipe flow takes place at a critical
Reynolds number around Re > Recrit ⇡ 2300, at which approx-
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in the ICM.
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where we have assumed Z = 1, ln⇤ = 39. Hence, even for
trans-sonic flows v ⇠ vth during a cluster merger, we obtain for
an turbulent energy injection scale of L ⇠ 500 kpc a Reynolds
number of Re = 100, which is characteristic for a laminar flow.

• However, the existence of turbulent intracluster magnetic fields
complicates this picture. First, it causes incompressible turbu-
lence to become anisotropic towards scales much smaller than
the energy injection scale (see Section 3.3.2.5). Second, while the
mean free path along the field lines does not change, the charged
constituents of the intracluster plasma are confined to orbit around
individual field lines with typical proton Larmor radii of
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∼ 3 × 10−12 kpc
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Hence, the perpendicular Reynolds number is

Re? =
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vth
= 1014 v

vth
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which is very turbulent.

• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)

Ev(k) = CK✏̇
2/3

k
�5/3, (4.149)

where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3

l
/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:

EP(k) = CP✏̇
4/3

k
�7/3, (4.150)

where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).

�⇢k

⇢0
⇡ ⌘turb

vk
cs
, (4.151)

where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile

Reynolds number perpendicular to magnetic field:

->   very turbulent
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• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)
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where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3
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/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:

EP(k) = CP✏̇
4/3
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where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile
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• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)
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where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3

l
/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:

EP(k) = CP✏̇
4/3
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where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile
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which is very turbulent.

• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)
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where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3

l
/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:

EP(k) = CP✏̇
4/3

k
�7/3, (4.150)

where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile
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which is very turbulent.

• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)

Ev(k) = CK✏̇
2/3

k
�5/3, (4.149)

where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3

l
/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:

EP(k) = CP✏̇
4/3

k
�7/3, (4.150)

where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile

but cannot directly measure this
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which is very turbulent.

• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)
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where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3
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/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:

EP(k) = CP✏̇
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where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile
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which is very turbulent.

• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)
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where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3

l
/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:

EP(k) = CP✏̇
4/3
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where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile

but cannot directly measure this

density fluctuations related to turbulent velocities 
-> these effect X-ray surface brightness 

3
2

v2
k = kEv(k)with ->



Turbulence spectrum in ICM

CHAPTER 4. CLUSTER ASTROPHYSICS & COSMOLOGY 159

Hence, the perpendicular Reynolds number is

Re? =
L

rL

v

vth
= 1014 v

vth
, (4.148)

which is very turbulent.

• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)
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where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3
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the turbulence which is equal to the energy flow rate at the scale
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a consequence of the turbulent velocity fluctuations:
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where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile
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where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2

k
/2 =

kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile

but cannot directly measure this

density fluctuations related to turbulent velocities 
-> these effect X-ray surface brightness 

3
2

v2
k = kEv(k)with vk ∝ k−1/3->



Measuring turbulence in the ICM from density fluctuations

CHAPTER 4. CLUSTER ASTROPHYSICS & COSMOLOGY 159

Hence, the perpendicular Reynolds number is

Re? =
L

rL

v

vth
= 1014 v

vth
, (4.148)

which is very turbulent.

• Isotropic turbulence can either be characterized with second-
order velocity statistics (Kolmogorov 1941) or with their Fourier-
transformed counterpart, the power spectrum (Oboukhov 1941)
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where Ev(k) is the energy spectrum of the three-dimensional ve-
locity field, k is the Fourier wave number, CK is the Kolmogorov
constant, and ✏̇ = v3/L = v3

l
/l is the energy injection rate into

the turbulence which is equal to the energy flow rate at the scale
l = 2⇡/k. Oboukhov (1949) and Batchelor (1951) showed that
turbulent gas pressure fluctuations also obey a scaling law that is
a consequence of the turbulent velocity fluctuations:
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where CP is the constant of proportionality. Assuming adiabatic
pressure fluctuations enables mapping pressure to density fluctu-
ations that are observable through the X-ray surface brightness.

• In the ICM, we cannot directly measure velocity fluctuations and
hence, we have to use indirect methods to observationally infer
the properties of ICM turbulence. A first method uses pressure
or density fluctuations in X-ray maps to infer velocity fluctua-
tions. A theoretical argument, supported by numerical simula-
tions, shows that in relaxed galaxy clusters, where the gas mo-
tions are subsonic, the root-mean-square amplitudes of the den-
sity and one-component velocity fluctuations are proportional to
each other at each scale l within the inertial range,

(a) Perseus X-ray surface bright-
ness from Chandra observations.
(b) The same divided by the
mean surface-brightness profile,
highlighting the relative density
fluctuations. Black circles show
excised point sources (Zhuravleva
et al. 2014).
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where ⇢0 is the mean gas density, cs the sound speed and ⌘turb ⇠ 1
is the proportionality coe�cient set by gravity-wave physics at
large, buoyancy-dominated scales. Here we define vk by 3v2
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kEv(k) and �⇢k/⇢0 is defined analogously in terms of the density
fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile
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hence, we have to use indirect methods to observationally infer
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tions. A theoretical argument, supported by numerical simula-
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each other at each scale l within the inertial range,
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fluctuation spectrum, but without the factor of 3/2.

• Unsharp-masked X-ray images of the Perseus cluster by the
Chandra telescope show ripple-like structures in the core, remi-
niscent either of sound waves or stratified turbulence. Subtracting
a spherically symmetric beta model of the mean intensity profile
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from the X-ray surface brightness map yields a map of surface-
brightness fluctuations. The power spectra calculated in a set of
concentric annuli can be mapped to the power spectrum of den-
sity fluctuations and by means of Eq. (4.151) converted to ve-
locity power spectra, which are consistent with the Kolmogorov-
Oboukhov prediction of Eq. (4.149) (Zhuravleva et al. 2014).
Note that density perturbations could also be caused by contact

Amplitude of vk versus wavenum-
ber k for two di↵erent annuli in
Perseus (blue) and M87/Virgo (red).
The values are obtained from the
power spectra of density fluctua-
tions, derived from the X-ray im-
ages (Zhuravleva et al. 2014).

discontinuities of multiphase gas that is present in the cool core
regions, especially in Perseus. Moreover, observations are lim-
ited by photon shot noise on small scales which precludes probing
scales much smaller than the particle mean free path, also known
as the Kolmogorov scale, where kinetic energy is dissipated.

Field of view of the Hitomi X-
ray observations of the Perseus
cluster overlaid with the Doppler-
broadened emission lines of the X-
ray spectrum.

• A second method employs observations by the Hitomi X-ray
micro-calorimeter with a high spectral resolution of better than
several eV. X-ray spectral observations of the bright Perseus cool
core region detected Doppler-broadened X-ray lines in a given
angular region that corresponds to a physical scale. Separating
thermal from turbulent Doppler-line broadening enables to in-
fer a line-of-sight velocity fluctuations on that angular scale of
164 ± 10 km s�1 (Hitomi Collaboration 2016). This implies that
the turbulent pressure support in the gas is 4% or less of the ther-
modynamic pressure, with large-scale shear at most doubling that
estimate. Note that current-day X-ray micro-calorimeters have a
comparably poor angular resolution, which precludes probing the
velocity power spectrum at the Kolmogorov scale.

• A third method has the potential to probe the physics on scales
even much smaller than the Kolmogorov scale. The idea is to
complement X-ray with spectral data of H↵ and molecular fil-
aments, which probe warm (⇠ 104 K) and cold gas (⇠ 10 K),
respectively. These data do not su↵er from small X-ray pho-
ton statistics on small angular scales and may reveal the plasma
physics of thermalization. Spectral shifts of H↵ and molecular

The core of the Perseus galaxy clus-
ter in visible light with H↵ filaments
(red) that surround the cD galaxy
NGC1275, which hosts the super-
massive black hole.

emission lines enable constructing velocity structure functions
(VSFs), which directly probe the character of turbulence in the
warm/cold phase across more than two orders of magnitude in
scale. The VSF at scale l averages over all possible line-of-sight
velocity di↵erences separated by l,

VSF(l) = h|vz(x + l) � vz(x)|i = h|�vz|i / l
1/3 (4.152)

where in the last step, we adopted the Kolmogorov scaling of
velocity fluctuations derived in Eq. (3.87).

• VSF measurements in Perseus and other clusters demonstrate a
turbulent velocity field of H↵ filaments, which however show
steeper slopes VSF(l) / l

1/2...2/3 (Li et al. 2020, see Fig. 4.15)

Zhuravleva et al. 2014 
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discontinuities of multiphase gas that is present in the cool core
regions, especially in Perseus. Moreover, observations are lim-
ited by photon shot noise on small scales which precludes probing
scales much smaller than the particle mean free path, also known
as the Kolmogorov scale, where kinetic energy is dissipated.

Field of view of the Hitomi X-
ray observations of the Perseus
cluster overlaid with the Doppler-
broadened emission lines of the X-
ray spectrum.

• A second method employs observations by the Hitomi X-ray
micro-calorimeter with a high spectral resolution of better than
several eV. X-ray spectral observations of the bright Perseus cool
core region detected Doppler-broadened X-ray lines in a given
angular region that corresponds to a physical scale. Separating
thermal from turbulent Doppler-line broadening enables to in-
fer a line-of-sight velocity fluctuations on that angular scale of
164 ± 10 km s�1 (Hitomi Collaboration 2016). This implies that
the turbulent pressure support in the gas is 4% or less of the ther-
modynamic pressure, with large-scale shear at most doubling that
estimate. Note that current-day X-ray micro-calorimeters have a
comparably poor angular resolution, which precludes probing the
velocity power spectrum at the Kolmogorov scale.

• A third method has the potential to probe the physics on scales
even much smaller than the Kolmogorov scale. The idea is to
complement X-ray with spectral data of H↵ and molecular fil-
aments, which probe warm (⇠ 104 K) and cold gas (⇠ 10 K),
respectively. These data do not su↵er from small X-ray pho-
ton statistics on small angular scales and may reveal the plasma
physics of thermalization. Spectral shifts of H↵ and molecular

The core of the Perseus galaxy clus-
ter in visible light with H↵ filaments
(red) that surround the cD galaxy
NGC1275, which hosts the super-
massive black hole.

emission lines enable constructing velocity structure functions
(VSFs), which directly probe the character of turbulence in the
warm/cold phase across more than two orders of magnitude in
scale. The VSF at scale l averages over all possible line-of-sight
velocity di↵erences separated by l,

VSF(l) = h|vz(x + l) � vz(x)|i = h|�vz|i / l
1/3 (4.152)

where in the last step, we adopted the Kolmogorov scaling of
velocity fluctuations derived in Eq. (3.87).

• VSF measurements in Perseus and other clusters demonstrate a
turbulent velocity field of H↵ filaments, which however show
steeper slopes VSF(l) / l

1/2...2/3 (Li et al. 2020, see Fig. 4.15)

Hitomi Collaboration 2016 

Hitomi measured turbulent Doppler-
broadening in the Perseus cluster
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concentric annuli can be mapped to the power spectrum of den-
sity fluctuations and by means of Eq. (4.151) converted to ve-
locity power spectra, which are consistent with the Kolmogorov-
Oboukhov prediction of Eq. (4.149) (Zhuravleva et al. 2014).
Note that density perturbations could also be caused by contact
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discontinuities of multiphase gas that is present in the cool core
regions, especially in Perseus. Moreover, observations are lim-
ited by photon shot noise on small scales which precludes probing
scales much smaller than the particle mean free path, also known
as the Kolmogorov scale, where kinetic energy is dissipated.
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ray observations of the Perseus
cluster overlaid with the Doppler-
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ray spectrum.

• A second method employs observations by the Hitomi X-ray
micro-calorimeter with a high spectral resolution of better than
several eV. X-ray spectral observations of the bright Perseus cool
core region detected Doppler-broadened X-ray lines in a given
angular region that corresponds to a physical scale. Separating
thermal from turbulent Doppler-line broadening enables to in-
fer a line-of-sight velocity fluctuations on that angular scale of
164 ± 10 km s�1 (Hitomi Collaboration 2016). This implies that
the turbulent pressure support in the gas is 4% or less of the ther-
modynamic pressure, with large-scale shear at most doubling that
estimate. Note that current-day X-ray micro-calorimeters have a
comparably poor angular resolution, which precludes probing the
velocity power spectrum at the Kolmogorov scale.

• A third method has the potential to probe the physics on scales
even much smaller than the Kolmogorov scale. The idea is to
complement X-ray with spectral data of H↵ and molecular fil-
aments, which probe warm (⇠ 104 K) and cold gas (⇠ 10 K),
respectively. These data do not su↵er from small X-ray pho-
ton statistics on small angular scales and may reveal the plasma
physics of thermalization. Spectral shifts of H↵ and molecular

The core of the Perseus galaxy clus-
ter in visible light with H↵ filaments
(red) that surround the cD galaxy
NGC1275, which hosts the super-
massive black hole.

emission lines enable constructing velocity structure functions
(VSFs), which directly probe the character of turbulence in the
warm/cold phase across more than two orders of magnitude in
scale. The VSF at scale l averages over all possible line-of-sight
velocity di↵erences separated by l,

VSF(l) = h|vz(x + l) � vz(x)|i = h|�vz|i / l
1/3 (4.152)

where in the last step, we adopted the Kolmogorov scaling of
velocity fluctuations derived in Eq. (3.87).

• VSF measurements in Perseus and other clusters demonstrate a
turbulent velocity field of H↵ filaments, which however show
steeper slopes VSF(l) / l

1/2...2/3 (Li et al. 2020, see Fig. 4.15)

-> turbulent pressure only 4% of 
     thermal pressure 
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ginskii magneto-hydrodynamics (MHD). Open questions remain
about the exact relation between the hot and cold phase turbu-
lence and the role of the magnetic field in coupling these two
phases. Most importantly, ongoing research will shed light on the
question why ICM turbulence is non-Kolmogorov and hopefully
unveils the plasma physics beyond the Kolmogorov scale.

• Finally, turbulent motions in the gas must eventually dissipate
into heat. In order to determine whether this heating is su�cient
to balance radiative losses and prevent net cooling, one must esti-
mate the turbulent heating rate – and for that, we need to measure
the root-mean-square turbulent velocity amplitude vl as a function
of length scale l. The turbulent heating rate in the gas with mass
density ⇢ is Qturb ⇠ ⇢v3l /l, to within some constant of order unity
that depends on the exact properties of the turbulent cascade. The
figure on the right shows the comparison of Qturb to the radiative
cooling rate, Qcool = n

2
H⇤0(T ), where ⇤0(T ) is the normalized

cooling rate (see Eq. 3.185). This shows that Qturb ⇠ Qcool over
Turbulent heating versus gas cool-
ing rates in the Perseus and Virgo
cores. Each shaded rectangle shows
the statistical uncertainties in the
heating and cooling rates estimated
in a given annulus (top right – the
innermost radius; bottom left – the
outermost radius).

nearly three orders of magnitude in Perseus and Virgo. Note that
in Virgo and Perseus similar levels of Qturb and Qcool are attained
at physically di↵erent distances from the cluster centers because
of the di↵erent density profiles. Note also that such a correlation
does not necessarily imply a causal relation: the dependence of
Qturb and Qcool on density may (partially) explain this correlation.
Another problematic aspect of this solution to the cooling flow
problem is that turbulent heating does not provide a thermally
stable heating as we have discussed in Section 3.2.6.2.

4.3.4 Merger Shocks and Electron Equilibration

• Combined optical, X-ray and gravitational lensing analyses of the
bullet cluster shows a spectacular example of a cluster with the
merger axis nearly aligned with the plane of the sky (see figure
to the right). As the subcluster (“the bullet”) has passed from the
left to the right and its dense cool core has driven a curved shock
through the main cluster. The bullet can be identified with the
cool core region of the merging subcluster while there is a tan-
gential discontinuity separating the bullet from the shocked ICM
to the right of it. As we will see in Section 4.6.4, this enables us
to probe the collisionless nature of dark matter.

The bullet cluster 1E-0657 (red: X-
ray, blue: weak lensing, and galax-
ies in the optical) showing evidence
for collisionless dark matter.

• The ions are dissipatively heated at the shock so that their tem-
perature Ti follows the Rankine-Hugoniot jump condition. By
contrast, in the classical picture the electrons are only adiabati-
cally compressed at the shock so that we have the following ex-
pressions for the change in ion and electron temperatures, respec-

Zhuravleva et al. 2014 
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Figure 4.15: Left: velocity maps of the H↵ filaments overlaid on the X-ray
residual images (gray) in the center of Perseus. The black cross indicates the
position of the supermassive black hole, and the black circles denote the sepa-
ration of the inner and outer regions in our analysis. Black contours show the
low-frequency radio synchrotron emission. Right: corresponding VSFs of the
filaments (Li et al. 2020). The motion of the filaments is turbulent but it shows
a significantly steeper scale dependence than expected from Kolmogorov tur-
bulence. The features in the VSFs correspond to AGN activities.

which are inconsistent with the expectation from Kolmogorov tur-
bulence of Eq. (4.152). The VSFs of the H↵ filaments are con-
sistent with those of the molecular gas observed by ALMA. The
velocity v of the warm/cold filaments subject to constant gravi-
tational acceleration, g, scales with travel length l as v / (gl)1/2,
which can explain the 1/2 slope of the observed VSFs. Hence, the
physical origin of the steeper slope of the cold phase VSF may be
(partially) attributed to ballistically moving dense filaments that
move under the action of gravity in the central cluster potential.
Those precipitating warm and cold dense filaments could be re-
sponsible for driving turbulent motions in the hot gaseous phase
observable at X-ray energies. This may also explain the radial
bias of cold and hot phase velocity distributions.

• The driving scale of the turbulence is consistent with the sizes of
X-ray bubbles and (if present) jets so that this is evidence for the
picture of black-hole-driven turbulence in the centers of galaxy
clusters either directly via stirring of the hot phase or indirectly by
pulling up cold gas in the wake of the buoyantly rising bubbles so
that it adiabatically cools, precipitates and falls back to the center
while stirring the hot gas phase.

• To conclude, turbulent velocity spectra in Perseus inferred by
VSFs and Chandra surface brightness fluctuation analyses agree
with each other. The integrated kinetic energy from Hitomi X-
ray Doppler line broadening measurements agrees with turbulent
amplitudes from VSF analyses. Most importantly, turbulence
extends to scales smaller that the Kolmogorov scale, which is
providing evidence for collisionless plasma e↵ects such as Bra-

Li et al. 2020
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X-ray: NASA/CXC/CfA/M.Markevitch, Optical/lensing: NASA/STScI, 
Magellan/U.Arizona/D.Clowe, Lensing: ESO

The Bullet Clustertemperature boost by shock 
(if no energy exchange):
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tively:

�(kBTi) ' mi(�v)2, (4.153)
�(kBTe) ' me(�v)2, (4.154)

which is much smaller for the electrons by a factor mi/me =

1836 ⇥ A, where A is the mass number of the ion. In the classical
picture, thermal equilibrium between electrons and ions can only
be established via an exchange of energy through Coulomb colli-
sions further downstream the shock. Because we cannot measure
Ti in X-rays but only Te, we need to understand these processes.

• The electron-ion equilibration process can be described by the
equation

@(Te � Ti)
@t

= �⌫ei(Te � Ti), (4.155)

where the electron-ion equilibration rate via Coulomb collisions
(see Section 3.2.5.2) is given by

⌫ei ⇡ 4
me

mp

vthe

�mfp
(4.156)

⇡ 3.3 ⇥ 10�16 s�1
 

kBTe

10 keV

!�3/2 ✓
ne

10�3 cm�3

◆
, (4.157)

the electron thermal speed is here defined as vthe = (2kBTe/me)1/2,
�mfp is the electron mean free path introduced in Eq. (4.146), and
the factor me/mp accounts for the energy transfer per collision so
that many collisions are needed to reach thermal equilibrium.

• Equation (4.155) is solved by

Te � Ti = e�⌫eit, (4.158)

so that we expect the electron temperature to approach that of the
ions on time and length scales behind a shock of

⌧ei = ⌫
�1
ei ⇡ 95 Myr

 
kBTe

10 keV

!3/2 ✓
ne

10�3 cm�3

◆�1
, (4.159)

Lei =
vpost

⌧ei
⇡ 155 kpc

 
vpost

1600 km s�1

!
, (4.160)

where we adopted characteristic values for the post-shock region
of the bullet cluster (and suppressed the dependence on kBTe and
ne in the last line). This predicts an observable e↵ect for the most
extreme mergers.

• However, we are encountering collisionless shocks in galaxy clus-
ters so that we additionally have to consider wave-particle inter-
actions. It turns out, that drifting ions in the shock transition
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X-ray: NASA/CXC/CfA/M.Markevitch, Optical/lensing: NASA/STScI, 
Magellan/U.Arizona/D.Clowe, Lensing: ESO

The Bullet Clustertemperature boost by shock 
(if no energy exchange):

Δv = 1000 km/s → ΔTp ∼ 4 × 107 K
ΔTe ∼ 2 × 104 K

CHAPTER 4. CLUSTER ASTROPHYSICS & COSMOLOGY 163

tively:

�(kBTi) ' mi(�v)2, (4.153)
�(kBTe) ' me(�v)2, (4.154)

which is much smaller for the electrons by a factor mi/me =

1836 ⇥ A, where A is the mass number of the ion. In the classical
picture, thermal equilibrium between electrons and ions can only
be established via an exchange of energy through Coulomb colli-
sions further downstream the shock. Because we cannot measure
Ti in X-rays but only Te, we need to understand these processes.

• The electron-ion equilibration process can be described by the
equation

@(Te � Ti)
@t

= �⌫ei(Te � Ti), (4.155)

where the electron-ion equilibration rate via Coulomb collisions
(see Section 3.2.5.2) is given by

⌫ei ⇡ 4
me

mp

vthe

�mfp
(4.156)

⇡ 3.3 ⇥ 10�16 s�1
 

kBTe

10 keV

!�3/2 ✓
ne

10�3 cm�3

◆
, (4.157)

the electron thermal speed is here defined as vthe = (2kBTe/me)1/2,
�mfp is the electron mean free path introduced in Eq. (4.146), and
the factor me/mp accounts for the energy transfer per collision so
that many collisions are needed to reach thermal equilibrium.

• Equation (4.155) is solved by

Te � Ti = e�⌫eit, (4.158)

so that we expect the electron temperature to approach that of the
ions on time and length scales behind a shock of

⌧ei = ⌫
�1
ei ⇡ 95 Myr

 
kBTe

10 keV

!3/2 ✓
ne

10�3 cm�3

◆�1
, (4.159)

Lei =
vpost

⌧ei
⇡ 155 kpc

 
vpost

1600 km s�1

!
, (4.160)
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of the bullet cluster (and suppressed the dependence on kBTe and
ne in the last line). This predicts an observable e↵ect for the most
extreme mergers.

• However, we are encountering collisionless shocks in galaxy clus-
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The Sunyaev-Zel’dovich (SZ) Effect 

• CMB photons can inverse Compton scatter on hot electrons in galaxy clusters 

➡ this results in deviations from the black body spectrum 

➡ can be used to probe the intracluster medium

Planck Collaboration: Planck early results. VIII.
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Fig. 1. Planck y-map of Coma on a ∼3◦ × 3◦ patch with the ROSAT-
PSPC iso-luminosity contours overlaid.

main objective of Planck is to measure the spatial anisotropies
of the temperature of the CMB with an accuracy set by funda-
mental astrophysical limits. Its level of performance will enable
Planck to extract essentially all the information in the CMB tem-
perature anisotropies. Planck will also measure to high accuracy
the polarisation of the CMB anisotropies, which not only en-
codes a wealth of cosmological information but also provides a
unique probe of the thermal history of the Universe during the
time when the first stars and galaxies formed. In addition, the
Planck sky surveys will produce a wealth of information on the
dust and gas in our own galaxy and on the properties of extra-
galactic sources.

Planck was specifically designed from the beginning to mea-
sure the SZ effect (Aghanim et al. 1997) and provide us with an
all-sky SZ cluster catalogue. The first galaxy cluster searched
for in the HFI data, Abell 2163 (Figs. 5 and 6), was indeed
found from 100 GHz to 353 GHz shortly after the First Light
Survey (FLS) was performed and observations in routine mode
by Planck started. Three other known clusters falling in the FLS
region were seen across the positive and negative parts of the
SZ spectrum. The scanning strategy soon allowed us to map ex-
tended clusters such as Coma on wide patches of the sky (Fig. 1).
SZ detection techniques were then applied to the data and the
first blind detections were performed.

The Planck all-sky SZ cluster catalogue, with clusters out to
redshifts z ∼ 1, that will be delivered to the community at the
end of the mission will be the first all-sky cluster survey since
the ROSAT All-Sky Survey (RASS), which was at much lower
depth (the median redshift of the NORAS/REFLEX cluster cata-
logue is z ≃ 0.1). Thanks to its all-sky nature, Planck will detect
the rarest clusters, i.e., the most massive clusters in the expo-
nential tail of the mass function which are the best clusters for
cosmological studies. The Planck early SZ (ESZ) sample is de-
livered alongside the Early Release Compact Source Catalogue
(ERCSC) (Planck Collaboration 2011c), the nine-band source
catalogue, and the Early Cold Core (ECC) catalogue (Planck
Collaboration 2011s) at http://www.rssd.esa.int/Planck
(Planck Collaboration 2011v). The ESZ is a high-reliability

sample of 189 SZ clusters or candidates detected over the whole
sky from the first ten months of the Planck survey of the sky.

The present article details the process by which Planck ESZ
sample was constructed and validated. The Planck data and the
specific SZ extraction methods used to detect the SZ candidates
are presented in Sects. 2 and 3. Planck’s measurements provide
an estimate of the integrated Compton parameter, Y, of de-
tected SZ cluster “candidates”. A subsequent validation process
is needed to identify which among the candidates are previously
known clusters, and an additional follow-up programme is re-
quired to scientifically exploit Planck cluster data. This includes
cluster confirmation (catalogue validation) and the measurement
of relevant physical parameters. These different steps of the ESZ
construction and validation are presented in Sect. 4 and the sub-
sequent results are given in Sect. 5. Finally, Sects. 6–8 present
the general properties of the ESZ cluster sample. Planck early
results on clusters of galaxies are presented here and in a set of
accompanying articles (Planck Collaboration 2011e,f,g,h).

Throughout the article, and in all the above cited Planck SZ
early result papers, the adopted cosmological model is a ΛCDM
cosmology with Hubble constant, H0 = 70 km s−1 Mpc−1, mat-
ter density parameter Ωm = 0.3 and dark energy density param-
eter ΩΛ = 0.7. The quantity E(z) is the ratio of the Hubble
constant at redshift z to its present value, H0, i.e., E2(z) =
Ωm(1 + z)3 + ΩΛ.

2. Planck data description

The ESZ sample was constructed out of the Planck channel maps
of the HFI instrument, as described in detail in Planck HFI Core
Team (2011b). These maps correspond to the observations of
the temperature in the first ten months of the survey by Planck,
which give complete sky coverage. Raw data were first pro-
cessed to produce cleaned time-lines (time-ordered information,
TOI) and associated flags correcting for different systematic ef-
fects. This includes a low-pass filter, glitch treatment, conver-
sion to units of absorbed power, and a decorrelation of thermal
stage fluctuations. For cluster detection, and more generally for
source detection, one data flag of special importance is associ-
ated with solar system objects (SSO). These objects were identi-
fied in TOI data using the publicly-available Horizon ephemeris,
and the SSO flag was created to ensure that they are not pro-
jected onto the sky, in order to avoid possible false detections,
ringing, etc.

Focal-plane reconstruction and beam-shape estimates were
obtained using observations of Mars. Beams are described by an
elliptical Gaussian parameterisation leading to FWHM θS given
in Planck HFI Core Team (2011b). The attitude of the satellite
as a function of time is provided by the two star trackers in-
stalled on the Planck spacecraft. The pointing for each bolome-
ter was computed by combining the attitude with the location
of the bolometer in the focal plane reconstructed from Mars
observations.

From the cleaned TOI and the pointing, channel maps have
been made by co-adding bolometers at a given frequency. The
path from TOI to maps in the HFI data processing is schemati-
cally divided into three steps: ring-making, destriping, and map-
making. The first step averages circles within a pointing period
to make rings with higher signal-to-noise (S/N) ratio, taking
advantage of the redundancy of observations provided by the
Planck scanning strategy. The low amplitude 1/ f component is
accounted for in the second step using a destriping technique.
Finally, cleaned maps are produced using a simple co-addition
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4.4 Sunyaev-Zel’dovich (SZ) E↵ect

Here, we present the underlying physics of the Sunyaev-Zel’dovich
(SZ) e↵ect. First, we introduce the various contributions of the ther-
mal, kinematic, and relativistic SZ e↵ects. Then we explain how the SZ
e↵ect can be used as a cosmological probe by means of cluster number
counts, scaling relations and the SZ power spectrum. Finally we show
how the SZ e↵ect elucidates cluster astrophysics by providing a new
window to AGN bubbles and cluster shocks.

4.4.1 Thermal and Kinematic SZ E↵ect

• The cosmic microwave background (CMB) has an almost perfect
Planckian spectral distribution that emits an intensity as a func-
tion of photon energy ~!,

I(x) = i0i(x) = i0
x

3

ex � 1
, where (4.166)

x =
~!

kBTcmb
, (4.167)

i0 =
2(kBTcmb)3

(hc)2 = 22.8 Jy arcmin�2. (4.168)

Here, Tcmb = 2.725 K denotes the average CMB temperature at
the present epoch and kB, h, and c denote Boltzmann’s constant,
Planck’s constant, and the speed of light, respectively. The CMB
black body spectrum peaks in the microwave range at a frequency
of 160.4 GHz. In the following, we adopt the abbreviation T ⌘
Tcmb.

• Thermal SZ e↵ect. As discussed in Section 1.2.4, the thermal SZ
e↵ect arises because CMB photons can inverse Compton scatter
o↵ of electrons of the hot, dilute intra-cluster plasma. Thus, at the
angular position of galaxy clusters, the CMB spectrum is mod-
ulated as photons are redistributed from the low-frequency part
of the spectrum below a characteristic crossover frequency ⌫c to
higher frequencies. Hence, ⌫c demarks the transition from a net
decrease to a net increase of photon number density. For a non-
relativistic electron population in a cluster at rest with respect to
the CMB rest frame, ⌫c ' 217 GHz, while this characteristic fre-
quency shifts towards higher values for more energetic electrons,
as we will see below.

• In order to analyse these distortions quantitatively, we need to
consider a transport equation governing the e↵ect of Compton
scattering on the photon spectrum. We first consider inverse
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Compton scattering of non-relativistic electrons in the limit

~!

c
⌧ p ⌧ mec, (4.169)

where p is the electron momentum. The change in the photon
phase space occupation number n(!, t) can be derived with the
Kompaneets equation, which is a quantum mechanical extension
to the Fokker-Planck equation (Peacock 1999):

@n

@t
=
�Tne~

mec

1
!2
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"
!4

 
kBTe

~

@n

@!
+ n + n

2
!#
, (4.170)

Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via

dy =
kBTe

mec
2 ne�Tcdt and xe =

~!

kBTe
, (4.171)

so that we arrive at the following compact form of Kompaneets
equation:
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@n
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+ n + n

2
!#
. (4.172)

Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:

@n

@xe
+ n + n

2 = 0. (4.173)

This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.

initial black body spectrum of the CMB:

changes in spectrum described by the Kompaneets equation:
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via
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so that we arrive at the following compact form of Kompaneets
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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2 = 0. (4.173)

This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.
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• Important SZ quantities are the (thermal and kinematic) Comp-
tonizations integrated over the cluster face,
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where Dang denotes the angular diameter distance and Pe =

nekBTe is the thermal electron pressure.

• The integrated Comptonization is proportional to the thermal en-
ergy content of a cluster, Y / Eth, which is related to the energy of
the gravitational potential in hydrostatic equilibrium and less vul-
nerable to observational biases. Hence, X-ray observers construct
a similar quantity from X-ray inferred electron number densities
and temperatures,
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4.4.2 Relativistic SZ E↵ect

• Averaging the Compton interaction of a photon and a non-
relativistic electron of energy kBTe over scattering angles leads
to a relative energy change of

h�E�i
E�

=
kBTe

mec
2 for p ⌧ mec. (4.194)

This result changes if we consider relativistic electrons. Con-
sider a Compton collision between a photon of energy E and
an electron with a Lorentz factor �e in the observer’s frame ⌃.
We perform now a Lorentz transformation into the electron’s rest
frame ⌃0. Energy transforms as the time component of the energy-
momentum four-vector, so that the photon energy E

0 in the frame
⌃0 before scattering is given by E

0 = �eE(1 � �e cos ✓), where ✓ is
the angle between the incident electron and the photon direction
in the observer’s frame ⌃ and �e = v/c. Thus, in the electron’s
rest frame ⌃0, the photon scatters with an energy E

0 ' �eE for all
but very small angles. If the photon has negligible energy in ⌃0,
i.e. E

0 ⌧ mec
2, the interaction can be treated in the Thompson

limit which is characterized by elastic scattering of the photon:
E
0
1 ' E

0. After transforming back into the observer’s frame, us-
ing E1 = �eE

0
1(1+�e cos ✓01), the energy of the scattered photon in

⌃ is given by E1 ' �2
e E(1��2

e cos2 ✓). After averaging an isotropic
distribution of relativistic electrons over angle, the energy of the

optical depth energy transfer 
per scattering

diffusion term 
(depending on 
energy transfer)

advection term

related to Bose-Einstein 
statistics
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Compton scattering of non-relativistic electrons in the limit
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where p is the electron momentum. The change in the photon
phase space occupation number n(!, t) can be derived with the
Kompaneets equation, which is a quantum mechanical extension
to the Fokker-Planck equation (Peacock 1999):
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via

dy =
kBTe

mec
2 ne�Tcdt and xe =
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, (4.171)

so that we arrive at the following compact form of Kompaneets
equation:
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:

@n

@xe
+ n + n

2 = 0. (4.173)

This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via

dy =
kBTe
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.
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where p is the electron momentum. The change in the photon
phase space occupation number n(!, t) can be derived with the
Kompaneets equation, which is a quantum mechanical extension
to the Fokker-Planck equation (Peacock 1999):
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via

dy =
kBTe
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so that we arrive at the following compact form of Kompaneets
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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2 = 0. (4.173)

This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.

convenient to use a variable y (called Compton-y parameter) and 
photon energy in units of the thermal energy

->
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where p is the electron momentum. The change in the photon
phase space occupation number n(!, t) can be derived with the
Kompaneets equation, which is a quantum mechanical extension
to the Fokker-Planck equation (Peacock 1999):
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via

dy =
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so that we arrive at the following compact form of Kompaneets
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via

dy =
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.
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where p is the electron momentum. The change in the photon
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to the Fokker-Planck equation (Peacock 1999):

@n

@t
=
�Tne~

mec

1
!2

@

@!

"
!4

 
kBTe

~

@n

@!
+ n + n

2
!#
, (4.170)

Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.

CHAPTER 4. CLUSTER ASTROPHYSICS & COSMOLOGY 169

Compton scattering of non-relativistic electrons in the limit

~!

c
⌧ p ⌧ mec, (4.169)

where p is the electron momentum. The change in the photon
phase space occupation number n(!, t) can be derived with the
Kompaneets equation, which is a quantum mechanical extension
to the Fokker-Planck equation (Peacock 1999):
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.
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where p is the electron momentum. The change in the photon
phase space occupation number n(!, t) can be derived with the
Kompaneets equation, which is a quantum mechanical extension
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via
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Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.

convenient to use a variable y (called Compton-y parameter) and 
photon energy in units of the thermal energy

->
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phase space occupation number n(!, t) can be derived with the
Kompaneets equation, which is a quantum mechanical extension
to the Fokker-Planck equation (Peacock 1999):
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Here, me is the electron rest mass and �T denotes the Thompson
cross section. Te and ne are the electron temperature and number
density, and t is the time variable.

• We can rewrite this equation by introducing the di↵erential
Compton-y parameter and the dimensionless photon frequency2,
xe, via
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so that we arrive at the following compact form of Kompaneets
equation:

@n

@y
=

1
x2

e

@

@xe

"
x

4
e

 
@n

@xe
+ n + n

2
!#
. (4.172)

Equation (4.172) describes changes to the photon phase space
occupation number due to small energy transfers in the inverse
Compton scattering process, which is known as the thermal SZ
e↵ect (Sunyaev & Zel’dovich 1972). In this limit, the scattering
process is a combination of di↵usion in momentum space (the
first term) and advection, which accounts for adiabatic changes
(the second term).

• The meaning of the third, non-linear term in the photon phase
space occupation number in Eq. (4.172) becomes clear by con-
sidering the equilibrium solution, which is obtained by setting the
terms in parenthesis on the right-hand side of Eq. (4.172) equal to
zero:
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This is realized in Nature provided electrons and photons are in
thermal equilibrium. Clearly, in this case, we obtain the Bose-
Einstein spectrum

n(xe) =
1

exe+µc � 1
, (4.174)

2Note that this quantity xe di↵ers from the photon energy measured in units of the
CMB thermal energy, x defined in Eq. (4.167) by the adopted temperatures.
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive
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Substituting these expressions into Eq. (4.176) and rearranging
terms yields
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
x

4ex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
, and (4.181)

y(✓) =
�T

mec
2

Z
ne(r)kBTe(r)cdt (4.182)

denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.

Planckian distribution of CMB
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4.4 Sunyaev-Zel’dovich (SZ) E↵ect

Here, we present the underlying physics of the Sunyaev-Zel’dovich
(SZ) e↵ect. First, we introduce the various contributions of the ther-
mal, kinematic, and relativistic SZ e↵ects. Then we explain how the SZ
e↵ect can be used as a cosmological probe by means of cluster number
counts, scaling relations and the SZ power spectrum. Finally we show
how the SZ e↵ect elucidates cluster astrophysics by providing a new
window to AGN bubbles and cluster shocks.

4.4.1 Thermal and Kinematic SZ E↵ect

• The cosmic microwave background (CMB) has an almost perfect
Planckian spectral distribution that emits an intensity as a func-
tion of photon energy ~!,

I(x) = i0i(x) = i0
x

3

ex � 1
, where (4.166)

x =
~!

kBTcmb
, (4.167)

i0 =
2(kBTcmb)3

(hc)2 = 22.8 Jy arcmin�2. (4.168)

Here, Tcmb = 2.725 K denotes the average CMB temperature at
the present epoch and kB, h, and c denote Boltzmann’s constant,
Planck’s constant, and the speed of light, respectively. The CMB
black body spectrum peaks in the microwave range at a frequency
of 160.4 GHz. In the following, we adopt the abbreviation T ⌘
Tcmb.

• Thermal SZ e↵ect. As discussed in Section 1.2.4, the thermal SZ
e↵ect arises because CMB photons can inverse Compton scatter
o↵ of electrons of the hot, dilute intra-cluster plasma. Thus, at the
angular position of galaxy clusters, the CMB spectrum is mod-
ulated as photons are redistributed from the low-frequency part
of the spectrum below a characteristic crossover frequency ⌫c to
higher frequencies. Hence, ⌫c demarks the transition from a net
decrease to a net increase of photon number density. For a non-
relativistic electron population in a cluster at rest with respect to
the CMB rest frame, ⌫c ' 217 GHz, while this characteristic fre-
quency shifts towards higher values for more energetic electrons,
as we will see below.

• In order to analyse these distortions quantitatively, we need to
consider a transport equation governing the e↵ect of Compton
scattering on the photon spectrum. We first consider inverse
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,

@n

@y
=

1
x2

e

@

@xe

 
x

4
e
@n

@xe

!
(4.175)

=
1
x2

@

@x

 
x

4@n

@x

!
= 4x

@n

@x
+ x

2@
2
n

@x2 . (4.176)

• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive

@n

@x
= �n

2ex and
@2

n

@x2 = �nex

 
n + 2

@n

@x

!
. (4.178)

Substituting these expressions into Eq. (4.176) and rearranging
terms yields

@n

@y
=

xex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
. (4.179)

This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
x

4ex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
, and (4.181)

y(✓) =
�T

mec
2

Z
ne(r)kBTe(r)cdt (4.182)

denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.

for xe ≪ 1

with
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive
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Substituting these expressions into Eq. (4.176) and rearranging
terms yields
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
x

4ex

(ex � 1)2
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y(✓) =
�T
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2

Z
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denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.
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(as CMB temperature ~ 107 times 
smaller than electron temperature)
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive
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Substituting these expressions into Eq. (4.176) and rearranging
terms yields
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
x
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Z
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denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.

ΔI
I

=
Δn
n

using                                               and
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive
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Substituting these expressions into Eq. (4.176) and rearranging
terms yields
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)
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denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.
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• At small frequencies in the Rayleigh–Jeans tail of the CMB spec-
trum, we obtain i(x) ! x

2 for x ⌧ 1. The thermal SZ spectrum
assumes the following simple form for x ⌧ 1 (or ⌫ ⌧ 60 GHz),
which follows from Taylor expanding the thermal spectral distor-
tion in Eq. (4.181):

g(x)! �2x
2. (4.183)

• In order to compute the change in thermodynamic temperature as
a result of the thermal SZ e↵ect, we need to apply the chain rule
to the Kompaneets equation (4.179),

@n
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xex

(ex � 1)2
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ex + 1
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� 4
!
, (4.184)
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@x

@x

@T
=

ex

(ex � 1)2

x

T
. (4.185)

Combining these results with Eq. (4.180) enables us to determine
the relative change �T/T in thermodynamic CMB temperature at
position ✓ due to the thermal SZ e↵ect,

�TtSZ

T
(✓) = y(✓)

 
x

ex + 1
ex � 1

� 4
!
⌘ y(✓) f (x). (4.186)

• Kinematic SZ e↵ect. There is an additional spectral distortion
of the CMB spectrum due to the Doppler e↵ect of the bulk mo-
tion of baryonic matter streams inside a cluster or of the motion
of the cluster as a whole relative to the CMB rest frame. If the
component of the cluster’s peculiar velocity is projected along the
line-of-sight, then the Doppler e↵ect leads to a change in thermo-
dynamic temperature referred to as the kinematic SZ e↵ect,

�TkSZ

T
(✓) = �w(✓), (4.187)

w(✓) ⌘ �T

Z
dl ne(r)

vr
c
. (4.188)

The amplitude of the kinematic SZ e↵ect is given by the kine-
matic Comptonization parameter w that is equal to the dimen-
sionless streaming velocity, vr/c, times the optical depth of free
electrons along the line of sight. We have vr < 0 if the gas is ap-
proaching the observer, which results in a temperature increase.

• The spectral distortion of the kinematic SZ e↵ect can be ob-
tained by multiplying the change in thermodynamic temperature,
Eq. (4.187), by @n/@T (Eq. 4.185) and by a factor i0x

3
T to get

�IkSZ(x,✓) = �i0w(✓)h(x), where (4.189)

h(x) =
x

4
e

x

(ex � 1)2 . (4.190)
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive
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Substituting these expressions into Eq. (4.176) and rearranging
terms yields
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
x

4ex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
, and (4.181)

y(✓) =
�T

mec
2

Z
ne(r)kBTe(r)cdt (4.182)

denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1
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into the the linearized Kompaneets equation (4.176) and derive
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Substituting these expressions into Eq. (4.176) and rearranging
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)
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denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.
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• At small frequencies in the Rayleigh–Jeans tail of the CMB spec-
trum, we obtain i(x) ! x

2 for x ⌧ 1. The thermal SZ spectrum
assumes the following simple form for x ⌧ 1 (or ⌫ ⌧ 60 GHz),
which follows from Taylor expanding the thermal spectral distor-
tion in Eq. (4.181):

g(x)! �2x
2. (4.183)

• In order to compute the change in thermodynamic temperature as
a result of the thermal SZ e↵ect, we need to apply the chain rule
to the Kompaneets equation (4.179),

@n

@T

@T

@y
=

xex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
, (4.184)

@n

@T
=
@n

@x

@x

@T
=

ex

(ex � 1)2

x

T
. (4.185)

Combining these results with Eq. (4.180) enables us to determine
the relative change �T/T in thermodynamic CMB temperature at
position ✓ due to the thermal SZ e↵ect,
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• Kinematic SZ e↵ect. There is an additional spectral distortion
of the CMB spectrum due to the Doppler e↵ect of the bulk mo-
tion of baryonic matter streams inside a cluster or of the motion
of the cluster as a whole relative to the CMB rest frame. If the
component of the cluster’s peculiar velocity is projected along the
line-of-sight, then the Doppler e↵ect leads to a change in thermo-
dynamic temperature referred to as the kinematic SZ e↵ect,
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T
(✓) = �w(✓), (4.187)
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The amplitude of the kinematic SZ e↵ect is given by the kine-
matic Comptonization parameter w that is equal to the dimen-
sionless streaming velocity, vr/c, times the optical depth of free
electrons along the line of sight. We have vr < 0 if the gas is ap-
proaching the observer, which results in a temperature increase.

• The spectral distortion of the kinematic SZ e↵ect can be ob-
tained by multiplying the change in thermodynamic temperature,
Eq. (4.187), by @n/@T (Eq. 4.185) and by a factor i0x

3
T to get

�IkSZ(x,✓) = �i0w(✓)h(x), where (4.189)

h(x) =
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Figure 4.17: Spectral distortions due to the thermal SZ e↵ect, g(x), kinematic
SZ e↵ect, h(x), and relativistic SZ e↵ect, g̃(x). The relativistic SZ e↵ect is dif-
ferent for di↵erent relativistic populations: ultra-relativistic cosmic ray elec-
trons (UCRe), power-law cosmic ray electrons (CRe, extending from trans- to
fully relativistic energies), and trans-relativistic thermal electrons with temper-
atures of kTe = 20 keV and 50 keV, respectively (Pfrommer et al. 2005). This
shows that higher energetic electrons are able to scatter CMB photons to larger
frequencies which causes larger spectral distortions.

• The spectral distortions owing to the relativistic SZ e↵ect can be
rewritten to include a relativistic Comptonization parameter ỹ,

�irel(x) = [ j(x) � i(x)]⌧rel = g̃(x)ỹ, (4.201)

where

ỹ =
�T

mec
2

Z
dl ne kT̃e , (4.202)

kT̃e =
Pe

ne
, (4.203)

Pe =
mec

2

3

Z 1

0
dp fe(p) �e p, (4.204)

g̃(x) = [ j(x) � i(x)] �̃(kT̃e) , (4.205)

�̃(kT̃e) =
mec

2

hkT̃ei
=

mec
2
R

dl neR
dl nekT̃e

, (4.206)

(4.207)

where �e = v/c = p/
p

1 + p2 is the dimensionless velocity of the
(relativistic) electron. Here, we introduced the pseudo-thermal
beta-parameter �̃(kT̃e) and the pseudo-temperature kT̃e, which are
both equal to its thermodynamic analog in the case of a thermal
electron distribution.

Pfrommer et al. 2005

thermal SZ
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive

@n
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= �n

2ex and
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@n

@x

!
. (4.178)

Substituting these expressions into Eq. (4.176) and rearranging
terms yields

@n

@y
=

xex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
. (4.179)

This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
x

4ex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
, and (4.181)

y(✓) =
�T

mec
2

Z
ne(r)kBTe(r)cdt (4.182)

denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.

ΔI
I

=
Δn
n

using                                               and
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linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.
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• We now insert the Planckian distribution for the CMB photons,
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Substituting these expressions into Eq. (4.176) and rearranging
terms yields
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
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y(✓) =
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Z
ne(r)kBTe(r)cdt (4.182)

denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.
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• At small frequencies in the Rayleigh–Jeans tail of the CMB spec-
trum, we obtain i(x) ! x

2 for x ⌧ 1. The thermal SZ spectrum
assumes the following simple form for x ⌧ 1 (or ⌫ ⌧ 60 GHz),
which follows from Taylor expanding the thermal spectral distor-
tion in Eq. (4.181):

g(x)! �2x
2. (4.183)

• In order to compute the change in thermodynamic temperature as
a result of the thermal SZ e↵ect, we need to apply the chain rule
to the Kompaneets equation (4.179),
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!
, (4.184)
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Combining these results with Eq. (4.180) enables us to determine
the relative change �T/T in thermodynamic CMB temperature at
position ✓ due to the thermal SZ e↵ect,

�TtSZ

T
(✓) = y(✓)

 
x

ex + 1
ex � 1

� 4
!
⌘ y(✓) f (x). (4.186)

• Kinematic SZ e↵ect. There is an additional spectral distortion
of the CMB spectrum due to the Doppler e↵ect of the bulk mo-
tion of baryonic matter streams inside a cluster or of the motion
of the cluster as a whole relative to the CMB rest frame. If the
component of the cluster’s peculiar velocity is projected along the
line-of-sight, then the Doppler e↵ect leads to a change in thermo-
dynamic temperature referred to as the kinematic SZ e↵ect,

�TkSZ

T
(✓) = �w(✓), (4.187)

w(✓) ⌘ �T

Z
dl ne(r)

vr
c
. (4.188)

The amplitude of the kinematic SZ e↵ect is given by the kine-
matic Comptonization parameter w that is equal to the dimen-
sionless streaming velocity, vr/c, times the optical depth of free
electrons along the line of sight. We have vr < 0 if the gas is ap-
proaching the observer, which results in a temperature increase.

• The spectral distortion of the kinematic SZ e↵ect can be ob-
tained by multiplying the change in thermodynamic temperature,
Eq. (4.187), by @n/@T (Eq. 4.185) and by a factor i0x

3
T to get

�IkSZ(x,✓) = �i0w(✓)h(x), where (4.189)

h(x) =
x

4
e

x

(ex � 1)2 . (4.190)

linear in density
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Figure 4.17: Spectral distortions due to the thermal SZ e↵ect, g(x), kinematic
SZ e↵ect, h(x), and relativistic SZ e↵ect, g̃(x). The relativistic SZ e↵ect is dif-
ferent for di↵erent relativistic populations: ultra-relativistic cosmic ray elec-
trons (UCRe), power-law cosmic ray electrons (CRe, extending from trans- to
fully relativistic energies), and trans-relativistic thermal electrons with temper-
atures of kTe = 20 keV and 50 keV, respectively (Pfrommer et al. 2005). This
shows that higher energetic electrons are able to scatter CMB photons to larger
frequencies which causes larger spectral distortions.

• The spectral distortions owing to the relativistic SZ e↵ect can be
rewritten to include a relativistic Comptonization parameter ỹ,

�irel(x) = [ j(x) � i(x)]⌧rel = g̃(x)ỹ, (4.201)

where
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(4.207)

where �e = v/c = p/
p

1 + p2 is the dimensionless velocity of the
(relativistic) electron. Here, we introduced the pseudo-thermal
beta-parameter �̃(kT̃e) and the pseudo-temperature kT̃e, which are
both equal to its thermodynamic analog in the case of a thermal
electron distribution.
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which can be readily verified. This demonstrates that the non-
linear term is responsible for the formation of an Bose-Einstein
condensate of a highly degenerated boson gas. The case of a van-
ishing chemical potential, µc = 0, corresponds to a Planckian
distribution function.

• In the limit of small xe, which is appropriate for inverse Compton
scattering of CMB photons with hot, non-relativistic ICM elec-
trons, @n/@xe � n, n2, and the Kompaneets equation yields a lin-
ear change in the phase space occupation number,
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• We now insert the Planckian distribution for the CMB photons,

n(x) =
1

ex � 1
(4.177)

into the the linearized Kompaneets equation (4.176) and derive
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2ex and
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. (4.178)

Substituting these expressions into Eq. (4.176) and rearranging
terms yields

@n
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xex
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x

ex + 1
ex � 1

� 4
!
. (4.179)

This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)

g(x) =
x

4ex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
, and (4.181)

y(✓) =
�T

mec
2

Z
ne(r)kBTe(r)cdt (4.182)

denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.
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using                                               and
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• We now insert the Planckian distribution for the CMB photons,
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Substituting these expressions into Eq. (4.176) and rearranging
terms yields
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This equation describes a change of the phase-space density (or
the occupation number) of CMB photons with the Compton-y pa-
rameter as they propagate through a plasma.

• In order to obtain the change of photon intensity with the
Compton-y parameter, we need to multiply the Kompaneets equa-
tion (4.179) by a factor i0x

3, as defined in Eq. (4.166). After in-
tegrating over y, we find the change in intensity as a result of the
thermal SZ e↵ect across the sky spanned by the vector ✓ = (✓, �):

�ItSZ(x,✓) = i0y(✓)g(x), where (4.180)
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ne(r)kBTe(r)cdt (4.182)

denotes the amplitude of the thermal SZ e↵ect, which is known
as the thermal Comptonization parameter y that is defined as
the line-of-sight integration of the temperature weighted thermal
electron density from the observer to the last scattering surface of
the CMB at redshift zmax = 1090.
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• At small frequencies in the Rayleigh–Jeans tail of the CMB spec-
trum, we obtain i(x) ! x

2 for x ⌧ 1. The thermal SZ spectrum
assumes the following simple form for x ⌧ 1 (or ⌫ ⌧ 60 GHz),
which follows from Taylor expanding the thermal spectral distor-
tion in Eq. (4.181):

g(x)! �2x
2. (4.183)

• In order to compute the change in thermodynamic temperature as
a result of the thermal SZ e↵ect, we need to apply the chain rule
to the Kompaneets equation (4.179),
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xex
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ex + 1
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� 4
!
, (4.184)
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x

T
. (4.185)

Combining these results with Eq. (4.180) enables us to determine
the relative change �T/T in thermodynamic CMB temperature at
position ✓ due to the thermal SZ e↵ect,

�TtSZ

T
(✓) = y(✓)

 
x

ex + 1
ex � 1

� 4
!
⌘ y(✓) f (x). (4.186)

• Kinematic SZ e↵ect. There is an additional spectral distortion
of the CMB spectrum due to the Doppler e↵ect of the bulk mo-
tion of baryonic matter streams inside a cluster or of the motion
of the cluster as a whole relative to the CMB rest frame. If the
component of the cluster’s peculiar velocity is projected along the
line-of-sight, then the Doppler e↵ect leads to a change in thermo-
dynamic temperature referred to as the kinematic SZ e↵ect,

�TkSZ

T
(✓) = �w(✓), (4.187)

w(✓) ⌘ �T

Z
dl ne(r)

vr
c
. (4.188)

The amplitude of the kinematic SZ e↵ect is given by the kine-
matic Comptonization parameter w that is equal to the dimen-
sionless streaming velocity, vr/c, times the optical depth of free
electrons along the line of sight. We have vr < 0 if the gas is ap-
proaching the observer, which results in a temperature increase.

• The spectral distortion of the kinematic SZ e↵ect can be ob-
tained by multiplying the change in thermodynamic temperature,
Eq. (4.187), by @n/@T (Eq. 4.185) and by a factor i0x

3
T to get

�IkSZ(x,✓) = �i0w(✓)h(x), where (4.189)

h(x) =
x

4
e

x

(ex � 1)2 . (4.190)

linear in density

relative effect -> independent of redshift
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Figure 4.17: Spectral distortions due to the thermal SZ e↵ect, g(x), kinematic
SZ e↵ect, h(x), and relativistic SZ e↵ect, g̃(x). The relativistic SZ e↵ect is dif-
ferent for di↵erent relativistic populations: ultra-relativistic cosmic ray elec-
trons (UCRe), power-law cosmic ray electrons (CRe, extending from trans- to
fully relativistic energies), and trans-relativistic thermal electrons with temper-
atures of kTe = 20 keV and 50 keV, respectively (Pfrommer et al. 2005). This
shows that higher energetic electrons are able to scatter CMB photons to larger
frequencies which causes larger spectral distortions.

• The spectral distortions owing to the relativistic SZ e↵ect can be
rewritten to include a relativistic Comptonization parameter ỹ,

�irel(x) = [ j(x) � i(x)]⌧rel = g̃(x)ỹ, (4.201)

where

ỹ =
�T

mec
2

Z
dl ne kT̃e , (4.202)
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0
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g̃(x) = [ j(x) � i(x)] �̃(kT̃e) , (4.205)
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2

hkT̃ei
=

mec
2
R

dl neR
dl nekT̃e
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where �e = v/c = p/
p

1 + p2 is the dimensionless velocity of the
(relativistic) electron. Here, we introduced the pseudo-thermal
beta-parameter �̃(kT̃e) and the pseudo-temperature kT̃e, which are
both equal to its thermodynamic analog in the case of a thermal
electron distribution.
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• At small frequencies in the Rayleigh–Jeans tail of the CMB spec-
trum, we obtain i(x) ! x

2 for x ⌧ 1. The thermal SZ spectrum
assumes the following simple form for x ⌧ 1 (or ⌫ ⌧ 60 GHz),
which follows from Taylor expanding the thermal spectral distor-
tion in Eq. (4.181):

g(x)! �2x
2. (4.183)

• In order to compute the change in thermodynamic temperature as
a result of the thermal SZ e↵ect, we need to apply the chain rule
to the Kompaneets equation (4.179),

@n
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@y
=

xex
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� 4
!
, (4.184)
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x

T
. (4.185)

Combining these results with Eq. (4.180) enables us to determine
the relative change �T/T in thermodynamic CMB temperature at
position ✓ due to the thermal SZ e↵ect,

�TtSZ

T
(✓) = y(✓)

 
x

ex + 1
ex � 1

� 4
!
⌘ y(✓) f (x). (4.186)

• Kinematic SZ e↵ect. There is an additional spectral distortion
of the CMB spectrum due to the Doppler e↵ect of the bulk mo-
tion of baryonic matter streams inside a cluster or of the motion
of the cluster as a whole relative to the CMB rest frame. If the
component of the cluster’s peculiar velocity is projected along the
line-of-sight, then the Doppler e↵ect leads to a change in thermo-
dynamic temperature referred to as the kinematic SZ e↵ect,

�TkSZ

T
(✓) = �w(✓), (4.187)

w(✓) ⌘ �T

Z
dl ne(r)

vr
c
. (4.188)

The amplitude of the kinematic SZ e↵ect is given by the kine-
matic Comptonization parameter w that is equal to the dimen-
sionless streaming velocity, vr/c, times the optical depth of free
electrons along the line of sight. We have vr < 0 if the gas is ap-
proaching the observer, which results in a temperature increase.

• The spectral distortion of the kinematic SZ e↵ect can be ob-
tained by multiplying the change in thermodynamic temperature,
Eq. (4.187), by @n/@T (Eq. 4.185) and by a factor i0x

3
T to get

�IkSZ(x,✓) = �i0w(✓)h(x), where (4.189)

h(x) =
x

4
e

x

(ex � 1)2 . (4.190)

Doppler shift due to radial velocity of cluster: cluster

vr
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• At small frequencies in the Rayleigh–Jeans tail of the CMB spec-
trum, we obtain i(x) ! x

2 for x ⌧ 1. The thermal SZ spectrum
assumes the following simple form for x ⌧ 1 (or ⌫ ⌧ 60 GHz),
which follows from Taylor expanding the thermal spectral distor-
tion in Eq. (4.181):

g(x)! �2x
2. (4.183)

• In order to compute the change in thermodynamic temperature as
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Combining these results with Eq. (4.180) enables us to determine
the relative change �T/T in thermodynamic CMB temperature at
position ✓ due to the thermal SZ e↵ect,
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• Kinematic SZ e↵ect. There is an additional spectral distortion
of the CMB spectrum due to the Doppler e↵ect of the bulk mo-
tion of baryonic matter streams inside a cluster or of the motion
of the cluster as a whole relative to the CMB rest frame. If the
component of the cluster’s peculiar velocity is projected along the
line-of-sight, then the Doppler e↵ect leads to a change in thermo-
dynamic temperature referred to as the kinematic SZ e↵ect,
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The amplitude of the kinematic SZ e↵ect is given by the kine-
matic Comptonization parameter w that is equal to the dimen-
sionless streaming velocity, vr/c, times the optical depth of free
electrons along the line of sight. We have vr < 0 if the gas is ap-
proaching the observer, which results in a temperature increase.

• The spectral distortion of the kinematic SZ e↵ect can be ob-
tained by multiplying the change in thermodynamic temperature,
Eq. (4.187), by @n/@T (Eq. 4.185) and by a factor i0x

3
T to get

�IkSZ(x,✓) = �i0w(✓)h(x), where (4.189)

h(x) =
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Doppler shift due to radial velocity of cluster: cluster
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Figure 4.17: Spectral distortions due to the thermal SZ e↵ect, g(x), kinematic
SZ e↵ect, h(x), and relativistic SZ e↵ect, g̃(x). The relativistic SZ e↵ect is dif-
ferent for di↵erent relativistic populations: ultra-relativistic cosmic ray elec-
trons (UCRe), power-law cosmic ray electrons (CRe, extending from trans- to
fully relativistic energies), and trans-relativistic thermal electrons with temper-
atures of kTe = 20 keV and 50 keV, respectively (Pfrommer et al. 2005). This
shows that higher energetic electrons are able to scatter CMB photons to larger
frequencies which causes larger spectral distortions.

• The spectral distortions owing to the relativistic SZ e↵ect can be
rewritten to include a relativistic Comptonization parameter ỹ,

�irel(x) = [ j(x) � i(x)]⌧rel = g̃(x)ỹ, (4.201)

where

ỹ =
�T

mec
2

Z
dl ne kT̃e , (4.202)
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ne
, (4.203)
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g̃(x) = [ j(x) � i(x)] �̃(kT̃e) , (4.205)
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mec
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hkT̃ei
=

mec
2
R

dl neR
dl nekT̃e

, (4.206)

(4.207)

where �e = v/c = p/
p

1 + p2 is the dimensionless velocity of the
(relativistic) electron. Here, we introduced the pseudo-thermal
beta-parameter �̃(kT̃e) and the pseudo-temperature kT̃e, which are
both equal to its thermodynamic analog in the case of a thermal
electron distribution.
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• Important SZ quantities are the (thermal and kinematic) Comp-
tonizations integrated over the cluster face,
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where Dang denotes the angular diameter distance and Pe =

nekBTe is the thermal electron pressure.

• The integrated Comptonization is proportional to the thermal en-
ergy content of a cluster, Y / Eth, which is related to the energy of
the gravitational potential in hydrostatic equilibrium and less vul-
nerable to observational biases. Hence, X-ray observers construct
a similar quantity from X-ray inferred electron number densities
and temperatures,

YX =
1

D2
ang

�T

mec
2

Z

A

d3
r nXkBTX. (4.193)

4.4.2 Relativistic SZ E↵ect

• Averaging the Compton interaction of a photon and a non-
relativistic electron of energy kBTe over scattering angles leads
to a relative energy change of

h�E�i
E�

=
kBTe

mec
2 for p ⌧ mec. (4.194)

This result changes if we consider relativistic electrons. Con-
sider a Compton collision between a photon of energy E and
an electron with a Lorentz factor �e in the observer’s frame ⌃.
We perform now a Lorentz transformation into the electron’s rest
frame ⌃0. Energy transforms as the time component of the energy-
momentum four-vector, so that the photon energy E

0 in the frame
⌃0 before scattering is given by E

0 = �eE(1 � �e cos ✓), where ✓ is
the angle between the incident electron and the photon direction
in the observer’s frame ⌃ and �e = v/c. Thus, in the electron’s
rest frame ⌃0, the photon scatters with an energy E

0 ' �eE for all
but very small angles. If the photon has negligible energy in ⌃0,
i.e. E

0 ⌧ mec
2, the interaction can be treated in the Thompson

limit which is characterized by elastic scattering of the photon:
E
0
1 ' E

0. After transforming back into the observer’s frame, us-
ing E1 = �eE

0
1(1+�e cos ✓01), the energy of the scattered photon in

⌃ is given by E1 ' �2
e E(1��2

e cos2 ✓). After averaging an isotropic
distribution of relativistic electrons over angle, the energy of the
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Figure 4.16: Spectrum of the thermal SZ e↵ect with relativistic corrections for
a range of electron temperatures at fixed y = 10�4. The grey bands indicate the
nine Planck frequency channels with �⌫/⌫ = 0.2 for the three low-frequency
instruments and �⌫/⌫ = 0.3 for the six high-frequency channels (Erler 2018).

inverse Compton scattered photon is therefore increased by3

h�E�i
E�

=
4
3
�2

e for p & mec, (4.195)

which can move the microwave CMB photon to X-ray and �-ray
energies for highly relativistic electrons, �e & 103.

• So far, we have discussed the two limiting cases of Comp-
ton interactions with non-relativistic and fully relativistic elec-
trons. However, non-thermal electron populations are typically
described by power-law spectra that span from non-relativistic to
relativistic momenta, with di↵erent particle energies dominating
the non-thermal pressure. If we imagine increasing the charac-
teristic particle energy from the non-relativistic to the relativistic
regime, the characteristic crossover frequency ⌫c would contin-
uously shift from 217 GHz to higher frequencies. Accordingly,
the amplitude of the SZ e↵ect would drop as a result of photon
number conservation as photons are redistributed across a larger
energy range, see Fig. 4.16.

• These considerations enable us to cast the di↵erent inverse Comp-
ton processes that modify the CMB spectrum as a result of the SZ

3Note that this approximation is only valid if the fraction of energy lost by the
electron in a single collision �2

e E/(�emec
2) ⌧ 1.

non-relativistic electrons

relativistic electrons

energy transfer in scattering:
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e↵ects into the following compact form:

�i(x) = g(x) y [1 + �(x,Te)] � h(x)w
+ [ j(x) � i(x)] ⌧rel , (4.196)

where the first two terms account for the thermal and kinematic
SZ e↵ects, respectively (as discussed in Section 4.4.1) and the
third term describes the relativistic SZ e↵ect. For non-relativistic
electrons the relativistic correction term to the thermal SZ e↵ect is
zero, �(x,Te) = 0, but for hot clusters even the thermal electrons
have relativistic corrections, which will modify the thermal SZ
e↵ect (see Fig. 4.16).

• The third term in Eq. (4.196) takes account of Compton scattering
with relativistic electrons that exhibit an optical depth of

⌧rel = �T

Z
dl ne,rel. (4.197)

The flux scattered to other frequencies is i(x)⌧rel while j(x)⌧rel is
the flux scattered from other frequencies to x = h⌫/(kBT ). It is
worth noting, that in the limit of ultra-relativistic electrons and
for x < 10, one can neglect the flux scattered from other frequen-
cies to x, because j(x) ⌧ i(x). In the following, we drop this
approximation and consider the general case.

• The scattered flux can be expressed in terms of the photon re-
distribution function for a mono-energetic electron distribution
P(s, p), where the frequency of a scattered photon is shifted by a
factor s:

j(x) =
Z 1

0
ds

Z 1

0
dp fe(p) P(s, p) i(x/s). (4.198)

For a given electron spectrum fe(p) dp with the normalized elec-
tron momentum p = �e�e and

R
dp fe(p) = 1, this redistribution

function can be derived following the kinematic considerations
of the inverse Compton scattering in the Thomson regime, where
�e h⌫ ⌧ mec

2. We use the compact formula for the photon redis-
tribution function which was derived by Enßlin & Kaiser (2000):

P(s, p) = �3|1 � s|
32p6s

h
1 + (10 + 8p

2 + 4p
4)s + s

2
i

+
3(1 + s)

8p5

⇢3 + 3p
2 + p

4

p
1 + p2

�3 + 2p
2

2p

⇥
2 arcsinh(p) � | ln(s)|⇤

�
. (4.199)

The allowed range of frequency shifts is restricted to

| ln(s)|  2 arcsinh(p) , (4.200)

and thus P(s, p) = 0 for | ln(s)| > 2 arcsinh(p).
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where Dang denotes the angular diameter distance and Pe =

nekBTe is the thermal electron pressure.

• The integrated Comptonization is proportional to the thermal en-
ergy content of a cluster, Y / Eth, which is related to the energy of
the gravitational potential in hydrostatic equilibrium and less vul-
nerable to observational biases. Hence, X-ray observers construct
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sider a Compton collision between a photon of energy E and
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Figure 4.16: Spectrum of the thermal SZ e↵ect with relativistic corrections for
a range of electron temperatures at fixed y = 10�4. The grey bands indicate the
nine Planck frequency channels with �⌫/⌫ = 0.2 for the three low-frequency
instruments and �⌫/⌫ = 0.3 for the six high-frequency channels (Erler 2018).
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which can move the microwave CMB photon to X-ray and �-ray
energies for highly relativistic electrons, �e & 103.

• So far, we have discussed the two limiting cases of Comp-
ton interactions with non-relativistic and fully relativistic elec-
trons. However, non-thermal electron populations are typically
described by power-law spectra that span from non-relativistic to
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the non-thermal pressure. If we imagine increasing the charac-
teristic particle energy from the non-relativistic to the relativistic
regime, the characteristic crossover frequency ⌫c would contin-
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the amplitude of the SZ e↵ect would drop as a result of photon
number conservation as photons are redistributed across a larger
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e↵ects into the following compact form:

�i(x) = g(x) y [1 + �(x,Te)] � h(x)w
+ [ j(x) � i(x)] ⌧rel , (4.196)

where the first two terms account for the thermal and kinematic
SZ e↵ects, respectively (as discussed in Section 4.4.1) and the
third term describes the relativistic SZ e↵ect. For non-relativistic
electrons the relativistic correction term to the thermal SZ e↵ect is
zero, �(x,Te) = 0, but for hot clusters even the thermal electrons
have relativistic corrections, which will modify the thermal SZ
e↵ect (see Fig. 4.16).

• The third term in Eq. (4.196) takes account of Compton scattering
with relativistic electrons that exhibit an optical depth of

⌧rel = �T

Z
dl ne,rel. (4.197)

The flux scattered to other frequencies is i(x)⌧rel while j(x)⌧rel is
the flux scattered from other frequencies to x = h⌫/(kBT ). It is
worth noting, that in the limit of ultra-relativistic electrons and
for x < 10, one can neglect the flux scattered from other frequen-
cies to x, because j(x) ⌧ i(x). In the following, we drop this
approximation and consider the general case.

• The scattered flux can be expressed in terms of the photon re-
distribution function for a mono-energetic electron distribution
P(s, p), where the frequency of a scattered photon is shifted by a
factor s:

j(x) =
Z 1

0
ds

Z 1

0
dp fe(p) P(s, p) i(x/s). (4.198)

For a given electron spectrum fe(p) dp with the normalized elec-
tron momentum p = �e�e and

R
dp fe(p) = 1, this redistribution

function can be derived following the kinematic considerations
of the inverse Compton scattering in the Thomson regime, where
�e h⌫ ⌧ mec

2. We use the compact formula for the photon redis-
tribution function which was derived by Enßlin & Kaiser (2000):

P(s, p) = �3|1 � s|
32p6s

h
1 + (10 + 8p

2 + 4p
4)s + s

2
i

+
3(1 + s)

8p5

⇢3 + 3p
2 + p

4

p
1 + p2

�3 + 2p
2

2p

⇥
2 arcsinh(p) � | ln(s)|⇤

�
. (4.199)

The allowed range of frequency shifts is restricted to

| ln(s)|  2 arcsinh(p) , (4.200)

and thus P(s, p) = 0 for | ln(s)| > 2 arcsinh(p).
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-> not local anymore:
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Figure 4.17: Spectral distortions due to the thermal SZ e↵ect, g(x), kinematic
SZ e↵ect, h(x), and relativistic SZ e↵ect, g̃(x). The relativistic SZ e↵ect is dif-
ferent for di↵erent relativistic populations: ultra-relativistic cosmic ray elec-
trons (UCRe), power-law cosmic ray electrons (CRe, extending from trans- to
fully relativistic energies), and trans-relativistic thermal electrons with temper-
atures of kTe = 20 keV and 50 keV, respectively (Pfrommer et al. 2005). This
shows that higher energetic electrons are able to scatter CMB photons to larger
frequencies which causes larger spectral distortions.

• The spectral distortions owing to the relativistic SZ e↵ect can be
rewritten to include a relativistic Comptonization parameter ỹ,

�irel(x) = [ j(x) � i(x)]⌧rel = g̃(x)ỹ, (4.201)

where
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(4.207)

where �e = v/c = p/
p

1 + p2 is the dimensionless velocity of the
(relativistic) electron. Here, we introduced the pseudo-thermal
beta-parameter �̃(kT̃e) and the pseudo-temperature kT̃e, which are
both equal to its thermodynamic analog in the case of a thermal
electron distribution.

thermal 
kinetic 
highly relativistic 
mildly relativistic

Pfrommer et al. 2005
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Figure 4.17: Spectral distortions due to the thermal SZ e↵ect, g(x), kinematic
SZ e↵ect, h(x), and relativistic SZ e↵ect, g̃(x). The relativistic SZ e↵ect is dif-
ferent for di↵erent relativistic populations: ultra-relativistic cosmic ray elec-
trons (UCRe), power-law cosmic ray electrons (CRe, extending from trans- to
fully relativistic energies), and trans-relativistic thermal electrons with temper-
atures of kTe = 20 keV and 50 keV, respectively (Pfrommer et al. 2005). This
shows that higher energetic electrons are able to scatter CMB photons to larger
frequencies which causes larger spectral distortions.

• The spectral distortions owing to the relativistic SZ e↵ect can be
rewritten to include a relativistic Comptonization parameter ỹ,
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(4.207)

where �e = v/c = p/
p

1 + p2 is the dimensionless velocity of the
(relativistic) electron. Here, we introduced the pseudo-thermal
beta-parameter �̃(kT̃e) and the pseudo-temperature kT̃e, which are
both equal to its thermodynamic analog in the case of a thermal
electron distribution.

thermal 
kinetic 
highly relativistic 
mildly relativistic

Pfrommer et al. 2005

Note that all additions 
(kinetic, relativistic) 
modify the zero point!
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• Important SZ quantities are the (thermal and kinematic) Comp-
tonizations integrated over the cluster face,
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where Dang denotes the angular diameter distance and Pe =

nekBTe is the thermal electron pressure.

• The integrated Comptonization is proportional to the thermal en-
ergy content of a cluster, Y / Eth, which is related to the energy of
the gravitational potential in hydrostatic equilibrium and less vul-
nerable to observational biases. Hence, X-ray observers construct
a similar quantity from X-ray inferred electron number densities
and temperatures,

YX =
1

D2
ang

�T

mec
2

Z

A

d3
r nXkBTX. (4.193)

4.4.2 Relativistic SZ E↵ect

• Averaging the Compton interaction of a photon and a non-
relativistic electron of energy kBTe over scattering angles leads
to a relative energy change of

h�E�i
E�

=
kBTe

mec
2 for p ⌧ mec. (4.194)

This result changes if we consider relativistic electrons. Con-
sider a Compton collision between a photon of energy E and
an electron with a Lorentz factor �e in the observer’s frame ⌃.
We perform now a Lorentz transformation into the electron’s rest
frame ⌃0. Energy transforms as the time component of the energy-
momentum four-vector, so that the photon energy E

0 in the frame
⌃0 before scattering is given by E

0 = �eE(1 � �e cos ✓), where ✓ is
the angle between the incident electron and the photon direction
in the observer’s frame ⌃ and �e = v/c. Thus, in the electron’s
rest frame ⌃0, the photon scatters with an energy E

0 ' �eE for all
but very small angles. If the photon has negligible energy in ⌃0,
i.e. E

0 ⌧ mec
2, the interaction can be treated in the Thompson

limit which is characterized by elastic scattering of the photon:
E
0
1 ' E

0. After transforming back into the observer’s frame, us-
ing E1 = �eE

0
1(1+�e cos ✓01), the energy of the scattered photon in

⌃ is given by E1 ' �2
e E(1��2

e cos2 ✓). After averaging an isotropic
distribution of relativistic electrons over angle, the energy of the

overall "amplitude" of thermal 
SZ effect of cluster
overall "amplitude" of kinetic 
SZ effect of cluster
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an electron with a Lorentz factor �e in the observer’s frame ⌃.
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frame ⌃0. Energy transforms as the time component of the energy-
momentum four-vector, so that the photon energy E

0 in the frame
⌃0 before scattering is given by E
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0 ' �eE for all
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• The frequency dependence of the various SZ e↵ects is shown in
Fig. 4.17. In particular, we compare the spectral distortions due
to the thermal SZ e↵ect, g(x), the kinematic SZ e↵ect, h(x), and
the relativistic SZ e↵ect, g̃(x), for various scenarios of relativistic
electron populations. Note that the amplitude of the thermal SZ
e↵ect, y, is typically one order of magnitude larger than the am-
plitude of the kinematic SZ e↵ect w, and that the amplitudes of
the relativistic SZ e↵ect, ⌧rel, are yet much smaller.

4.4.3 Self-similar SZ Scaling Relation

• We review the expectations for Ysph = YD
2
ang in the idealized case

of a cluster in virial equilibrium to help understand how possible
deviations from the self-similar Ysph–M relation and the scatter
about it may arise. We start with Eq. (4.191), which has been
rewritten as

Ysph =
�T

mec
2

Z
R200

0
dVPe =

(� � 1)�T

mec
2 x̃e X µ Egas, (4.208)

where x̃e = ne/nH = (X + 1)/(2 X) = 1.158 is the electron-to-
hydrogen number density fraction with a hydrogen mass fraction
X = 0.76, µ = 4/(3X+1+4Xx̃e) = 0.588 denotes the mean molec-
ular weight for a fully ionized medium of primordial abundance
(see Appendix A.1 for a derivation), � = 5/3 is the adiabatic
index, and we assume equilibrium between the electron and ion
temperatures.

• Next, we define the characteristic temperature of the halo as

kT200 =
GM200 µmp

3R200
=
µmp

3
[10 G M200 H0 E(z)]2/3 , (4.209)

where M200 and R200 is the virial mass and radius of the cluster,
H(z) = H0E(z) is the Hubble function where H0 denotes it current
day value, G is Newton’s constant, and mp is the proton rest mass.
This enables us to write the total thermal energy of the halo with
Eq. (4.209) as

Egas =
3
2

Ngas kBT200 = (1 � f⇤) fb fc
GM

2
200

2 R200

= (1 � f⇤) fb fc
G

2
⇥
800 ⇢cr(z)

⇤1/3
M

5/3
200, (4.210)

where Ngas is the number of gas particles, ⇢cr(z) is the critical
density of the universe, fb = ⌦b/⌦m is the cosmic baryon fraction,
f⇤ . M⇤/Mb is the stellar mass fraction within the halo and fc is
the correction factor for the fraction of missing baryons at a given
overdensity.

integrated Y can also be restricted, 
e.g., to within virial radius



Integrated parameters
CHAPTER 4. CLUSTER ASTROPHYSICS & COSMOLOGY 172

• Important SZ quantities are the (thermal and kinematic) Comp-
tonizations integrated over the cluster face,
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where Dang denotes the angular diameter distance and Pe =

nekBTe is the thermal electron pressure.

• The integrated Comptonization is proportional to the thermal en-
ergy content of a cluster, Y / Eth, which is related to the energy of
the gravitational potential in hydrostatic equilibrium and less vul-
nerable to observational biases. Hence, X-ray observers construct
a similar quantity from X-ray inferred electron number densities
and temperatures,

YX =
1

D2
ang

�T

mec
2

Z

A

d3
r nXkBTX. (4.193)

4.4.2 Relativistic SZ E↵ect

• Averaging the Compton interaction of a photon and a non-
relativistic electron of energy kBTe over scattering angles leads
to a relative energy change of

h�E�i
E�

=
kBTe

mec
2 for p ⌧ mec. (4.194)

This result changes if we consider relativistic electrons. Con-
sider a Compton collision between a photon of energy E and
an electron with a Lorentz factor �e in the observer’s frame ⌃.
We perform now a Lorentz transformation into the electron’s rest
frame ⌃0. Energy transforms as the time component of the energy-
momentum four-vector, so that the photon energy E

0 in the frame
⌃0 before scattering is given by E

0 = �eE(1 � �e cos ✓), where ✓ is
the angle between the incident electron and the photon direction
in the observer’s frame ⌃ and �e = v/c. Thus, in the electron’s
rest frame ⌃0, the photon scatters with an energy E

0 ' �eE for all
but very small angles. If the photon has negligible energy in ⌃0,
i.e. E

0 ⌧ mec
2, the interaction can be treated in the Thompson

limit which is characterized by elastic scattering of the photon:
E
0
1 ' E

0. After transforming back into the observer’s frame, us-
ing E1 = �eE

0
1(1+�e cos ✓01), the energy of the scattered photon in

⌃ is given by E1 ' �2
e E(1��2

e cos2 ✓). After averaging an isotropic
distribution of relativistic electrons over angle, the energy of the
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where Dang denotes the angular diameter distance and Pe =

nekBTe is the thermal electron pressure.

• The integrated Comptonization is proportional to the thermal en-
ergy content of a cluster, Y / Eth, which is related to the energy of
the gravitational potential in hydrostatic equilibrium and less vul-
nerable to observational biases. Hence, X-ray observers construct
a similar quantity from X-ray inferred electron number densities
and temperatures,
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This result changes if we consider relativistic electrons. Con-
sider a Compton collision between a photon of energy E and
an electron with a Lorentz factor �e in the observer’s frame ⌃.
We perform now a Lorentz transformation into the electron’s rest
frame ⌃0. Energy transforms as the time component of the energy-
momentum four-vector, so that the photon energy E

0 in the frame
⌃0 before scattering is given by E

0 = �eE(1 � �e cos ✓), where ✓ is
the angle between the incident electron and the photon direction
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• The frequency dependence of the various SZ e↵ects is shown in
Fig. 4.17. In particular, we compare the spectral distortions due
to the thermal SZ e↵ect, g(x), the kinematic SZ e↵ect, h(x), and
the relativistic SZ e↵ect, g̃(x), for various scenarios of relativistic
electron populations. Note that the amplitude of the thermal SZ
e↵ect, y, is typically one order of magnitude larger than the am-
plitude of the kinematic SZ e↵ect w, and that the amplitudes of
the relativistic SZ e↵ect, ⌧rel, are yet much smaller.

4.4.3 Self-similar SZ Scaling Relation

• We review the expectations for Ysph = YD
2
ang in the idealized case

of a cluster in virial equilibrium to help understand how possible
deviations from the self-similar Ysph–M relation and the scatter
about it may arise. We start with Eq. (4.191), which has been
rewritten as

Ysph =
�T

mec
2

Z
R200

0
dVPe =

(� � 1)�T

mec
2 x̃e X µ Egas, (4.208)

where x̃e = ne/nH = (X + 1)/(2 X) = 1.158 is the electron-to-
hydrogen number density fraction with a hydrogen mass fraction
X = 0.76, µ = 4/(3X+1+4Xx̃e) = 0.588 denotes the mean molec-
ular weight for a fully ionized medium of primordial abundance
(see Appendix A.1 for a derivation), � = 5/3 is the adiabatic
index, and we assume equilibrium between the electron and ion
temperatures.

• Next, we define the characteristic temperature of the halo as

kT200 =
GM200 µmp

3R200
=
µmp

3
[10 G M200 H0 E(z)]2/3 , (4.209)

where M200 and R200 is the virial mass and radius of the cluster,
H(z) = H0E(z) is the Hubble function where H0 denotes it current
day value, G is Newton’s constant, and mp is the proton rest mass.
This enables us to write the total thermal energy of the halo with
Eq. (4.209) as

Egas =
3
2

Ngas kBT200 = (1 � f⇤) fb fc
GM

2
200

2 R200

= (1 � f⇤) fb fc
G

2
⇥
800 ⇢cr(z)

⇤1/3
M

5/3
200, (4.210)

where Ngas is the number of gas particles, ⇢cr(z) is the critical
density of the universe, fb = ⌦b/⌦m is the cosmic baryon fraction,
f⇤ . M⇤/Mb is the stellar mass fraction within the halo and fc is
the correction factor for the fraction of missing baryons at a given
overdensity.

integrated Y can also be restricted, 
e.g., to within virial radius

=
ne

nH + nHe + ne
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• The frequency dependence of the various SZ e↵ects is shown in
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the relativistic SZ e↵ect, g̃(x), for various scenarios of relativistic
electron populations. Note that the amplitude of the thermal SZ
e↵ect, y, is typically one order of magnitude larger than the am-
plitude of the kinematic SZ e↵ect w, and that the amplitudes of
the relativistic SZ e↵ect, ⌧rel, are yet much smaller.
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• We review the expectations for Ysph = YD
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where x̃e = ne/nH = (X + 1)/(2 X) = 1.158 is the electron-to-
hydrogen number density fraction with a hydrogen mass fraction
X = 0.76, µ = 4/(3X+1+4Xx̃e) = 0.588 denotes the mean molec-
ular weight for a fully ionized medium of primordial abundance
(see Appendix A.1 for a derivation), � = 5/3 is the adiabatic
index, and we assume equilibrium between the electron and ion
temperatures.

• Next, we define the characteristic temperature of the halo as

kT200 =
GM200 µmp
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=
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where M200 and R200 is the virial mass and radius of the cluster,
H(z) = H0E(z) is the Hubble function where H0 denotes it current
day value, G is Newton’s constant, and mp is the proton rest mass.
This enables us to write the total thermal energy of the halo with
Eq. (4.209) as
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where Ngas is the number of gas particles, ⇢cr(z) is the critical
density of the universe, fb = ⌦b/⌦m is the cosmic baryon fraction,
f⇤ . M⇤/Mb is the stellar mass fraction within the halo and fc is
the correction factor for the fraction of missing baryons at a given
overdensity.
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• The frequency dependence of the various SZ e↵ects is shown in
Fig. 4.17. In particular, we compare the spectral distortions due
to the thermal SZ e↵ect, g(x), the kinematic SZ e↵ect, h(x), and
the relativistic SZ e↵ect, g̃(x), for various scenarios of relativistic
electron populations. Note that the amplitude of the thermal SZ
e↵ect, y, is typically one order of magnitude larger than the am-
plitude of the kinematic SZ e↵ect w, and that the amplitudes of
the relativistic SZ e↵ect, ⌧rel, are yet much smaller.

4.4.3 Self-similar SZ Scaling Relation

• We review the expectations for Ysph = YD
2
ang in the idealized case

of a cluster in virial equilibrium to help understand how possible
deviations from the self-similar Ysph–M relation and the scatter
about it may arise. We start with Eq. (4.191), which has been
rewritten as
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where x̃e = ne/nH = (X + 1)/(2 X) = 1.158 is the electron-to-
hydrogen number density fraction with a hydrogen mass fraction
X = 0.76, µ = 4/(3X+1+4Xx̃e) = 0.588 denotes the mean molec-
ular weight for a fully ionized medium of primordial abundance
(see Appendix A.1 for a derivation), � = 5/3 is the adiabatic
index, and we assume equilibrium between the electron and ion
temperatures.

• Next, we define the characteristic temperature of the halo as

kT200 =
GM200 µmp

3R200
=
µmp

3
[10 G M200 H0 E(z)]2/3 , (4.209)

where M200 and R200 is the virial mass and radius of the cluster,
H(z) = H0E(z) is the Hubble function where H0 denotes it current
day value, G is Newton’s constant, and mp is the proton rest mass.
This enables us to write the total thermal energy of the halo with
Eq. (4.209) as
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where Ngas is the number of gas particles, ⇢cr(z) is the critical
density of the universe, fb = ⌦b/⌦m is the cosmic baryon fraction,
f⇤ . M⇤/Mb is the stellar mass fraction within the halo and fc is
the correction factor for the fraction of missing baryons at a given
overdensity.

want to relate this to cluster mass:

characteristic temperature:

ρcrit =
3H2

8πG
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3H2
0E2(z)
8πG
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4
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• The frequency dependence of the various SZ e↵ects is shown in
Fig. 4.17. In particular, we compare the spectral distortions due
to the thermal SZ e↵ect, g(x), the kinematic SZ e↵ect, h(x), and
the relativistic SZ e↵ect, g̃(x), for various scenarios of relativistic
electron populations. Note that the amplitude of the thermal SZ
e↵ect, y, is typically one order of magnitude larger than the am-
plitude of the kinematic SZ e↵ect w, and that the amplitudes of
the relativistic SZ e↵ect, ⌧rel, are yet much smaller.
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• We review the expectations for Ysph = YD
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where x̃e = ne/nH = (X + 1)/(2 X) = 1.158 is the electron-to-
hydrogen number density fraction with a hydrogen mass fraction
X = 0.76, µ = 4/(3X+1+4Xx̃e) = 0.588 denotes the mean molec-
ular weight for a fully ionized medium of primordial abundance
(see Appendix A.1 for a derivation), � = 5/3 is the adiabatic
index, and we assume equilibrium between the electron and ion
temperatures.

• Next, we define the characteristic temperature of the halo as

kT200 =
GM200 µmp

3R200
=
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3
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where M200 and R200 is the virial mass and radius of the cluster,
H(z) = H0E(z) is the Hubble function where H0 denotes it current
day value, G is Newton’s constant, and mp is the proton rest mass.
This enables us to write the total thermal energy of the halo with
Eq. (4.209) as
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where Ngas is the number of gas particles, ⇢cr(z) is the critical
density of the universe, fb = ⌦b/⌦m is the cosmic baryon fraction,
f⇤ . M⇤/Mb is the stellar mass fraction within the halo and fc is
the correction factor for the fraction of missing baryons at a given
overdensity.
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Figure 4.18: The Ysph � M scaling relation for the AGN feedback simulations
of Battaglia et al. (2012a) compared to recent X-ray results from Arnaud et al.
(2010) and SZ results from ACT (Marriage et al. 2010), SPT (Andersson et al.
2010), and Planck (Planck Collaboration et al. 2011). Here, a 13% correction
to the X-ray inferred hydrostatic cluster mass has been applied.

• Substituting Eq. (4.210)) into Eq. (4.191), we obtain the inte-
grated Compton-y parameter within R200,
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(� � 1)�T

mec
2 x̃eXµ(1 � f⇤) fb fc G
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In Eq. (4.211), we set f⇤ = 0, fc = 0.93 (which derives from
non-radiative cluster simulations at R200) and adopted currently
favored cosmological parameters. This simple analytical expres-
sion for the Ysph�M scaling relation allows one to explore the as-
sumptions underlying its derivation. In particular, Battaglia et al.
(2012a) test the influence of the assumptions of spherical gravita-
tional potential, zero non-thermal pressure support, and constant
fb (and for simulation with star formation, constant f⇤) at R200, on
the self-similarity of the SZ scaling relation.

• Figure 4.18 demonstrates that the simulated Ysph�M relation (that
includes AGN feedback) is consistent with current data from X-
ray and SZ observations. However, at group scales, the simula-
tions by Battaglia et al. (2012a) slightly overpredict the SZ flux
due to the too high gas fractions, fgas = Mgas/Mtot, in the simula-
tions compared to X-ray observations. This may signal the omis-
sion of potentially relevant physics in the simulations that governs
fgas or underestimate the action of AGN feedback on these mass
scales.

thermal energy

the Y — M relation:
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In Eq. (4.211), we set f⇤ = 0, fc = 0.93 (which derives from
non-radiative cluster simulations at R200) and adopted currently
favored cosmological parameters. This simple analytical expres-
sion for the Ysph�M scaling relation allows one to explore the as-
sumptions underlying its derivation. In particular, Battaglia et al.
(2012a) test the influence of the assumptions of spherical gravita-
tional potential, zero non-thermal pressure support, and constant
fb (and for simulation with star formation, constant f⇤) at R200, on
the self-similarity of the SZ scaling relation.

• Figure 4.18 demonstrates that the simulated Ysph�M relation (that
includes AGN feedback) is consistent with current data from X-
ray and SZ observations. However, at group scales, the simula-
tions by Battaglia et al. (2012a) slightly overpredict the SZ flux
due to the too high gas fractions, fgas = Mgas/Mtot, in the simula-
tions compared to X-ray observations. This may signal the omis-
sion of potentially relevant physics in the simulations that governs
fgas or underestimate the action of AGN feedback on these mass
scales.
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In Eq. (4.211), we set f⇤ = 0, fc = 0.93 (which derives from
non-radiative cluster simulations at R200) and adopted currently
favored cosmological parameters. This simple analytical expres-
sion for the Ysph�M scaling relation allows one to explore the as-
sumptions underlying its derivation. In particular, Battaglia et al.
(2012a) test the influence of the assumptions of spherical gravita-
tional potential, zero non-thermal pressure support, and constant
fb (and for simulation with star formation, constant f⇤) at R200, on
the self-similarity of the SZ scaling relation.

• Figure 4.18 demonstrates that the simulated Ysph�M relation (that
includes AGN feedback) is consistent with current data from X-
ray and SZ observations. However, at group scales, the simula-
tions by Battaglia et al. (2012a) slightly overpredict the SZ flux
due to the too high gas fractions, fgas = Mgas/Mtot, in the simula-
tions compared to X-ray observations. This may signal the omis-
sion of potentially relevant physics in the simulations that governs
fgas or underestimate the action of AGN feedback on these mass
scales.
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• The Ysph reported by SZ surveys for known clusters use an X-ray-
derived estimate of the aperture size. This is useful because the
cluster radii are typically poorly measured in SZ, and so the X-ray
aperture fixes the SZ measurement along the otherwise degen-
erate aperture flux-aperture radius relation. However, this prior
introduces correlations between the X-ray and SZ observations,
which makes comparisons between these observations di�cult to
interpret.

4.4.4 SZ Power Spectrum

• The angular power spectrum of the thermal SZ e↵ect enables us
to probe cosmological parameters associated with the growth of
structure. First, we need to define several quantities.

• Fourier decomposition is not defined on the sphere. Instead, one
has to project the temperature fluctuations onto another set of ba-
sis functions which are orthonormal on the sphere. These are the
spherical harmonic functions Y

m

` (✓). If �T (✓)/T is the relative
temperature fluctuation of the thermal SZ e↵ect at position ✓ on
the sky, it can be expanded into a series

⇥tSZ(✓) ⌘ �TtSZ

T
(✓) =

1X

`=0

X̀

m=�`
a`mY

m

` (✓). (4.212)

with the (generally complex) coe�cients a`m.

• Because of the orthonormality of the spherical harmonics,
Z 2⇡

0
d'
Z ⇡

0
d✓ sin ✓Ym1⇤

`1
(✓,') Y

m2⇤
`2

(✓,') = �`1`2�m1m2 , (4.213)

the expansion coe�cients are given by

a`m =

Z 2⇡

0
d'
Z ⇡

0
d✓ sin ✓⇥tSZ(✓, �)Ym

` (✓, �). (4.214)

• The power spectrum of the temperature fluctuation map C`,tSZ is
defined by D

a`1m1a
⇤
`2m2

E
⌘ �`1,`2�m1,m2C`,tSZ, (4.215)

which depends only on the multipole order ` because of statistical
isotropy. Conventionally, the quantity `(`+ 1)C` is shown instead
of C` because it reflects the total power contained in the multipole
moment `.

can expand an SZ map in spherical harmonics

for small angles one can use the flat sky approximation 
-> 2D Fourier transform instead of spherical harmonics
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• The Ysph reported by SZ surveys for known clusters use an X-ray-
derived estimate of the aperture size. This is useful because the
cluster radii are typically poorly measured in SZ, and so the X-ray
aperture fixes the SZ measurement along the otherwise degen-
erate aperture flux-aperture radius relation. However, this prior
introduces correlations between the X-ray and SZ observations,
which makes comparisons between these observations di�cult to
interpret.

4.4.4 SZ Power Spectrum

• The angular power spectrum of the thermal SZ e↵ect enables us
to probe cosmological parameters associated with the growth of
structure. First, we need to define several quantities.

• Fourier decomposition is not defined on the sphere. Instead, one
has to project the temperature fluctuations onto another set of ba-
sis functions which are orthonormal on the sphere. These are the
spherical harmonic functions Y

m

` (✓). If �T (✓)/T is the relative
temperature fluctuation of the thermal SZ e↵ect at position ✓ on
the sky, it can be expanded into a series

⇥tSZ(✓) ⌘ �TtSZ

T
(✓) =

1X

`=0

X̀
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` (✓). (4.212)

with the (generally complex) coe�cients a`m.

• Because of the orthonormality of the spherical harmonics,
Z 2⇡

0
d'
Z ⇡

0
d✓ sin ✓Ym1⇤

`1
(✓,') Y

m2⇤
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(✓,') = �`1`2�m1m2 , (4.213)

the expansion coe�cients are given by

a`m =

Z 2⇡

0
d'
Z ⇡

0
d✓ sin ✓⇥tSZ(✓, �)Ym

` (✓, �). (4.214)

• The power spectrum of the temperature fluctuation map C`,tSZ is
defined by D

a`1m1a
⇤
`2m2

E
⌘ �`1,`2�m1,m2C`,tSZ, (4.215)

which depends only on the multipole order ` because of statistical
isotropy. Conventionally, the quantity `(`+ 1)C` is shown instead
of C` because it reflects the total power contained in the multipole
moment `.

<- defines power spectrum
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• For su�ciently small angles on the sky (typically ✓ . 1�) the cur-
vature of the sky becomes vanishingly small and we can Fourier
expand the temperature fluctuations

⇥(x) =
Z

d3
k

(2⇡)3 ⇥̂(k)e�ik·x, ⇥̂(k) =
Z

d3
x⇥(x)eik·x. (4.216)

It is convenient to define the power spectrum of temperature fluc-
tuations in the flat-sky approximation,

h⇥̂(k)⇥̂⇤(k0)i ⌘ (2⇡)3C(`),tSZ�D(k � k0). (4.217)

For su�ciently small angles, there is an exact correspondence
between the all-sky and flat-sky power spectra (see Appendix C
of Hu 2000), so that we have

C`,tSZ = C(`),tSZ. (4.218)

• Applying the integral representation of the Dirac delta distribu-
tion, Z

d3
x e

i(k�k0)·x = (2⇡)3�D(k � k0), (4.219)

to the definition of the SZ power spectrum in the flat-sky ap-
proximation of Eq. (4.217) and substituting the expression for the
change of thermodynamic temperature from the thermal SZ ef-
fect, Eq. (4.186), we can write down the SZ power spectrum of a
single cluster,

C(`),tSZ = f (x)2|ŷ(`)(M, z)|2, (4.220)

where f (x) is implicitly defined in Eq. (4.186) and ŷ(`)(M, z) is the
cluster form factor, i.e., the two-dimensional Fourier transform of
the Compton-y parameter.

• To calculate the SZ power spectrum of the full sky, we need to
account for the distribution of clusters in mass and redshift. To
this end, we use the halo formalism that accounts for (i) the one-
halo contribution of the thermal SZ e↵ect from individual halos,
assuming a spatially Poisson distributed population of clusters
and (ii) the halo-halo term that accounts for spatial correlation
between clusters. Because this second term is subdominant on
angular scales of interest here, ✓ < 1.2� or multipole moments
` > 300, we neglect this correlation term in the following.

• The one-halo contribution to the thermal SZ angular power spec-
trum at a multipole moment ` is the integral of the squared Fourier
transform of the Compton-y parameter over cosmic volume and
all halos of mass M that significantly contribute to the SZ power:

C(`),tSZ = f (x)2
Z

zmax

0

dV

dz
dz

Z
Mmax

Mmin

dM
dn(M, z)

dM
|ŷ(`)(M, z)|2,

(4.221)

where zmax = 1090 and dn(M, z)/dM is the halo mass function.
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• At small frequencies in the Rayleigh–Jeans tail of the CMB spec-
trum, we obtain i(x) ! x

2 for x ⌧ 1. The thermal SZ spectrum
assumes the following simple form for x ⌧ 1 (or ⌫ ⌧ 60 GHz),
which follows from Taylor expanding the thermal spectral distor-
tion in Eq. (4.181):

g(x)! �2x
2. (4.183)

• In order to compute the change in thermodynamic temperature as
a result of the thermal SZ e↵ect, we need to apply the chain rule
to the Kompaneets equation (4.179),

@n

@T

@T

@y
=

xex

(ex � 1)2

 
x

ex + 1
ex � 1

� 4
!
, (4.184)

@n

@T
=
@n

@x

@x

@T
=

ex

(ex � 1)2

x

T
. (4.185)

Combining these results with Eq. (4.180) enables us to determine
the relative change �T/T in thermodynamic CMB temperature at
position ✓ due to the thermal SZ e↵ect,

�TtSZ

T
(✓) = y(✓)

 
x

ex + 1
ex � 1

� 4
!
⌘ y(✓) f (x). (4.186)

• Kinematic SZ e↵ect. There is an additional spectral distortion
of the CMB spectrum due to the Doppler e↵ect of the bulk mo-
tion of baryonic matter streams inside a cluster or of the motion
of the cluster as a whole relative to the CMB rest frame. If the
component of the cluster’s peculiar velocity is projected along the
line-of-sight, then the Doppler e↵ect leads to a change in thermo-
dynamic temperature referred to as the kinematic SZ e↵ect,

�TkSZ

T
(✓) = �w(✓), (4.187)

w(✓) ⌘ �T

Z
dl ne(r)

vr
c
. (4.188)

The amplitude of the kinematic SZ e↵ect is given by the kine-
matic Comptonization parameter w that is equal to the dimen-
sionless streaming velocity, vr/c, times the optical depth of free
electrons along the line of sight. We have vr < 0 if the gas is ap-
proaching the observer, which results in a temperature increase.

• The spectral distortion of the kinematic SZ e↵ect can be ob-
tained by multiplying the change in thermodynamic temperature,
Eq. (4.187), by @n/@T (Eq. 4.185) and by a factor i0x

3
T to get

�IkSZ(x,✓) = �i0w(✓)h(x), where (4.189)

h(x) =
x

4
e

x

(ex � 1)2 . (4.190)

with f defined by

2D Fourier transform of Compton-y

SZ power spectrum of single cluster: 
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• For su�ciently small angles on the sky (typically ✓ . 1�) the cur-
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It is convenient to define the power spectrum of temperature fluc-
tuations in the flat-sky approximation,

h⇥̂(k)⇥̂⇤(k0)i ⌘ (2⇡)3C(`),tSZ�D(k � k0). (4.217)

For su�ciently small angles, there is an exact correspondence
between the all-sky and flat-sky power spectra (see Appendix C
of Hu 2000), so that we have

C`,tSZ = C(`),tSZ. (4.218)

• Applying the integral representation of the Dirac delta distribu-
tion, Z
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i(k�k0)·x = (2⇡)3�D(k � k0), (4.219)

to the definition of the SZ power spectrum in the flat-sky ap-
proximation of Eq. (4.217) and substituting the expression for the
change of thermodynamic temperature from the thermal SZ ef-
fect, Eq. (4.186), we can write down the SZ power spectrum of a
single cluster,

C(`),tSZ = f (x)2|ŷ(`)(M, z)|2, (4.220)

where f (x) is implicitly defined in Eq. (4.186) and ŷ(`)(M, z) is the
cluster form factor, i.e., the two-dimensional Fourier transform of
the Compton-y parameter.

• To calculate the SZ power spectrum of the full sky, we need to
account for the distribution of clusters in mass and redshift. To
this end, we use the halo formalism that accounts for (i) the one-
halo contribution of the thermal SZ e↵ect from individual halos,
assuming a spatially Poisson distributed population of clusters
and (ii) the halo-halo term that accounts for spatial correlation
between clusters. Because this second term is subdominant on
angular scales of interest here, ✓ < 1.2� or multipole moments
` > 300, we neglect this correlation term in the following.

• The one-halo contribution to the thermal SZ angular power spec-
trum at a multipole moment ` is the integral of the squared Fourier
transform of the Compton-y parameter over cosmic volume and
all halos of mass M that significantly contribute to the SZ power:

C(`),tSZ = f (x)2
Z

zmax

0

dV

dz
dz

Z
Mmax

Mmin

dM
dn(M, z)

dM
|ŷ(`)(M, z)|2,

(4.221)

where zmax = 1090 and dn(M, z)/dM is the halo mass function.
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• Assuming that the electron pressure profile Pe(r) is spherically
symmetric, we can determine the functional form of ŷ(`)(M, z) via

ŷ(`) =
1

D2
ang

Z
d3

r
�T

mec
2 Pe(r)eik·r (4.222)

=
2⇡�T

mec
2

1
D2

ang

Z 1

0
drr

2
Z ⇡

0
d✓ sin ✓ Pe(r) cos(kr cos ✓)

(4.223)

=
4⇡�T

mec
2

1
D2

ang

Z 1

0
drr

2
Pe(r)

Z 1

0
d cos ✓ cos(kr cos ✓).

(4.224)

Note that there should have been an imaginary contribution from
the expansion of eik·r using Euler’s formula, but the integral van-
ishes identically,

Z ⇡

0
d✓ sin ✓ i sin(kr cos ✓) =

i cos(kr cos ✓)
kr

�����
⇡

0
= 0. (4.225)

• To proceed, we explore the fact that the physical sizes of clusters,
R, is small compared to their angular diameter distance, Dang, so
that we can use the small-angle approximation,

2⇡
`
= # ⇡ tan# =

R

Dang
=

2⇡
Dangk

(4.226)

so that we can read o↵ ` ⇡ Dangk which enables us to rewrite the
argument of the cosine in Eq. (4.224),

rk = xrrs
`

Dang
= xr

`

`s
, (4.227)

where we introduced a dimensionless radius xr = r/rs where the
scale radius is defined via the NFW density profile, rs = r200/c200,
where r200 and c200 are the virial radius and profile concentra-
tion parameter. The scale radius defines the multipole moment in
Limber’s approximation, `s = Dang/rs.

• Adopting these definitions, we can calculate the integral in cos ✓
via

Z 1

0
d cos ✓ cos

 
`

`s
xr cos ✓

!
=

sin(`xr/`s)
`xr/`s

(4.228)

and find

ŷ(`) =
4⇡�T

mec
2

rs

`2s

Z 1

0
dxr x

2
r
Pe(r)

sin(`xr/`s)
`xr/`s

. (4.229)

can, e.g., use fits to pressure profiles of simulated clusters to evaluate this:
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Figure 4.19: The normalized average pressure profiles and parametrized fits

to these profiles from simulations with AGN feedback scaled by (r/R200)3,
in mass bins (left panel) and redshift bins (right panel). Here each mass and
redshift bin has been independently fit. The grey band shows the standard de-
viation of the average cluster in the most massive bin (left) and lowest redshift
bin (right). In both panels we illustrate the radii that contribute 68% and 95%
of the total thermal energy, Y , centered on the median, by horizontal purple
and pink error bars. The bottom panels show the percent di↵erence between
the fits and the average profiles (Battaglia et al. 2012b).

• Defining a virial analogue of the thermal pressure,

P200 ⌘
GM200200 ⇢cr(z) fb

2R200
, (4.230)

we can fit stacked average thermal pressure profiles P̄th =

hPth/P200i to a restricted version of the generalized NFW profile,

P̄fit = P0 (xr/xc)�
⇥
1 + (xr/xc)↵

⇤�� , xr ⌘ r/R200, (4.231)

where the fit parameters are a core-scale xc, an amplitude P0 and
a power law index � for the asymptotic fall o↵ of the profile.
Because there is substantial degeneracy between fit parameters,
fixing ↵ = 1.0 and � = �0.3 provides equally good fits. Fig-
ure 4.19 shows that generalized NFW profile fits the average pro-
files well in the majority of the mass and redshift bins, with de-
viations within ⇠ 5% of the mean. The upturns at large radii are
due to contributions from nearby clusters and substructure.

• Because of the systematic trend of the pressure profiles with mass
and redshift, it is possible to derive a global fit to our pressure pro-
files as a function of mass and redshift. Treating each parameter
as a separable function of mass and redshift gives good results,
with the fit parameters constrained to be of the following form:
for generic parameter A (representing the fit parameters P0, �,
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Figure 4.19: The normalized average pressure profiles and parametrized fits

to these profiles from simulations with AGN feedback scaled by (r/R200)3,
in mass bins (left panel) and redshift bins (right panel). Here each mass and
redshift bin has been independently fit. The grey band shows the standard de-
viation of the average cluster in the most massive bin (left) and lowest redshift
bin (right). In both panels we illustrate the radii that contribute 68% and 95%
of the total thermal energy, Y , centered on the median, by horizontal purple
and pink error bars. The bottom panels show the percent di↵erence between
the fits and the average profiles (Battaglia et al. 2012b).

• Defining a virial analogue of the thermal pressure,

P200 ⌘
GM200200 ⇢cr(z) fb

2R200
, (4.230)

we can fit stacked average thermal pressure profiles P̄th =

hPth/P200i to a restricted version of the generalized NFW profile,

P̄fit = P0 (xr/xc)�
⇥
1 + (xr/xc)↵

⇤�� , xr ⌘ r/R200, (4.231)

where the fit parameters are a core-scale xc, an amplitude P0 and
a power law index � for the asymptotic fall o↵ of the profile.
Because there is substantial degeneracy between fit parameters,
fixing ↵ = 1.0 and � = �0.3 provides equally good fits. Fig-
ure 4.19 shows that generalized NFW profile fits the average pro-
files well in the majority of the mass and redshift bins, with de-
viations within ⇠ 5% of the mean. The upturns at large radii are
due to contributions from nearby clusters and substructure.

• Because of the systematic trend of the pressure profiles with mass
and redshift, it is possible to derive a global fit to our pressure pro-
files as a function of mass and redshift. Treating each parameter
as a separable function of mass and redshift gives good results,
with the fit parameters constrained to be of the following form:
for generic parameter A (representing the fit parameters P0, �,

in units of
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Figure 4.19: The normalized average pressure profiles and parametrized fits

to these profiles from simulations with AGN feedback scaled by (r/R200)3,
in mass bins (left panel) and redshift bins (right panel). Here each mass and
redshift bin has been independently fit. The grey band shows the standard de-
viation of the average cluster in the most massive bin (left) and lowest redshift
bin (right). In both panels we illustrate the radii that contribute 68% and 95%
of the total thermal energy, Y , centered on the median, by horizontal purple
and pink error bars. The bottom panels show the percent di↵erence between
the fits and the average profiles (Battaglia et al. 2012b).

• Defining a virial analogue of the thermal pressure,

P200 ⌘
GM200200 ⇢cr(z) fb

2R200
, (4.230)

we can fit stacked average thermal pressure profiles P̄th =

hPth/P200i to a restricted version of the generalized NFW profile,

P̄fit = P0 (xr/xc)�
⇥
1 + (xr/xc)↵

⇤�� , xr ⌘ r/R200, (4.231)

where the fit parameters are a core-scale xc, an amplitude P0 and
a power law index � for the asymptotic fall o↵ of the profile.
Because there is substantial degeneracy between fit parameters,
fixing ↵ = 1.0 and � = �0.3 provides equally good fits. Fig-
ure 4.19 shows that generalized NFW profile fits the average pro-
files well in the majority of the mass and redshift bins, with de-
viations within ⇠ 5% of the mean. The upturns at large radii are
due to contributions from nearby clusters and substructure.

• Because of the systematic trend of the pressure profiles with mass
and redshift, it is possible to derive a global fit to our pressure pro-
files as a function of mass and redshift. Treating each parameter
as a separable function of mass and redshift gives good results,
with the fit parameters constrained to be of the following form:
for generic parameter A (representing the fit parameters P0, �,

Battaglia et al. 2012
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Figure 4.22: The thermal SZ power spectrum sorted into bins of galaxy cluster
mass (top) and redshift (bottom). The left panels show the cumulative thermal
SZ power spectrum in mass (redshift) bins from the AGN feedback simula-
tions, the pasted profile maps and the analytical calculation. The right panels
show the di↵erential thermal SZ power spectrum. The bottom panels show the
relative di↵erence, �C(`) = 100

�C(`), sim � C(`),i
�
/C(`), sim, where C(`), sim is the

power spectrum of the simulated maps and C(`),i is that of the pasted profile
maps and the analytical calculation, respectively (Battaglia et al. 2012b).

-> sensitive to massive halos and hence σ8 Battaglia et al. 2012



Recap - X-ray & SZ effect 

• intracluster medium can be observed in X-ray emission: 

• allows inference of ICM state (temperature, density) including turbulence 

• allows hydrostatic mass estimates 

• can distinguish cool core and non-cool core clusters (different central entropy, density and temperature); cool 
cores seem not to evolve much over time and not to be disrupted by AGN outbursts 

• intracluster medium can be observed via the spectral distortions it imprints on the CMB (SZ effect): 

• contributions from thermal, kinetic and relativistic SZ effects 

• integrated Compton-y correlates tightly with cluster mass 

• SZ power spectrum useful for comparing theoretical models (e.g., for different cosmologies) to 
observations


