
Exercises for
The Physics of Galaxy Clusters

Lecturer: Christoph Pfrommer

Exercise sheet 6

To be uploaded to Moodle. Remember to put your name on the document. You may work
in groups of up to 2 but every student should hand in his/her own solution sheet and indicate
clearly who contributed to it. The exercises are based on the lecture notes. Thus, studying the
lecture notes carefully will help you immensely in solving the exercises!

1. Order of magnitude cosmic rays (10 points)

The relative cosmic ray (CR) pressure is defined as the ratio of CR pressure to thermal
pressure, XCR = PCR/Pth. The typical energy for a CR particle is of order 1 GeV and
the magnetic field is of order 1 µG. Calculate to order of magnitude the number density
ratio of thermal particles and CRs, nth/nCR (i.e., how many thermal particles are there for
one CR particle), and the ratio of CR-to-thermal Larmor radii, LCR/Lth, for the following
environments:

(a) A Milky Way-like galaxy with XCR ∼ 1 and a thermal energy per particle of kBT ∼
1 eV.

(b) A typical galaxy cluster with XCR ∼ 10−2 and a thermal energy per particle of kBT ∼
10 keV.

2. Adiabatic cosmic rays (10 points)

Introducing the dimensionless momentum p = Pp/(mp c), we assume that the differential
cosmic ray (CR) particle momentum spectrum per volume element can be approximated
by a single momentum power law above the minimum momentum q:

f(p) =
d2N

dp dV
= C p−α θ(p− q),

where θ(x) denotes the Heaviside step function. The CR density is then given by

nCR =

∫ ∞

0
f(p) dp.

(a) Using Liouville’s theorem, work out how the low-momentum cutoff q and CR normal-
ization C changes upon an adiabatic density change from ρ0 to ρ.

(b) Imagine that CRs are accelerated at a strong cosmological structure formation shock
with a relative CR pressure of XCR = PCR/Pth = 0.1. Calculate XCR in the ultra-
relativistic limit after the composite of CRs and thermal gas has experienced adiabatic
density increase by a factor of 103 from the warm-hot intergalactic medium to the
cluster center.

(c) (Bonus) Calculate the CR adiabatic index γCR = d lnPCR/d ln ρ and take the non-
relativistic limit (q ≪ 1 and α > 3) and the ultra-relativistic limit (q → ∞) of γCR.
To this end, use the definition of the CR pressure:

PCR =
mpc

2

3

∫ ∞

0
dp f(p)β p =

Cmpc
2

6
B 1

1+q2

(
α− 2

2
,
3− α

2

)
,

where β = v/c = p/
√

1 + p2 is the dimensionless velocity of the CR particle and
Bx(a, b) denotes the incomplete beta function, and α > 2 is assumed.
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3. Dynamical friction of eccentric orbits (10 points)

In the lecture you learnt about the effect of dynamic friction on circular orbits. In this task,
you will investigate the effect of dynamic friction on eccentric orbits.

The eccentricity e of an orbit is defined as e = (a − b)/(a + b), where a and b are the
apocenter and pericenter of the orbit, respectively. These values are the roots for r of

1

r2
+

2 [Φ(r)− E]

L2
= 0, (1)

where Φ is the gravitational potential and E and L are the specific kinetic energy and
specific angular momentum of the orbit, respectively.

(a) Assuming a singular isothermal sphere with the potential Φ(r) = v2c ln (r/r0), show
that the maximum angular momentum Lc(E) for a given energy E reads as

Lc(E) = vc r0 exp

(
E

v2c
− 1

2

)
= vc rc(E), (2)

with vc the velocity and rc the radius of a circular orbit.
Hint: Start from equation (1) and take the derivative with respect to r.

(b) The orbital circularity η of an eccentric orbit is defined as η = L/Lc(E(t)). Dynam-
ical friction transfers energy and angular momentum from the orbiting object to the
background gas, causing η to change. Show that the temporal evolution of η can be
expressed as

dη

dt
= η

[
1

L

dL

dt
− 1

v2c

dE

dt

]
.

Hint: Use equation (2) to find an expression for the occurring term ∂Lc/∂E.

(c) Substituting dE/dt = v dv/dt and dL/dt = L/v dv/dt results in the following temporal
evolution equation of the eccentricity:

de

dt
=

η

v

de

dη

[
1−

(
v

vc

)2
]
dv

dt
.

Analyze this equation and describe how the different terms behave at apocenter and
pericenter, respectively. From this, estimate how the eccentricity e of the orbit evolves
over time.
Hint: de/dη < 0 applies always.
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