
Parallel computing
An introduction

Philipp Girichidis

February 04, 2020

Outline

• Hardware architecture

• serial vs. parallel computing

• OpenMP parallelisation

• MPI parallelisation

• mixed OpenMP and MPI

• perfectly parallelizing algorithms

• hydrodynamics and domain decomposition

• long-range forces and communication

CPU and GPU

CPU with multiple GPUs

CPU network

Why parallel computing

• multiple cores are faster
– if algorithm parallelises well

– if communication is fast

• data does not fit on memory

• different tasks on different hardware
– complex instructions on CPU

– simple code on GPU

OpenMP parallelization

• shared memory parallelization

• one global process on the machine

• temporally occupies multiple cores/threads

• pro: simpler coding

• cons: limited to one node / CPU unit

OpenMP parallelization

OpenMP parallelization

OpenMP parallelization

MPI parallelization

• distributed memory parallelization

• multiple individual OS processes

• in priniple independent execution

• occupies multiple cores

• every process own part of memory

• processes need to communicate

• more complicated coding

• no limitations on local memory and local

number of cores

MPI parallelization

MPI parallelization

MPI barrier: wait until all processes are here

basic structure of MPI program

#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {

 // Initialize the MPI environment
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Print off a hello world message
 printf("Hello world from processor %s, rank %d out of %d processors\n",
 processor_name, world_rank, world_size);

 // Finalize the MPI environment.
 MPI_Finalize();
}

MPI communication

int main(int argc, char** argv) {

 ...

 // send data to other processor
 MPI_Send(data, count, datatype, destination, tag, MPI_communicator);

 // receive data from other processor
 MPI_Recv(data, count, datatype, source, tag, MPI_communicator, status);

 ...
}

MPI communication II

int main(int argc, char** argv) {

 ...
 // initialise 2 MPI processes

 if(world_rank == 0)
 {
 // send data to other processor
 MPI_Send(data, count, datatype, destination=1, tag, MPI_comm);
 }
 else // world_rank == 1
 {
 // receive data from other processor
 MPI_Recv(data, count, datatype, source=0, tag, MPI_comm, status);
 }

 ...
}

MPI communication III

int main(int argc, char** argv) {

 ...
 // initialise N MPI processes

 if(world_rank == 0){
 for(int i=1; i<N; i++)
 {
 // send data to other processor
 MPI_Send(data, count, datatype, destination=i, tag, MPI_comm);
 }
 }
 else
 {
 // receive data from other processor
 MPI_Recv(data, count, datatype, source=0, tag, MPI_comm, status);
 }

 ...
}

MPI communication IV

int main(int argc, char** argv) {

 ...
 // distribute to all

 if(world_rank == 0){
 // send data to other processor
 MPI_Bcast(data, count, datatype, tag, MPI_comm);
 }
 else
 {
 // receive data from other processor
 MPI_Recv(data, count, datatype, source=0, tag, MPI_comm, status);
 }

 ...
}

MPI other commands

int main(int argc, char** argv) {

 ...
 // wait here
 MPI_Barrier(...)

 // collect from all
 MPI_Gather(...)

 // reduce
 MPI_Reduce(..., mode=MODE)
 ...
}

MODE:
MPI_MAX : find minimum
MPI_MIN : find maximum
MPI_SUM : sum all values
MPI_PROD : multiply all values
MPI_LAND : logical and
MPI_LOR : logical or
....

MPI parallelization

option 1

- simple pinning

- each process: one core

MPI parallelization

option 2

- simple pinning

- processes distributed onto

several nodes

- 2/6 cores occupied

- each process 1/2 memory

mixed OpenMP and MPI

• start MPI process on every node

• inside node OpenMP with shared memory

Perfect parallelization

• vector multiplication

• simple matrix operations

• Monte Carlo simulations

• independent parameter scan

hydrodynamics everywhere

hydrodynamics

• Solve discretized fluid

equations on a grid

• simplest case: uniform,

periodic grid

hydrodynamics

• Solve discretized fluid

equations on a grid

• simplest case: uniform,

periodic grid

• split domain between

processors

hydrodynamcis - equations

discretization

• temporal and spatial discretization

• 3-point stencil: need one neighbour in

each direction

need neighbour cells

how to communicate

stupid way

do time_loop

 do x_loop
 do y_loop
 if at boundary
 # communicate
 MPI_get_neighbour()
 density = ...
 momentum = ...
 energy = ...
 done
 done

done

clever way

do time_loop
 # get a copy of neighbours
 MPI_get_neighbours()
 do x_loop
 do y_loop

 density = ...
 momentum = ...
 energy = ...
 done
 done
 MPI_send_neighbours()
done

guard (ghost) cells

• use guard cells to reduce communication

galaxy and ISM

galaxy and ISM

simulations of interstellar gas

• dense cold gas that forms

clouds and stars

• diffuse warm gas

• hot gas that escapes the

galaxy

• different scales

(space/time), so need

adaptive grid

adaptive mesh refinement

example: Sedov explosion

dynamically follow the interesting gas structures (here shock)

refine and derefine

more complicated domain decomposition

dynamical redistribution of regions between the cores

Domain decomposition

• simplest way:
– each processor same number of cells

– select domain with least communication

(shortest border)

– perfect memory distribution

• problematic if different cells require

different cost
– iterations depend on density, temperature

– iterations depend on position

memory balancing

local time steps (actual work)

physics load balancing

• perfect distribution in

memory

• but small cells

interact on smaller

time scales

• small blocks need to

do more iterations

• cores with small cells

do more work!

dt = dt0

dt = dt0 dt = dt0

dt0/2 dt0/2

dt0/2
dt0/4

another example: ISM

density local hydro time

time scales

density free-fall time

NN vs. long-range interaction
hydro (NN)

cell-by-cell speed

gravity (long-range)

instantaneous speed

direct neighbour vs. long-range
hydro (dir. neighbour)

cell-by-cell speed

gravity (long-range)

instantaneous speed

• one guard cell works

• two in case of 5pt stencil

• small additional memory

• communication to

neighbour processors,

globally asynchronous

• every cell depends on

every cell (N2)

• every processor need

entire grid information

• reduce information,

approximate computation

• tree methods, particle-

mesh methods

• still communication

accross all processors

simple example: tree gravity

• reduce objects at

large distances to

centre of mass

• compute force

between centres

simple example: tree gravity

• reduce objects at

large distances to

centre of mass

• compute force

between centres

• close clouds need

direct integration

Tree communication

p1 p2 p3 p4 p5 p6

if tree structure is known:

 pro: efficient communication with necessary processors

 con: every process needs to have tree information

 --> tree needs to be communicated

scaling

• strong scaling: how the solution time varies

with the number of processors for a fixed total

problem size

– ideal: t = Ntot/Nproc, speedup = 1/t =

Nproc/Ntot

• weak scaling: how the solution time varies

with the number of processors for a fixed

problem size per processor

– ideal: t = const, speedup = const

scaling in real application

ISM simulations

ISM simulations

processes

• MHD (local)

• self-gravity* (tree)

• external potential (analytic)

• radiation* and shielding* (tree)

• in practice:
– tree efficient in terms of comp. cost

– tree stores variables for (*), a lot of memory

– sim. “memory limited”

– more cores would help, but not enough memory

IO

• reading data:
– few thousand cores direct reading

efficient caches -> OK

– one process reads -> MPI distribution

• writing data:
– parallel writing at random positions in file:

data race! (only one process allowed, lock)

– files split like domain decomposition

(every processor separate file with local data)

– one process: MPI collection -> writing

IO

• reading data:
– few thousand cores direct reading

efficient caches -> OK

– one process reads -> MPI distribution

• writing data:
– parallel writing at random positions in file:

data race! (only one process allowed, lock)

– files split like domain decomposition

(every processor separate file with local data)

– one process: MPI collection -> writing

code

• FLASH / Arepo

• C / C++ / Fortran

• MPI / MPI+OpenMP

• ca. 400.000 lines

• problem: 100.000 lines

• current sim: 40 Mio CPUh, 250 TB

problems and conclusions

• all computations must be parallel

• many runs need >1000 cores

• MPI and combined MPI/openMP

• most of work:
– numerical methods for the physics equations

– optimization and efficient parallelization

• so far missing: machine learning methods

	1 - Parallel computing
	2 - Outline
	3 - CPU and GPU
	4 - CPU with multiple GPUs
	5 - CPU network
	6 - Why parallel computing
	7 - OpenMP parallelization
	8 - OpenMP parallelization
	9 - OpenMP parallelization
	10 - OpenMP parallelization
	11 - MPI parallelization
	12 - MPI parallelization
	13 - MPI parallelization
	14 - basic structure of MPI program
	15 - MPI communication
	16 - MPI communication II
	17 - MPI communication III
	18 - MPI communication IV
	19 - MPI other commands
	20 - MPI parallelization
	21 - MPI parallelization
	22 - mixed OpenMP and MPI
	23 - Perfect parallelization
	24 - hydrodynamics everywhere
	25 - hydrodynamics
	26 - hydrodynamics
	27 - hydrodynamcis - equations
	28 - discretization
	29 - need neighbour cells
	30 - how to communicate
	31 - guard (ghost) cells
	32 - galaxy and ISM
	33 - galaxy and ISM
	34 - Slide34
	35 - simulations of interstellar gas
	36 - adaptive mesh refinement
	37 - example: Sedov explosion
	38 - Domain decomposition
	39 - memory balancing
	40 - local time steps (actual work)
	41 - physics load balancing
	42 - another example: ISM
	43 - time scales
	44 - NN vs. long-range interaction
	45 - direct neighbour vs. long-range
	46 - simple example: tree gravity
	47 - simple example: tree gravity
	48 - Tree communication
	49 - scaling
	50 - scaling in real application
	51 - ISM simulations
	52 - ISM simulations
	53 - processes
	54 - IO
	55 - IO
	56 - code
	57 - problems and conclusions

