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The Physics of Galaxy Clusters

There are two basic approaches when teaching an astrophysical
subject:

present the subject historically

explain the physics in a pedagogical order

Outline of the tutorial:

putting galaxy clusters into historical context

going beyond clusters: the existence of superclusters

putting the lectures into context

answering your questions in the order of the lectures

visual impressions: from images to astrophysics
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Historical context of galaxy clusters – 1

after Max Wolf 1901

Optical window:
1781: Charles Messier finds
clustering of 16 objects
(nebulae) towards the
constellation Virgo

1783–1785: William Herschel
discovers 23 objects (nebulae)
that cluster towards the
constellation Coma Berenice,
but discovery controversial

1861–1867: Heinrich Ludwig
d’Arrest confirms clustering

In 1933, Fritz Zwicky pointed
out that the Coma cluster must
contain a substantial amount of
dark matter to explain the large
velocity dispersion of its
galaxies
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Historical context of galaxy clusters – 3

NASA/Chandra

1970s: X-ray observations
find that galaxy clusters are
among the brightest X-ray
sources

improved angular resolution:
the entire galaxy cluster
glows in X-rays, filling in the
volume in between the
galaxies

X-rays are generated via

1 bremsstrahlung emission of hot thermal electrons, and

2 line emission from recombination of atoms.
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Historical context of galaxy clusters – 4

Joy+ (2001)

1972: Sunyaev & Zel’dovich
propose CMB observations
towards galaxy clusters to
elucidate the nature of cluster
X-ray radiation

CMB decrement at
ν < 217 GHz argues for
bremsstrahlung X-ray
emission from a hot thermal
plasma

late 1990s: interferometric
CMB observations detected
the SZ effect

CMB surveys used to find
clusters because the SZ
effect is independent of
redshift
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The Laniakea Supercluster (Colvin 2018)



The Laniakea Supercluster – 1

Tully+ (2014)

A slice of the Laniakea Supercluster in the supergalactic equatorial plane with
individual galaxies (white dots).

Colours represent density values within the equatorial slice: red at high densities
and blue in voids.

Velocity flow streams within the Laniakea basin of attraction are shown in white.
The orange contour encloses the outer limits of these streams.
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The Laniakea Supercluster – 2

Hoffman+ (2018)

“Quasi-linear” map of the local universe, with the Earth at the centre of the three
arrows.

The main superclusters are shown deep inside dense (red) regions.
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The Physics of Galaxy Clusters
Putting the lectures into context

Overview and background:

What is a galaxy cluster? Insights from observations at
various wavelengths
Why are clusters interesting? Tools for cosmology and
laboratories for high-energy and plasma astrophysics

Evolution of the dark component

When do clusters form? ⇒ statistics and power spectra
Where do cluster form? ⇒ non-linear evolution
How do clusters form? ⇒ spherical collapse model
How many clusters are there? ⇒ Press-Schechter mass
function
What is the structure of a cluster? ⇒ halo density profiles,
virial masses

Evolution of the baryonic component

Non-radiative physics
Radiative physics
Non-thermal processes

Christoph Pfrommer The Physics of Galaxy Clusters



The Physics of Galaxy Clusters
Putting the lectures into context

Overview and background:
What is a galaxy cluster? Insights from observations at
various wavelengths
Why are clusters interesting? Tools for cosmology and
laboratories for high-energy and plasma astrophysics

Evolution of the dark component
When do clusters form? ⇒ statistics and power spectra
Where do cluster form? ⇒ non-linear evolution
How do clusters form? ⇒ spherical collapse model
How many clusters are there? ⇒ Press-Schechter mass
function
What is the structure of a cluster? ⇒ halo density profiles,
virial masses

Evolution of the baryonic component
Non-radiative physics
Radiative physics
Non-thermal processes

Christoph Pfrommer The Physics of Galaxy Clusters



The Physics of Galaxy Clusters
Putting the lectures into context

Evolution of the baryonic component
Non-radiative physics

Adiabatic Processes and Entropy
Basic Conservation Equations
Buoyancy Instabilities
Vorticity and Turbulence
Shocks and jump conditions
Entropy generation by accretion and hierarchical merging
Scaling relations (ideal and real)

Radiative physics

Radiative cooling and star formation
Energy feedback (supernovae, active galactic nuclei)
Transport processes of gas: conduction, thermal stability
(without and with magnetic fields)

Non-thermal processes

Origin and transport of magnetic fields,
magneto-hydrodynamic turbulence
Acceleration of cosmic rays (to first and second order),
transport equation
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The Physics of Galaxy Clusters
Putting the lectures into context

Cluster physics informed by different observables:
Optical: galaxy properties and virial theorem

Transforming galaxy populations: ram pressure, tidal effects,
dynamical friction
Weighting clusters (1): virial theorem

Gravitational lensing

Deflection angle, lens equation, Einstein radius, lensing
potential
Weighting clusters (2): strong and weak cluster lensing

X-rays: gastrophysics at high-resolution

Weighting clusters (3): hydrostatic equilibrium masses
Kinematics of shocks and cold fronts
Probing kinetic equilibrium with collisionless shocks
Width of cold fronts - magnetic draping

Sunyaev-Zel’dovich effect: the thermal energy content

Thermal and kinetic SZ effect
Properties and SZ scaling relation, SZ power spectrum

Radio halos and relics: watching powerful shocks and
plasma physics at work
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Cluster mergers: the most energetic cosmic events

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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The structure of our Universe

The "cosmic web" today. Left: the projected gas density in a cosmological simulation.

Right: gravitationally heated intergalactic medium (C.P. et al. 2006).
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Cosmological cluster simulation: gas density
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Mass weighted temperature
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Shock strengths weighted by dissipated energy
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Sunyaev-Zel’dovich effect: integrated thermal pressure
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Thermal X-ray emission: gas density squared
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Zooming on the cluster: thermal cluster gas
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Zooming on the cluster: optical vs. radio synchrotron
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Questions – Sunyaev Zel’dovich effect

Why does the SZ distortion
crosses over at 217 GHz?

⇒ solution of the
Kompaneet’s equation, but
kinetic and relativistic SZ
effect moves the null

If only 1 photon out of every 2000 experiences a scattering then how is that we
can observe this effect in the first place?
⇒ we need to observe many photons: interferometric CMB observations are
great for tiny differences in surface brightness

In the derivation of the Compton y parameter we have neglected the redshift
range from 9 to 1100, why?
⇒ because the SZ effect describes photon-electron scattering and the universe
is becoming neutral at around z ∼ 1100 and get reionized at z ∼ 9: so there are
no free electrons around at these high redshifts
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The matter power spectrum

non-linear structure formation causes more strongly enhanced density
fluctuations on small scales

development of a bump at large wave vectors (small spatial scales) in the
non-linear matter power spectrum at the expense of intermediate scales
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The scaled matter power spectrum
Variance of the matter density fluctuations as a function of wave number, σ2(k)

For a cold dark matter (CDM) cosmology, the linear power spectrum of matter
density fluctuations δ reads

P(k) ∝
{

k (k < k0)
k−3 (k � k0).

Here, k0 = 2πaeq/λ0 is the comoving wave number of the particle horizon at
matter-radiation equality.

The variance of δ is the correlation function at y = 0 (Eq. 2.30 in the notes),
which is the k space integrated power spectrum

σ2 = 4π
∫

k2dk
(2π)3

P(k) .

Hence, to order of magnitude, we obtain

σ2 ∼ k3P(k) .
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Hierarchical formation: when do clusters form?
Variance of the matter density fluctuations as a function of wave number, σ2(k)

more power on small scales, which first go non-linear (σ2 > 1) and thus collapse
first: dwarf galaxies form before large galaxies, which form before galaxy clusters
critical wave number at which the fluctuation strength becomes non-linear
decreases with time (spatial scale increases with time)
structure forms “bottom-up” in ΛCDM cosmologies: hence we speak about
hierarchical galaxy formation
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Hierarchical formation: when do clusters form?
Variance of the matter density fluctuations as a function of collapsed mass, σ2(M)

more power on small scales, which first go non-linear (σ2 > 1) and thus collapse
first: dwarf galaxies form before large galaxies, which form before galaxy clusters
critical wave number at which the fluctuation strength becomes non-linear
decreases with time (spatial scale increases with time)
structure forms “bottom-up” in ΛCDM cosmologies: hence we speak about
hierarchical galaxy formation
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The initial power spectrum
Potential fluctuations make case for Harrison-Zel’dovich-Peebles spectrum

Let’s look at the fluctuations in the gravitational potential (at fixed volume),

δΦ ∼
GM
R

δM
M
∼ GM2/3ρ̄1/3 δM

M

since at any time R ∝ (M/ρ̄)1/3.
Unless δM/M ∝ M−2/3, the potential fluctuations δΦ will diverge. Depending on
the power-law index of δM/M ∝ M−α, δΦ will diverge on large scales or masses
(for α < 2/3) or on small scales or masses (for α > 2/3).

For large masses, we have

δΦ ∝ M2/3−α M→∞
=⇒ ∞ for α < 2/3.

On small scales or masses (large k values), we have M ∝ R3 ∝ k−3 so that

δM
M
∝
δk
k
∝ k3α.

Hence, the potential fluctuations δΦ also diverge on small scales

δΦ ∝ M2/3−α ∝ k−2+3α = k3(α−2/3) k→∞
=⇒ ∞ for α > 2/3.
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Unless δM/M ∝ M−2/3, the potential fluctuations δΦ will diverge. Depending on
the power-law index of δM/M ∝ M−α, δΦ will diverge on large scales or masses
(for α < 2/3) or on small scales or masses (for α > 2/3).
For large masses, we have

δΦ ∝ M2/3−α M→∞
=⇒ ∞ for α < 2/3.

On small scales or masses (large k values), we have M ∝ R3 ∝ k−3 so that

δM
M
∝
δk
k
∝ k3α.

Hence, the potential fluctuations δΦ also diverge on small scales

δΦ ∝ M2/3−α ∝ k−2+3α = k3(α−2/3) k→∞
=⇒ ∞ for α > 2/3.
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Spherical collapse: solution
What is the difference between the calculation of virialized density contrast at
collapse vs. the linear counterpart?

The spherical collapse problem has the following parametric solution, which
describes a cycloid,

R = A(1− cos θ) , A =
GM
2|Φ|

,

t = B(θ − sin θ) , B =
GM

(2|Φ|)3/2
.

The mean density inside the sphere is

ρ =
M

4π/3 R3
=

3M
4πA3

1
(1− cos θ)3

,

while the mean density of the background universe with Ωm0 = 1 is

ρ̄ =
3H2

8πG
=

1
6πGt2

=
1

6πGB2

1
(θ − sin θ)2

,

with H = 2/(3t). The overdensity of the sphere (which is generally non-linear)
can be obtained by combining these equations to yield

1 + δ =
ρ

ρ̄
=

9
2

(θ − sin θ)2

(1− cos θ)3
. (1)
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Spherical collapse: characteristic overdensities

We find different values for the density contrast at collapse (t = tc = 2tmax) of

δc ≡ δlin(tc) =
3
20

(12π)2/3 ≈ 1.686,

δv ≡ δcoll = 18π2 − 1 = 177 .

Where and how are the two values used?

The first value (δc) was obtained by linearizing Eq. (1) and extrapolating the
result to t = tc. It can thus only be applied to the density fluctuations in the linear
regime to extrapolate the fate of a given (filtered) overdensity, i.e., whether its
mass is large enough to eventually collapse to a halo (Press-Schechter
formalism).

The virialized density contrast δv looks at an actually collapsed and virialized
halo for which we found Rf = Rta/2. Hence, it is used to identify halos (in
simulations, observations) via the definition of the halo mass

M∆,m

(
4π
3

r3
∆

)−1
= ∆ρ̄m(a).

where ∆ = 177, 200, or 500, depending on the specific application.

Sometimes, ρ̄m(a) is exchanged for ρcr(a)
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Spherical collapse: virialization
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The derivation of the halo mass function
We assumed a Gaussian distribution for the probability of finding a filtered
density contrast δ̄(x) at x :

p(δ̄, a) =
1√

2πσ2
R(a)

exp

[
−
δ̄2(x)

2σ2
R(a)

]
,

where the variance σR depends on time.

The probability of finding the filtered density contrast at or above the linear
density contrast for spherical collapse, δ̄ > δc, is equal to the fraction of the
cosmic volume filled with haloes of mass M,

F (M, a) =

∫ ∞
δc

dδ̄p(δ̄, a) =

∫ ∞
δc

dδ̄
1√

2πσ2
R(a)

exp

[
−
δ̄2(x)

2σ2
R(a)

]

After substitution, we obtain

F (M, a) =
1
2

2
√
π

∫ ∞
δc/[
√

2σR (a)]
dxe−x2

=
1
2

erfc

(
δc√

2σR(a)

)
,

where erfc(x) is the complementary error function.
This particular integral is named complementary error function because it also
appears in cases where measurement values are Gaussian distributed.
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Press-Schechter mass function

For a power-law power spectrum with index n, Pδ(k) = Akn, the
Press-Schechter mass function is given by (m = M/M∗)

f (m, a)dm ≡
dN(m, a)

dm
dm ∝ mα−2 exp

(
−m2α

)
dm,

where we defined α = 1/2 + n/6 so that α = 0 for n = −3.
At small halo masses there is roughly an equal mass per log bin in halo mass,

m dN/d log m = m2dN/dm ≈ const.

At z = 0, M∗ = 1.3× 1014M�: the abundance of clusters is exponentially
suppressed today and even more at early times (hierarchical structure
formation!)
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Halo formation as a random walk – 1
Progressive smoothing of the density field
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Halo formation as a random walk – 2

Each trajectory shows the averaged
density contrast δ̄ (on the y axis) versus
decreasing radius R towards the right.

They start at δ̄ = 0 for very large radii (on
the left) and may pierce the absorbing
barrier at δc.

The (Gaussian) probability distribtion of δ̄
is shown on the right.

Consider halo formation as a random walk⇒ correct normalisation of the
Press-Schechter mass function

Given the density-contrast field δ, a large sphere is centered on some point x
and its radius gradually shrunk. For each radius R of the sphere, the density
contrast δ̄ averaged within R is measured and monitored as a function of R.

By choosing a window function WR whose Fourier transform has a sharp cut-off
in k space, δ̄ will undergo a random walk because decreasing R corresponds to
adding shells in k space which are independent of the modes which are already
included.

δ̄(x) is thus following a random trajectory. A halo is expected to be formed at x if
δ̄(x) reaches δc for some radius R.

If δ̄(x) < δc for some radius, it may well exceed δc for a smaller radius. Or, if
δ̄(x) ≥ δc for some radius, it may well drop below δc for a smaller radius.
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Halo formation as a random walk – 3

Explain the physical reason for the missing factor of two and why this has been
missed in the first derivation.

We introduce an absorbing barrier at δc such that points x with trajectories δ̄(x)
vs. R which hit the barrier are removed from counting them as not being parts of
halos. We follow the strategy of counting trajectories that do not make it into
halos such that the complement of that union represent trajectories of halos.
A trajectory meeting the boundary has equal probability for moving above or
below. For any forbidden trajectory continuing above the boundary, there is an
allowed mirror trajectory continuing below it, and conversely. For any trajectory
reaching a point δ̄ < δc exclusively along allowed trajectories, there is a path
reaching its mirror point on the line δ̄ = δc exclusively along forbidden
trajectories, and conversely.
Hence, the first derivation missed the dark grey halo population below the barrier
that have pierced the barrier at some smoothing radius R.
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Halo mass definitions
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The halo mass is ∆ times the critical (mean) density times the halo volume,

M∆ = ∆ρcr(a)

(
4π
3

r3
∆

)
and M∆,m = ∆ρ̄m(a)

(
4π
3

r3
∆,m

)
where ρ̄m(a) = ρcr(a)Ωm(a).

If we order the averaged density inside r∆ (r∆,m) by increasing size:

200ρcrΩm < 200ρcr < 500ρcr

then the corresponding virial radii and masses are ordered inversely because of
the decreasing density profile:

M500 < M200 < M200m.
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Orthonormal functions
Plane waves form an orthonormal system on a homogeneous background?
Does this mean that for small perturbations, waves are produced that are
perpendicular to each other?

⇒ no

To understand the term orthonormal system
of functions, first consider a 2D vector
pointing to P, which can be decomposed
into two unit vectors spanning the 2D plane:
{e1, e2} or {e1, e2}.
If e1 ⊥ e2, we talk about an orthonormal
basis system because the vector product
vanishes if the vectors are not identical,
ei · ej = δij .

The same idea applies to function space. The Fourier theorem states that you
can decompose any smooth function f (x) into plane waves

f (x) =

∫
d3k

(2π)3
f̂ (k)e−ik·x

because these plane waves form an orthonormal system as you can see from
taking the inner product of plane waves (defined via an integration over k space):

δD(x − y) =

∫
d3k

(2π)3
e−ik·(x−y).
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taking the inner product of plane waves (defined via an integration over k space):

δD(x − y) =

∫
d3k

(2π)3
e−ik·(x−y).

Christoph Pfrommer The Physics of Galaxy Clusters



Boussinesq approximation

To first order, our conservation equations read

∂δρ

∂t
+ ∇ · (ρ0δv) = 0, (2)

∂δv
∂t
−
δρ

ρ2
0
∇P0 +

∇δP
ρ0

= 0, (3)

1
γ − 1

(
∂δP
∂t
−
γkBT0

m̄
∂δρ

∂t

)
+ ρ0T0(δv ·∇)s0 = −∇ · δQ, (4)

where we have used g = ∇P0/ρ0 in Eq. (3).

In the Boussinesq approximation, we dropped the δP term in the energy
equation (4) but not in momentum equation. Why?

Because the δP term in the momentum equation (3) is the only one providing the
dynamics and advances δv in time, while there are the δP and δρ terms in the
energy equation (4) of which the latter dominates in the Boussinesq
approximation.
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Generalized Rankine-Hugoniot conditions – 1
Show, that a Galilean transformation of the Rankine-Hugoniot shock jump conditions
from the shock to the laboratory rest system leads to the generalized Rankine-Hugoniot
conditions of mass, momentum, and energy conservation at a shock,

vs[ρ] = [ρu], (5)

vs[ρu] = [ρu2 + P], (6)

vs

[
ρ

u2

2
+ ε

]
=

[(
ρ

u2

2
+ ε+ P

)
u

]
. (7)

Here vs and u denote the shock and the mean gas velocity measured in the laboratory
rest system, ε = ερ is the thermal energy density, and we introduced the abbreviation
[F ] = Fi − Fj for the jump of some quantity F across the shock.

Starting point: Rankine-Hugoniot jump conditions in the shock frame

[ρv ] = 0,[
ρv2 + P

]
= 0,[

E +
P
ρ

]
= 0 where Ei =

1
2

v2
i + εi

denotes the specific total energy of region i (up-/downstream) in the shock frame
and vi is the velocity measured in the shock frame.
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Generalized Rankine-Hugoniot conditions – 2

We use the alternative formulation of the 3rd Rankine-Hugoniot condition

[v(ρE + P)] = 0.

Constancy of energy flux implies (using vi = ui − vs and Ei = v2
i /2 + εi )

0 = [v(ρE + P)] =

[(
1
2
ρv2 + ρε+ P

)
v
]

=

[(
1
2
ρu2 + ρε− ρuvs +

1
2
ρv2

s + P
)

(u − vs)

]
=

[
ρẼu − ρu2vs +

1
2
ρv2

s u + Pu −
(
ρẼvs − ρuv2

s +
1
2
ρv2

s vs + Pvs

)]
=

[
ρẼu − ρu2vs +

1
2
ρv2

s u + Pu −
(
ρẼvs − ρuv2

s +
1
2
ρv2

s vs + Pvs

)]
= [(ρẼ + P)u]− vs[ρẼ ] − vs

([
ρu2 + P

]
− vs[ρu]

)
+

1
2

v2
s

(
[ρu]− vs[ρ]

)
= [(ρẼ + P)u]− vs[ρẼ ]

where Ẽi = u2
i /2 + εi and we used Eqs. (5) and (6) in the last step.
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Sloshing cool core after a cluster merger: IDCS 1426

NASA/ESA/Brodwin
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Distant lensed galaxy in galaxy cluster Abell 2744

NASA/Lotz
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Distant and ancient: the galaxy cluster SPT 0615

ESA/Hubble/NASA, Karachentse, High

Christoph Pfrommer The Physics of Galaxy Clusters



One of the most massive galaxy clusters: RCS2 J2327

ESO, ESA/Hubble & NASA
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One of the most massive galaxy clusters: RCS2 J2327

ESO, ESA/Hubble & NASA
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Star formation in lensed galaxy in cluster SDSS 1110

NASA/ESA, Johnson
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“Smiley” image: Einstein ring in cluster SDSS 1038

NASA/ESA
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A menagerie of galaxies – the cluster ACO S 295

ESA/Hubble & NASA, Pacaud, Coe
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MACS 0138 – cosmic lens flare

ESA/Hubble & NASA, Newman, Akhshik, Whitaker
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MACS 0138 – detecting distant supernovae

NASA/ESA, Rodney, Brammer, DePasquale
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ICM turbulence in Perseus and Virgo (X-rays)

NASA/CXC, Zhuravleva
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The Physics of Galaxy Clusters

Summary of the tutorial:

putting galaxy clusters into historical context

going beyond clusters: the existence of superclusters

putting the lectures into context

answering your questions in the order of the lectures

visual impressions: from images to astrophysics
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