Exercises for The Physics of Galaxy Clusters

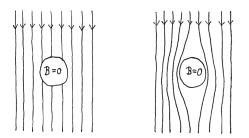
Lecturer: Christoph Pfrommer

Exercise sheet 5

To be uploaded to Moodle. Remember to put your name on the document. You may work in groups of up to 2 but every student should hand in his/her own solution sheet and indicate clearly who contributed to it. The exercises are based on the lecture notes. Thus, **studying the lecture notes carefully** will help you immensely in solving the exercises!

1. Magnetic compressibility (10 points)

(a) The following two drawings show possible configurations of magnetic field lines near a field-free inclusion (circular contour). Which of the two configurations is physical and why? Why is the other one not physical?



(b) Show that under a uniform expansion, a uniform magnetic field stays uniform. To do so, use the following form of the flux-freezing equation (Eq. 3.289 in the lecture notes):

$$\frac{\partial \boldsymbol{B}}{\partial t} = (\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{v} - (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{B} - (\boldsymbol{\nabla} \cdot \boldsymbol{v}) \boldsymbol{B}$$

and inspect the individual terms on the right hand side.

(c) Now consider a uniform and isotropic expansion with $\boldsymbol{v} = \omega_{\exp} \boldsymbol{r}$, where ω_{\exp} is the constant expansion frequency and \boldsymbol{r} is the position vector from the origin of the coordinate system. Show that 1.) the magnetic field strength changes at a constant rate, $\partial_t \boldsymbol{B} = -2 \omega_{\exp} \boldsymbol{B}$, and 2.) that $P_{\max} = B^2/(8\pi) \propto \rho^{4/3}$.

2. The Field length of an iso-cooling galaxy cluster (20 points)

For an optically thin, *ideal* gas that only cools by radiation, the rate of cooling energy density is given by

$$\dot{\varepsilon}_{\rm th} = n^2 \Lambda(n, T),$$

where $\varepsilon_{\rm th}$ is the thermal energy density of the gas, n is the particle number density, T is the gas temperature, and $\Lambda(n, T)$ is the volumetric cooling function (in units of erg cm³ s⁻¹).

(a) Assume a stratified atmosphere where the cooling time $t_{\text{cool}} = \varepsilon_{\text{th}}/\dot{\varepsilon}_{\text{th}}$ is constant at every height z, and $n \equiv n(z)$ and $T \equiv T(z)$. Show that the corresponding differential temperature profile reads as:

$$\frac{\mathrm{d}\ln T}{\mathrm{d}\ln z} = \frac{\mathrm{d}\ln n}{\mathrm{d}\ln z} \left[\frac{1+\Lambda_n}{1-\Lambda_T} \right],$$

where $\Lambda_T = \partial \ln \Lambda / \partial \ln T$ and $\Lambda_n = \partial \ln \Lambda / \partial \ln n$, respectively.

(b) Additionally assume that the stratification fulfills the hydrostatic equilibrium condition:

$$\frac{\partial P_{\rm th}}{\partial z} = -g(z)\,\rho$$

where g(z) describes the gravity and ρ is the gas mass density. Show that the temperature profile of such an atmosphere reads as:

$$\frac{\mathrm{d}T}{\mathrm{d}z} = -\frac{\mu m_{\mathrm{p}}}{k_{\mathrm{B}}}g(z)\left[1 + \frac{1 - \Lambda_T}{1 + \Lambda_n}\right]^{-1},$$

where μ is the mean molecular mass of the gas, $m_{\rm p}$ is the proton mass, and $k_{\rm B}$ is Boltzmann's constant.

(c) In galaxy clusters, the predominant radiative cooling mechanism is cooling by bremsstrahlung, which is well approximated by a cooling function of the form $\Lambda(T) = \Lambda_0 \sqrt{T}$, where Λ_0 is a constant cooling efficiency. Show that:

$$\frac{\mathrm{d}T}{\mathrm{d}z} = -\frac{2}{3}\frac{\mu m_{\mathrm{p}}}{k_{\mathrm{B}}}g(z)$$

(d) Integrate the temperature profile assuming a gravity profile of the form

$$g(z) = g_0 \frac{z/a}{\sqrt{1 + (z/a)^2}},$$

where $g_0 = k_{\rm B}T_0/(\mu m_{\rm p}H)$ is a constant of gravity, T_0 is a reference temperature in the cluster center, H is a scale height, and a is a gravitational smoothing length.

(e) For the resulting temperature profile, the corresponding density profile scales as

$$n = n_0 \left(\frac{T}{T_0}\right)^{1/2},$$

where n_0 is a reference number density in the cluster center. Show that the *Field* length, $\lambda_{\rm F}$, in such an atmosphere scales linearly with temperature T.