

The Physics of Galaxy Clusters Lecture 14 - X-ray Cluster Astrophysics and the Sunyaev-Zel'dovich Effect

ESA/XMM-Newton/DSS-II/J. Sanders et al. 2019

Christoph Pfrommer (based on slides by Ewald Puchwein)

Cluster X-ray emission

- probes hot intracluster gas (T ~ 10⁷ 10⁸ K) •
 - at high temperatures (\geq 2 keV) mostly free-free emission (electron-ion) collisions)
 - at lower temperatures metal lines (e.g., Fe)
- allows measuring gas density and temperature •
 - emissivity ~ square of density
 - spectral shape depends on temperature

Hydrostatic equilibrium

• expect the ICM to relax on a few sound crossing time scales:

$$t_{\rm s} \equiv \frac{D}{c_{\rm s}} \approx 7 \times 10^8 \left(\frac{T}{10^8 \,\mathrm{K}}\right)^{-1/2} \left(\frac{D}{1 \,\mathrm{Mpc}}\right) \,\mathrm{yr}$$

they compare to typical galaxy velocities? What is the reason for this?

Unless the intracluster gas gets continuously disturbed by (major) mergers, we

What are typical values for the speed of sound in a galaxy cluster? How do

Hydrostatic mass estimates

- if the gas is in hydrostatic equilibrium in the gravitational potential •
 - ➡ allows cluster mass measurement

$$\nabla P = -\rho_{\text{gas}} \nabla \Phi$$
$$\frac{1}{\rho_{\text{gas}}} \frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{GM(r)}{r^2}$$

- force balance
- for spherical symmetry

Consider gas parcel

Why can the hydrodynamic force per unit volume can be written as ∇P ?

 $F_{x} = P \times A \quad -> \qquad F_{\text{grav},x} = \rho V \overrightarrow{\nabla} \Phi \Big|_{x}$

$$< F_{x} = \left(P + \frac{dP}{dx}l\right) \times A = P \times A + \frac{dA}{dx}$$

to cluster center

Hydrostatic mass estimates

- if the gas is in hydrostatic equilibrium in the gravitational potential •
 - ➡ allows cluster mass measurement

$$\nabla P = -\rho_{\text{gas}} \nabla \Phi \quad \text{force balance}$$

$$\frac{1}{\rho_{\text{gas}}} \frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{GM(r)}{r^2} \quad \text{for spherical symme}$$

$$\rightarrow M(r) = -\frac{rk_{\text{B}}T}{G\bar{m}} \left(\frac{\mathrm{d}\ln\rho_{\text{gas}}}{\mathrm{d}\ln r} + \frac{\mathrm{d}\ln T}{\mathrm{d}\ln r}\right)$$

- ymmetry

Gas particle vs. galaxy velocities

galaxies have similar kinematics

$$M(r) = -\frac{r\sigma_{v,\text{gal}}^2}{G} \left(\frac{d\ln\rho_{\text{gal}}}{d\ln r} + \frac{d\ln\sigma_{v,\text{gal}}^2}{d\ln r}\right)$$

allows relating gas density to galaxy density profile (if isothermal & symmetric) 2010 $\rho_{\text{gal}}(r) = \rho_0 \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3/2}$

velocity dispersion

with
$$\sigma_{v,gal}^2 = \sigma_{v,gas}^2 \beta$$

$$\rho_{\text{gas}}(r) = \rho_0 \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3\beta/2}$$
Beta
profile

gas density profile:

$$n_{\rm e}(r) = \sum_{i=1,2} n_i \left[1 + \left(\frac{r}{r_{{\rm c},i}}\right)^2 \right]^{-3\beta_i/2}$$

Cool core vs. non-cool core clusters

gas density profile:

$$n_{\rm e}(r) = \sum_{i=1,2} n_i \left[1 + \left(\frac{r}{r_{{\rm c},i}}\right)^2 \right]^{-3\beta_i/2}$$

$$t_{\rm cool} = \frac{\varepsilon_{\rm th}}{\dot{\varepsilon}_{\rm brems}} \approx 0.5 \, \left(\frac{k_{\rm B}T}{1 \, \rm keV}\right)^{1/2} \left(\frac{n_{\rm e}}{4 \times 10^{-2} \, \rm cm^{-3}}\right)$$

Cool core vs. non-cool core clusters

gas density profile:

$$n_{\rm e}(r) = \sum_{i=1,2} n_i \left[1 + \left(\frac{r}{r_{{\rm c},i}}\right)^2 \right]^{-3\beta_i/2}$$

$$t_{\rm cool} = \frac{\varepsilon_{\rm th}}{\dot{\varepsilon}_{\rm brems}} \approx 0.5 \, \left(\frac{k_{\rm B}T}{1 \, \rm keV}\right)^{1/2} \left(\frac{n_{\rm e}}{4 \times 10^{-2} \, \rm cm^{-3}}\right)$$

Entropy profiles

$$K_{\rm e} = \frac{kT}{n_e^{2/3}}$$
 constant in adiabatic p

$P \propto nT \approx \text{const.} \rightarrow K_{\rho} \propto n_{\rho}^{-5/3}$ in pressure equilibrium

entropy profile typically well fit by

$$K_{\rm e}(r) = K_0 + K_{100} \left(\frac{r}{100 \, \rm kpc}\right)^{\alpha}$$

Drocesses

-> higher entropy gas has lower density -> rises buoyantly

X-ray surface brightness

emissivity ~ square of density:

$$j_{\rm X}(r) = j_0 \bigg[1 +$$

$$S_{\rm X}(r_{\perp}) = \int_{-\infty}^{\infty} j_{\rm X}$$

$$= 2 \int_{r_{\perp}}^{\infty} \frac{j_{\rm X}(r)r\,\mathrm{d}r}{\sqrt{r^2 - r_{\perp}^2}} = S_0 \left[1 + \left(\frac{r_{\perp}}{r_{\rm c}}\right)^2\right]^{-3\beta + 1/2}$$

$$\left(\frac{r}{r_{\rm c}}\right)^2$$

• X-ray surface brightness profile is obtained upon a line-of-sight integration:

[r(z)]dz

X-ray surface brightness

cool core

Allen & Ebeling

non-cool core

Cluster density profiles

McDonald et al. 2017

Cool core static / evolving?

Can AGN outbursts destroy cool cores?

Pfrommer et al. 2012

Reynolds number

$$\begin{aligned} \mathrm{Re} &= \frac{t_{\mathrm{diss}}}{t_{\mathrm{adv}}} \approx \frac{3L^2}{\lambda_{\mathrm{mfp}} v_{\mathrm{th}}} \frac{v}{L} = \frac{3L}{\lambda_{\mathrm{mfp}}} \frac{v}{v_{\mathrm{th}}} \\ t_{\mathrm{adv}} &\approx \frac{L}{v} \\ t_{\mathrm{diss}} \approx \frac{L^2}{\nu} \approx \frac{3L^2}{\lambda_{\mathrm{mfp}} v_{\mathrm{th}}} \end{aligned}$$

Reynolds number

diffusion of momentum

Reynolds number

$$\begin{aligned} \mathrm{Re} &= \frac{t_{\mathrm{diss}}}{t_{\mathrm{adv}}} \approx \frac{3L^2}{\lambda_{\mathrm{mfp}} v_{\mathrm{th}}} \frac{v}{L} = \frac{3L}{\lambda_{\mathrm{mfp}}} \frac{v}{v_{\mathrm{th}}} \\ t_{\mathrm{adv}} &\approx \frac{L}{v} \\ t_{\mathrm{diss}} \approx \frac{L^2}{\nu} \approx \frac{3L^2}{\lambda_{\mathrm{mfp}} v_{\mathrm{th}}} \end{aligned}$$

Reynolds number

$$\operatorname{Re} = \frac{t_{\operatorname{diss}}}{t_{\operatorname{adv}}} \approx \frac{3L^2}{\lambda_{\operatorname{mfp}} v_{\operatorname{th}}} \frac{v}{L} = \frac{3L}{\lambda_{\operatorname{mfp}}} \frac{v}{v_{\operatorname{th}}}$$
$$t_{\operatorname{adv}} \approx \frac{L}{v}$$
$$t_{\operatorname{diss}} \approx \frac{L^2}{\nu} \approx \frac{3L^2}{\lambda_{\operatorname{mfp}} v_{\operatorname{th}}}$$

Mean free path

$$\lambda_{\rm mfp} = \frac{1}{n\sigma \ln \Lambda} \sim \frac{1}{\pi n \ln \Lambda} \left(\frac{k_{\rm B}T_{\rm e}}{Ze^2}\right)^2$$
$$\sim 5 \,\rm kpc \, \left(\frac{n}{10^{-3} \,\rm cm^{-3}}\right)^{-1} \left(\frac{k_{\rm B}T_{\rm e}}{6 \,\rm keV}\right)^2$$

center CC cluster (~ 1 kpc) $\rightarrow n \sim 10^{-1}$ cm⁻³, $k_{\rm B}T \sim 3$ keV $\rightarrow 0.01$ kpc center NCC cluster (~ 1 kpc) $\rightarrow n \sim 10^{-2}$ cm⁻³, $k_{\rm B}T \sim 6$ keV $\rightarrow 0.5$ kpc outskirts (~ 1 Mpc) $\rightarrow n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc}$

Mean free path

$$\lambda_{\rm mfp} = \frac{1}{n\sigma \ln \Lambda} \sim \frac{1}{\pi n \ln \Lambda} \left(\frac{k_{\rm B}T_{\rm e}}{Ze^2}\right)^2$$
$$\sim 5 \,\rm kpc \, \left(\frac{n}{10^{-3} \,\rm cm^{-3}}\right)^{-1} \left(\frac{k_{\rm B}T_{\rm e}}{6 \,\rm keV}\right)^2$$

center CC cluster (~ 1 kpc) $\rightarrow n \sim 10^{-1}$ cm⁻³, $k_{\rm B}T \sim 3$ keV $\rightarrow 0.01$ kpc center NCC cluster (~ 1 kpc) $\rightarrow n \sim 10^{-2}$ cm⁻³, $k_{\rm B}T \sim 6$ keV $\rightarrow 0.5$ kpc outskirts (~ 1 Mpc) $\rightarrow n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc}$

can be large compared to X-ray resolution

Mean free path

$$\lambda_{\rm mfp} = \frac{1}{n\sigma \ln \Lambda} \sim \frac{1}{\pi n \ln \Lambda} \left(\frac{k_{\rm B}T_{\rm e}}{Ze^2}\right)^2$$
$$\sim 5 \,\rm kpc \, \left(\frac{n}{10^{-3} \,\rm cm^{-3}}\right)^{-1} \left(\frac{k_{\rm B}T_{\rm e}}{6 \,\rm keV}\right)^2$$

center CC cluster (~ 1 kpc) $\rightarrow n \sim 10^{-1} \text{ cm}^{-3}$, $k_{\text{B}}T \sim 3 \text{ keV} \rightarrow 0.01 \text{ kpc}$ center NCC cluster (~ 1 kpc) $\rightarrow n \sim 10^{-2} \text{ cm}^{-3}$, $k_{\text{B}}T \sim 6 \text{ keV} \rightarrow 0.5 \text{ kpc}$ outskirts (~ 1 Mpc) $\rightarrow n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc}$

 $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc}$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3} \rightarrow 50.0 \text{ kpc})$ $(n \sim 10^{-4} \text{ cm}^{-3}$

Lamor radius

$$r_{\rm L} = \frac{m_{\rm p} v_{\perp} c}{ZeB} = 10^5 \,\mathrm{km} \left(\frac{v_{\perp}}{10^3 \,\mathrm{km} \,\mathrm{s}^{-1}}\right) \left(\frac{B}{1 \,\mu\mathrm{G}}\right)$$
$$\uparrow$$
$$\sim 3 \times 10^{-12} \,\mathrm{kpc}$$

Reynolds number perpendicular to magnetic field:

$$\operatorname{Re}_{\perp} = \frac{L}{r_{\mathrm{L}}} \frac{v}{v_{\mathrm{th}}} = 10^{14} \frac{v}{v_{\mathrm{th}}} \quad -> \quad \text{very turk}$$

-1

bulent

$$E_v(k) = C_{\rm K} \dot{\epsilon}^{2/3} k^{-5/3}$$

energy spectrum of velocity field (Kolmogorov)

wave number

energy spectrum of velocity field (Kolmogorov)

but cannot directly measure this

$$\frac{\delta \rho_k}{\rho_0} \approx \eta_{\text{turb}} \frac{v_k}{c_s} \qquad \text{density fluc} \\ -> \text{ these eff} \\ \text{with} \quad \frac{3}{2} v_k^2 = k E_v(k)$$

 2^{k}

 $-\kappa L_{v}(\kappa)$

energy spectrum of velocity field (Kolmogorov)

but cannot directly measure this

ctuations related to turbulent velocities ffect X-ray surface brightness

$$\frac{\delta \rho_k}{\rho_0} \approx \eta_{\text{turb}} \frac{v_k}{c_s} \qquad \text{density fluc} \\ -> \text{ these eff} \\ \text{with} \quad \frac{3}{2} v_k^2 = k E_v(k)$$

energy spectrum of velocity field (Kolmogorov)

but cannot directly measure this

->

ctuations related to turbulent velocities ffect X-ray surface brightness

$$\frac{\delta \rho_k}{\rho_0} \approx \eta_{\text{turb}} \frac{v_k}{c_s} \qquad \text{density fluc} \\ -> \text{ these eff} \\ \text{with} \quad \frac{3}{2} v_k^2 = k E_v(k)$$

 2^{k}

 $-\kappa L_{v}(\kappa)$

energy spectrum of velocity field (Kolmogorov)

but cannot directly measure this

ctuations related to turbulent velocities ffect X-ray surface brightness

$$\rightarrow v_k \propto k^{-1/3}$$

Measuring turbulence in the ICM from density fluctuations

Measuring turbulence in the ICM from density fluctuations

Measuring turbulence in the ICM from broadening of lines

Hitomi measured turbulent Dopplerbroadening in the Perseus cluster

$164 \pm 10 \text{ km s}^{-1}$

-> turbulent pressure only 4% of thermal pressure

Hitomi Collaboration 2016

Heating by dissipation of turbulence

Zhuravleva et al. 2014

Measuring turbulence in the ICM from H-alpha velocities

Li et al. 2020

Merger Shocks and Electron Equilibration

temperature boost by shock (if no energy exchange):

> $\Delta(k_{\rm B}T_{\rm i})\simeq m_{\rm i}(\Delta v)^2,$ $\Delta(k_{\rm B}T_{\rm e})\simeq m_{\rm e}(\Delta v)^2,$

The Bullet Cluster

X-ray: NASA/CXC/CfA/M.Markevitch, Optical/lensing: NASA/STScl, Magellan/U.Arizona/D.Clowe, Lensing: ESO

Merger Shocks and Electron Equilibration

temperature boost by shock (if no energy exchange):

> $\Delta(k_{\rm B}T_{\rm i})\simeq m_{\rm i}(\Delta v)^2,$ $\Delta(k_{\rm B}T_{\rm e})\simeq m_{\rm e}(\Delta v)^2,$

 $\Delta v = 1000 \,\mathrm{km/s} \rightarrow \Delta T_{\mathrm{p}} \sim 4 \times 10^7 \,\mathrm{K}$ $\Delta T_{\rm e} \sim 2 \times 10^4 \,\mathrm{K}$

The Bullet Cluster

X-ray: NASA/CXC/CfA/M.Markevitch, Optical/lensing: NASA/STScl, Magellan/U.Arizona/D.Clowe, Lensing: ESO

What temperature do X-ray observations measure?

high relative velocity + dipole moment

low relative velocity high relative velocity low relative velocity no dipole moment no dipole moment dipole moment

What temperature do X-ray observations measure?

Energy exchange between electrons and ions

temperature equilibration

$$\frac{\partial (T_{\rm e} - T_{\rm i})}{\partial t} = -v_{\rm ei}(T_{\rm e} - T_{\rm i}) \qquad \text{with}$$

-> solved by:

$$T_{\rm e} - T_{\rm i} = {\rm e}^{-\nu_{\rm ei}t}$$

relevant scales:

$$\tau_{\rm ei} = \nu_{\rm ei}^{-1} \approx 95 \,\,{\rm Myr} \,\left(\frac{k_{\rm B}T_{\rm e}}{10 \,\,{\rm keV}}\right)^{3/2} \left(\frac{n_{\rm e}}{10^{-3} \,\,{\rm cm}^{-3}}\right)^{-1},$$
$$L_{\rm ei} = \frac{v_{\rm post}}{\tau_{\rm ei}} \approx 155 \,\,{\rm kpc} \,\left(\frac{v_{\rm post}}{1600 \,\,{\rm km \,\,s}^{-1}}\right),$$

$$v_{\rm ei} \approx 4 \frac{m_{\rm e}}{m_{\rm p}} \frac{v_{\rm the}}{\lambda_{\rm mfp}}$$

Energy exchange between electrons and ions

temperature equilibration

$$\frac{\partial (T_{\rm e} - T_{\rm i})}{\partial t} = -v_{\rm ei}(T_{\rm e} - T_{\rm i}) \qquad \text{with}$$

-> solved by:

$$T_{\rm e} - T_{\rm i} = {\rm e}^{-\nu_{\rm ei}t}$$

$$v_{\rm ei} \approx 4 \frac{m_{\rm e}}{m_{\rm p}} \frac{v_{\rm the}}{\lambda_{\rm mfp}}$$

$$n_{\rm B}T_{\rm e} \ \sqrt{n_{\rm e}} \ \sqrt{-1}$$

nissing in this simple picture
aster equilibration

 1600 km s^{-1}

The Sunyaev-Zel'dovich (SZ) Effect

- CMB photons can inverse Compton scatter on hot electrons in galaxy clusters
 - this results in deviations from the black body spectrum
 - can be used to probe the intracluster medium

Planck collaboration 2011

The Sunyaev-Zel'dovich (SZ) Effect

initial black body spectrum of the CMB:

$$I(x) = i_0 i(x) = i_0 \frac{x^3}{e^x - 1}, \text{ where}$$
$$x = \frac{\hbar\omega}{k_B T_{\text{cmb}}},$$
$$i_0 = \frac{2(k_B T_{\text{cmb}})^3}{(hc)^2} = 22.8 \text{ Jy arcmin}$$

changes in spectrum described by the Kompaneets equation:

$$\frac{\partial n}{\partial t} = \frac{\sigma_{\rm T} n_{\rm e} \hbar}{m_{\rm e} c} \frac{1}{\omega^2} \frac{\partial}{\partial \omega} \left[\omega^4 \left(\frac{k_{\rm B} T_{\rm e}}{\hbar} \frac{\partial n}{\partial \omega} + n + n^2 \right) \right]$$

in^{-2} .

The Kompaneets equation

$$\frac{\partial n}{\partial t} = \frac{\sigma_{\rm T} n_{\rm e} \hbar}{m_{\rm e} c} \frac{1}{\omega^2} \frac{\partial}{\partial \omega} \left[\omega^4 \left(\frac{k_{\rm B} T_{\rm e}}{\hbar} \frac{\partial}{\partial \omega} \right) \right]$$

$$\frac{d\tau}{dt} = \sigma_{\rm T} n_e c$$

$$\frac{\langle \Delta E_{\gamma} \rangle}{E_{\gamma}} = \frac{k_{\rm B} T_{\rm e}}{m_{\rm e} c^2} \quad \text{for} \quad p \ll m_{\rm e} c$$

optical depth

energy transfer per scattering

diffusion term (depending on energy transfer)

The Kompaneets equation

$$\frac{\partial n}{\partial t} = \frac{\sigma_{\rm T} n_{\rm e} \hbar}{m_{\rm e} c} \frac{1}{\omega^2} \frac{\partial}{\partial \omega} \left[\omega^4 \left(\frac{k_{\rm B} T_{\rm e}}{\hbar} \frac{\partial n}{\partial \omega} + n + n^2 \right) \right]$$

convenient to use a variable y (called Compton-y parameter) and photon energy in units of the thermal energy

$$dy = \frac{k_{\rm B}T_{\rm e}}{m_{\rm e}c^2} n_{\rm e}\sigma_{\rm T}cdt \quad \text{and} \quad x_{\rm e} = \frac{\hbar\omega}{k_{\rm B}T_{\rm e}}$$

$$-> \quad \frac{\partial n}{\partial y} = \frac{1}{x_{\rm e}^2} \frac{\partial}{\partial x_{\rm e}} \left[x_{\rm e}^4 \left(\frac{\partial n}{\partial x_{\rm e}} + n + n^2 \right) \right]$$

The Kompaneets equation

$$\frac{\partial n}{\partial t} = \frac{\sigma_{\rm T} n_{\rm e} \hbar}{m_{\rm e} c} \frac{1}{\omega^2} \frac{\partial}{\partial \omega} \left[\omega^4 \left(\frac{k_{\rm B} T_{\rm e}}{\hbar} \frac{\partial n}{\partial \omega} + n + n^2 \right) \right]$$

convenient to use a variable y (called Compton-y parameter) and photon energy in units of the thermal energy

$$dy = \frac{k_{\rm B}T_{\rm e}}{m_{\rm e}c^2} n_{\rm e}\sigma_{\rm T}cdt \quad \text{and} \quad x_{\rm e} = \frac{\hbar\omega}{k_{\rm B}T_{\rm e}}$$

$$-> \quad \frac{\partial n}{\partial y} = \frac{1}{x_{\rm e}^2} \frac{\partial}{\partial x_{\rm e}} \left[x_{\rm e}^4 \left(\frac{\partial n}{\partial x_{\rm e}} + n + n^2 \right) \right]$$

example - equilibrium:

$$\frac{\partial n}{\partial x_e} + n + n^2 = 0$$

$$n(x_e) = \frac{1}{e^{x_e + \mu_c} - 1}$$

$$\frac{\partial n}{\partial y} = \frac{1}{x_{\rm e}^2} \frac{\partial}{\partial x_{\rm e}} \left[x_{\rm e}^4 \left(\frac{\partial n}{\partial x_{\rm e}} + n + n^2 \right) \right]$$

for
$$x_e \ll 1$$
 (as CMB temper smaller than electron

$$\frac{\partial n}{\partial y} = \frac{1}{x_e^2} \frac{\partial}{\partial x_e} \left(x_e^4 \frac{\partial n}{\partial x_e} \right)$$
$$= \frac{1}{x^2} \frac{\partial}{\partial x} \left(x_e^4 \frac{\partial n}{\partial x} \right) = 4x \frac{\partial n}{\partial x} + x^2 \frac{\partial^2 n}{\partial x^2}$$

$$> \qquad \frac{\partial n}{\partial y} = \frac{x e^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right)$$

- Kompaneets eq.
- rature ~ 10⁷ times ctron temperature)

$$n(x) = \frac{1}{e^{x} - 1}$$
 Planckian distribution of CM
with $x = \frac{\hbar\omega}{k_{B}T_{cmb}}$

using
$$\frac{\partial n}{\partial y} = \frac{xe^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right)$$

$$\Delta I_{\text{tSZ}}(x,\theta) = i_0 y(\theta) g(x), \text{ where}$$

$$= \frac{x^4 e^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right),$$

$$y(\theta) = \frac{\sigma_{\text{T}}}{m_{\text{e}} c^2} \int n_{\text{e}}(\mathbf{r}) k_{\text{B}} T_{\text{e}}(\mathbf{r}) c dt$$

or in terms of the brightness temperature of the modified CMB

$$\frac{\Delta T_{\text{tSZ}}}{T}(\boldsymbol{\theta}) = y(\boldsymbol{\theta}) \left(x \frac{\mathrm{e}^{x} + 1}{\mathrm{e}^{x} - 1} - 4 \right) \equiv y(\boldsymbol{\theta}) f(x)$$

 $\frac{\Delta I}{I} = \frac{\Delta n}{n}$ and

and

using
$$\frac{\partial n}{\partial y} = \frac{xe^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right)$$

$$\Delta I_{\text{tSZ}}(x,\theta) = i_0 y(\theta) g(x), \text{ where}$$

$$= \frac{x^4 e^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right),$$

$$y(\theta) = \frac{\sigma_{\text{T}}}{m_{\text{e}} c^2} \int n_{\text{e}}(\mathbf{r}) k_{\text{B}} T_{\text{e}}(\mathbf{r}) c dt$$

or in terms of the brightness temperature of the n

$$\frac{\Delta T_{\text{tSZ}}}{T}(\boldsymbol{\theta}) = y(\boldsymbol{\theta}) \left(x \frac{\mathrm{e}^{x} + 1}{\mathrm{e}^{x} - 1} - 4 \right) \equiv y(\boldsymbol{\theta}) f(x)$$

using
$$\frac{\partial n}{\partial y} = \frac{xe^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right)$$

$$\Delta I_{\text{tSZ}}(x,\theta) = i_0 y(\theta) g(x), \text{ where}$$

$$g(x) = \frac{x^4 e^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right),$$

$$y(\theta) = \frac{\sigma_{\text{T}}}{m_{\text{e}} c^2} \int n_{\text{e}}(r) k_{\text{B}} T_{\text{e}}(r) c dt$$

or in terms of the brightness t linear in density f the n

$$\frac{\Delta T_{\text{tSZ}}}{T}(\boldsymbol{\theta}) = y(\boldsymbol{\theta}) \left(x \frac{\mathrm{e}^{x} + 1}{\mathrm{e}^{x} - 1} - 4 \right) \equiv y(\boldsymbol{\theta}) f(x)$$

using
$$\frac{\partial n}{\partial y} = \frac{xe^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right)$$

$$\Delta I_{tSZ}(x,\theta) = i_0 y(\theta) g(x), \text{ where}$$

$$= \frac{x^4 e^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right),$$

$$y(\theta) = \frac{\sigma_T}{m_e c^2} \int n_e(r) k_B T_e(r) c dt$$

or in terms of the brightness t linear in density f the n

$$\frac{\Delta T_{\text{tSZ}}}{T}(\boldsymbol{\theta}) = y(\boldsymbol{\theta}) \left(x \frac{\mathrm{e}^{x} + 1}{\mathrm{e}^{x} - 1} - 4 \right) \equiv y(\boldsymbol{\theta}) f(x)$$

relative effect -> independent of redshift

The kinetic SZ effect

Doppler shift due to radial velocity of cluster:

$$\frac{\Delta T_{\text{kSZ}}}{T}(\boldsymbol{\theta}) = -w(\boldsymbol{\theta}),$$
$$w(\boldsymbol{\theta}) \equiv \sigma_{\text{T}} \int dl \, n_{\text{e}}(\boldsymbol{r}) \, \frac{v_{r}}{c}$$

The kinetic SZ effect

The relativistic SZ effect

energy transfer in scattering:

$$\frac{\langle \Delta E_{\gamma} \rangle}{E_{\gamma}} = \frac{k_{\rm B} T_{\rm e}}{m_{\rm e} c^2} \quad \text{for} \quad p \ll m_{\rm e} c \qquad \text{non-relativ}$$

$$\frac{\langle \Delta E_{\gamma} \rangle}{E_{\gamma}} = \frac{4}{3} \gamma_{\rm e}^2 \quad \text{for} \quad p \gtrsim m_{\rm e} c, \qquad \text{relativistic}$$

full SZ effect:

$$\begin{split} \delta i(x) &= g(x) y \left[1 + \delta(x, T_e)\right] - h(x) w \\ &+ \left[j(x) - i(x)\right] \tau_{rel} \,, \\ \text{scattering in} & \text{scattering away} \end{split}$$

vistic electrons

electrons

$$\tau_{\rm rel} = \sigma_{\rm T} \int {\rm d}l \, n_{\rm e,rel}$$

The relativistic SZ effect

energy transfer in scattering:

$$\frac{\langle \Delta E_{\gamma} \rangle}{E_{\gamma}} = \frac{k_{\rm B} T_{\rm e}}{m_{\rm e} c^2} \quad \text{for} \quad p \ll m_{\rm e} c \qquad \text{non-relativ}$$

$$\frac{\langle \Delta E_{\gamma} \rangle}{E_{\gamma}} = \frac{4}{3} \gamma_{\rm e}^2 \quad \text{for} \quad p \gtrsim m_{\rm e} c, \qquad \text{relativistic}$$

full SZ effect:

$$\begin{split} \delta i(x) &= g(x) y \left[1 + \delta(x, T_e)\right] - h(x) w \\ &+ \left[j(x) - i(x)\right] \tau_{rel} \,, \\ \text{scattering in} & \text{scattering away} \end{split}$$

vistic electrons

electrons

$$\tau_{rel} = \sigma_T \int dl \, n_{e,rel}$$

-> not local anymore:
$$j(x) = \int_0^\infty ds \, \int_0^\infty dp \, f_e(p) \, P(s, p) \, i(x/s)$$

The complete SZ effect

The complete SZ effect

Integrated parameters

$$Y = \int_{\Omega} d\Omega y = \frac{1}{D_{ang}^2} \int_{A} d^2 r y = \frac{1}{D_{ang}^2} \frac{\sigma_T}{m_e c^2} \int_{A} d^3 r P_e, \quad \propto E_{thermal}$$
 overall "amplitude" of thermal

$$W = \int_{\Omega} d\Omega w = \frac{1}{D_{ang}^2} \int_{A} d^2 r w, = \frac{1}{D_{ang}^2} \sigma_T \int_{A} d^3 r n_e \frac{v_r}{c}, \quad \propto \text{momentum}$$
 overall "amplitude" of kiner
SZ effect of cluster
SZ effect of cluster
SZ effect of cluster

$$Y_{\rm X} = \frac{1}{D_{\rm ang}^2} \frac{\sigma_{\rm T}}{m_{\rm e}c^2} \int_A {\rm d}^3 r \, n_{\rm X} k_{\rm B} T_{\rm X}$$

$$Y_{\rm sph} = \frac{\sigma_{\rm T}}{m_{\rm e}c^2} \int_0^{R_{200}} {\rm d}V P_{\rm e} = \frac{(\gamma - 1)\,\sigma_{\rm T}}{m_{\rm e}c^2}\,\tilde{x}_{\rm e}\,X\mu$$

for comparison/matching similar quantity defined for X-ray measurements

 $\mu E_{\rm gas}$

integrated Y can also be restricted, e.g., to within virial radius

mal etic

Integrated parameters

$$Y = \int_{\Omega} d\Omega y = \frac{1}{D_{ang}^2} \int_{A} d^2 r y = \frac{1}{D_{ang}^2} \frac{\sigma_T}{m_e c^2} \int_{A} d^3 r P_e, \quad \propto E_{thermal}$$
 overall "amplitude" of thermal

$$W = \int_{\Omega} d\Omega w = \frac{1}{D_{ang}^2} \int_{A} d^2 r w, = \frac{1}{D_{ang}^2} \sigma_T \int_{A} d^3 r n_e \frac{v_r}{c}, \quad \propto \text{momentum}$$
 overall "amplitude" of kiner
SZ effect of cluster
SZ effect of cluster
SZ effect of cluster

$$Y_{\rm X} = \frac{1}{D_{\rm ang}^2} \frac{\sigma_{\rm T}}{m_{\rm e}c^2} \int_A {\rm d}^3 r \, n_{\rm X} k_{\rm B} T_{\rm X}$$

$$Y_{\rm sph} = \frac{\sigma_{\rm T}}{m_{\rm e}c^2} \int_0^{R_{200}} \mathrm{d}VP_{\rm e} = \frac{(\gamma - 1)\sigma_{\rm T}}{m_{\rm e}c^2} \tilde{x}_{\rm e} X\mu_{\rm e}$$

 $n_{\rm H} + n_{\rm He} + n_{\rm e}$

for comparison/matching similar quantity defined for X-ray measurements

 μE_{gas} n_e

integrated Y can also be restricted, e.g., to within virial radius

mal etic

Self-similar SZ scaling relations want to relate this to cluster mass: $Y_{\rm sph} = \frac{\sigma_{\rm T}}{m_{\rm e}c^2} \int_{0}^{R_{200}} dVP_{\rm e} = \frac{(\gamma - 1)\sigma_{\rm T}}{m_{\rm e}c^2} \tilde{x}_{\rm e} X \mu^{0.6} E_{\rm gap_{0}14}^{-1}$

characteristic temperature:

$$kT_{200} = \frac{GM_{200}\,\mu\,m_{\rm p}}{3R_{200}} = \frac{\mu\,m_{\rm p}}{3} \left[10\,G\,M_{200}\,H_0\,E(z)\right]^{2/3}$$

$$E_{\text{gas}} = \frac{3}{2} N_{\text{gas}} k_{\text{B}} T_{200}$$
 thermal energy

the Y – M relation: $Y_{\rm sph} = \frac{(\gamma - 1)\sigma_{\rm T}}{m_{\rm e}c^2} \tilde{x}_{\rm e}$ $= 97.6 h_{70}^{-1} \, \rm kpc^2$

$$M_{200} = \frac{4}{3}\pi r_{200}^3 \times 200 \,\rho_{\text{crit}} \qquad \rho_{crit} = \frac{3H^2}{8\pi G} = \frac{3H_0^2 E^2(z)}{8\pi G}$$

$$E_{e} X \mu (1 - f_{*}) f_{b} f_{c} G \left[\frac{\pi}{3} 100 \rho_{cr}(z) \right]^{1/3} M_{200}^{5/3}$$
$$E^{2} E(z)^{2/3} \left(\frac{M_{200}}{10^{15} h_{70}^{-1} M_{\odot}} \right)^{5/3} \frac{\Omega_{b}}{0.043} \frac{0.25}{\Omega_{m}}$$

The Y - M relation

The Y - M relation

-> can be used to compare theoretical halo mass functions to cluster counts

The SZ power spectrum

$$\Theta_{\rm tSZ}(\theta) \equiv \frac{\Delta T_{\rm tSZ}}{T}(\theta) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta) \quad \text{can expansion}$$

 $\langle a_{\ell_1 m_1} a^*_{\ell_2 m_2} \rangle \equiv \delta_{\ell_1, \ell_2} \delta_{m_1, m_2} C_{\ell, tSZ} < - defines power spectrum$

for small angles one can use the flat sky approximation -> 2D Fourier transform instead of spherical harmonics

SZ power spectrum of single cluster:

$$C_{(\ell),\text{tSZ}} = f(x)^2 |\hat{y}_{(\ell)}(M,z)|^2 \qquad \text{with } f \text{ defined by } \frac{\Delta T_{\text{tSZ}}}{T}(\theta) = y(\theta) \left(x \frac{e^x + 1}{e^x - 1} - 4 \right) \equiv y(\theta) \left(x \frac{e^x + 1}{e^x - 1} - 4 \right) = y(\theta) \left(x \frac{e^x + 1}{e^x - 1} - 4 \right)$$

2D Fourier transform of Compton-y

and an SZ map in spherical harmonics

The SZ power spectrum

summing this over all clusters in considered volume:

$$C_{(\ell),\text{tSZ}} = f(x)^2 \int_0^{z_{\text{max}}} \frac{\mathrm{d}V}{\mathrm{d}z} \mathrm{d}z \int_{M_{\text{min}}}^{M_{\text{max}}} \mathrm{d}M \frac{\mathrm{d}n(M,z)}{\mathrm{d}M} |\hat{y}_{(\ell)}|$$
$$\hat{y}_{(\ell)} = \frac{1}{D_{\text{ang}}^2} \int \mathrm{d}^3 r \frac{\sigma_{\text{T}}}{m_{\text{e}}c^2} P_{\text{e}}(r) \mathrm{e}^{\mathrm{i}k \cdot r}$$

$$\bar{P}_{\rm fit} = P_0 \left(x_r / x_{\rm c} \right)^{\delta} \left[1 + \left(x_r / x_{\rm c} \right)^{\alpha} \right]^{-\beta}, \ x_r \equiv r / R_{200}$$

 $(M,z)|^2$

can, e.g., use fits to pressure profiles of simulated clusters to evaluate this:

in units of $P_{200} \equiv \frac{GM_{200}200\rho_{cr}(z)f_{b}}{2R_{200}}$

Simulated pressure profiles

Battaglia et al. 2012

Contributions of different halo masses to SZ powerspectrum

-> sensitive to massive halos and hence σ_8

Battaglia et al. 2012

Recap - X-ray & SZ effect

- intracluster medium can be observed in X-ray emission: •
 - allows inference of ICM state (temperature, density) including turbulence •
 - allows hydrostatic mass estimates ۲
 - can distinguish cool core and non-cool core clusters (different central entropy, density and temperature); cool • cores seem not to evolve much over time and not to be disrupted by AGN outbursts
- intracluster medium can be observed via the spectral distortions it imprints on the CMB (SZ effect): •
 - contributions from thermal, kinetic and relativistic SZ effects •
 - integrated Compton-y correlates tightly with cluster mass
 - SZ power spectrum useful for comparing theoretical models (e.g., for different cosmologies) to • observations

