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Outline

• Hardware architecture

• serial vs. parallel computing

• OpenMP parallelisation

• MPI parallelisation

• mixed OpenMP and MPI

• perfectly parallelizing algorithms

• hydrodynamics and domain decomposition

• long-range forces and communication



CPU and GPU



CPU with multiple GPUs



CPU network



Why parallel computing

• multiple cores are faster
– if algorithm parallelises well

– if communication is fast

• data does not fit on memory

• different tasks on different hardware
– complex instructions on CPU

– simple code on GPU



OpenMP parallelization

• shared memory parallelization

• one global process on the machine

• temporally occupies multiple cores/threads

• pro: simpler coding

• cons: limited to one node / CPU unit



OpenMP parallelization



OpenMP parallelization



OpenMP parallelization



MPI parallelization

• distributed memory parallelization

• multiple individual OS processes

• in priniple independent execution

• occupies multiple cores

• every process own part of memory

• processes need to communicate

• more complicated coding

• no limitations on local memory and local

number of cores



MPI parallelization



MPI parallelization

MPI barrier: wait until all processes are here



basic structure of MPI program

#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {

    // Initialize the MPI environment
    MPI_Init(NULL, NULL);

    // Get the number of processes
    int world_size;
    MPI_Comm_size(MPI_COMM_WORLD, &world_size);

    // Get the rank of the process
    int world_rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

    // Print off a hello world message
    printf("Hello world from processor %s, rank %d out of %d processors\n",
           processor_name, world_rank, world_size);

    // Finalize the MPI environment.
    MPI_Finalize();
}



MPI communication

int main(int argc, char** argv) {

    ...

    // send data to other processor
    MPI_Send(data, count, datatype, destination, tag, MPI_communicator);

    // receive data from other processor
    MPI_Recv(data, count, datatype, source, tag, MPI_communicator, status);

    ...
}



MPI communication II

int main(int argc, char** argv) {

    ...
    // initialise 2 MPI processes

    if(world_rank == 0)
    {
        // send data to other processor
        MPI_Send(data, count, datatype, destination=1, tag, MPI_comm);
    }
    else // world_rank == 1
    {
        // receive data from other processor
        MPI_Recv(data, count, datatype, source=0, tag, MPI_comm, status);
    }

    ...
}



MPI communication III

int main(int argc, char** argv) {

    ...
    // initialise N MPI processes

    if(world_rank == 0){
        for(int i=1; i<N; i++)
        {
            // send data to other processor
            MPI_Send(data, count, datatype, destination=i, tag, MPI_comm);
        }
    }
    else
    {
        // receive data from other processor
        MPI_Recv(data, count, datatype, source=0, tag, MPI_comm, status);
    }

    ...
}



MPI communication IV

int main(int argc, char** argv) {

    ...
    // distribute to all

    if(world_rank == 0){
        // send data to other processor
        MPI_Bcast(data, count, datatype, tag, MPI_comm);
    }
    else
    {
        // receive data from other processor
        MPI_Recv(data, count, datatype, source=0, tag, MPI_comm, status);
    }

    ...
}



MPI other commands

int main(int argc, char** argv) {

    ...
    // wait here
    MPI_Barrier(...)

    // collect from all
    MPI_Gather(...)

    // reduce
    MPI_Reduce(..., mode=MODE)
    ...
}

MODE:
MPI_MAX  : find minimum
MPI_MIN  : find maximum
MPI_SUM  : sum all values
MPI_PROD : multiply all values
MPI_LAND : logical and
MPI_LOR  : logical or
....



MPI parallelization

option 1

- simple pinning

- each process: one core



MPI parallelization

option 2

- simple pinning

- processes distributed onto

several nodes

- 2/6 cores occupied

- each process 1/2 memory



mixed OpenMP and MPI

• start MPI process on every node

• inside node OpenMP with shared memory



Perfect parallelization

• vector multiplication

• simple matrix operations

• Monte Carlo simulations

• independent parameter scan



hydrodynamics everywhere



hydrodynamics

• Solve discretized fluid

equations on a grid

• simplest case: uniform,

periodic grid



hydrodynamics

• Solve discretized fluid

equations on a grid

• simplest case: uniform,

periodic grid

• split domain between

processors



hydrodynamcis - equations



discretization

• temporal and spatial discretization

• 3-point stencil: need one neighbour in

each direction



need neighbour cells



how to communicate

stupid way

do time_loop

  do x_loop
    do y_loop
      if at boundary
        # communicate
        MPI_get_neighbour()
      density  = ...
      momentum = ...
      energy   = ...
    done
  done

done

clever way

do time_loop
  # get a copy of neighbours
  MPI_get_neighbours()
  do x_loop
    do y_loop

      density  = ...
      momentum = ...
      energy   = ...
    done
  done
  MPI_send_neighbours()
done



guard (ghost) cells

• use guard cells to reduce communication



galaxy and ISM



galaxy and ISM





simulations of interstellar gas

• dense cold gas that forms

clouds and stars

• diffuse warm gas

• hot gas that escapes the

galaxy

• different scales

(space/time), so need

adaptive grid



adaptive mesh refinement



example: Sedov explosion

dynamically follow the interesting gas structures (here shock)

refine and derefine

more complicated domain decomposition

dynamical redistribution of regions between the cores



Domain decomposition

• simplest way:
– each processor same number of cells

– select domain with least communication

(shortest border)

– perfect memory distribution

• problematic if different cells require

different cost
– iterations depend on density, temperature

– iterations depend on position



memory balancing



local time steps (actual work)



physics load balancing

• perfect distribution in

memory

• but small cells

interact on smaller

time scales

• small blocks need to

do more iterations

• cores with small cells

do more work!

dt = dt0

dt = dt0 dt = dt0

dt0/2 dt0/2

dt0/2
dt0/4



another example: ISM

density local hydro time



time scales

density free-fall time



NN vs. long-range interaction
hydro (NN)

cell-by-cell speed

gravity (long-range)

instantaneous speed



direct neighbour vs. long-range
hydro (dir. neighbour)

cell-by-cell speed

gravity (long-range)

instantaneous speed

• one guard cell works

• two in case of 5pt stencil

• small additional memory

• communication to

neighbour processors,

globally asynchronous

• every cell depends on

every cell (N2)

• every processor need

entire grid information

• reduce information,

approximate computation

• tree methods, particle-

mesh methods

• still communication

accross all processors



simple example: tree gravity

• reduce objects at

large distances to

centre of mass

• compute force

between centres



simple example: tree gravity

• reduce objects at

large distances to

centre of mass

• compute force

between centres

• close clouds need

direct integration



Tree communication

p1 p2 p3 p4 p5 p6

if tree structure is known:

 pro: efficient communication with necessary processors

 con: every process needs to have tree information

    --> tree needs to be communicated



scaling

• strong scaling: how the solution time varies

with the number of processors for a fixed total

problem size

– ideal: t = Ntot/Nproc, speedup = 1/t =

Nproc/Ntot

• weak scaling: how the solution time varies

with the number of processors for a fixed

problem size per processor

– ideal: t = const, speedup = const



scaling in real application



ISM simulations



ISM simulations



processes

• MHD (local)

• self-gravity* (tree)

• external potential (analytic)

• radiation* and shielding* (tree)

• in practice:
– tree efficient in terms of comp. cost

– tree stores variables for (*), a lot of memory

– sim. “memory limited”

– more cores would help, but not enough memory



IO

• reading data:
– few thousand cores direct reading

efficient caches -> OK

– one process reads -> MPI distribution

• writing data:
– parallel writing at random positions in file:

data race! (only one process allowed, lock)

– files split like domain decomposition

(every processor separate file with local data)

– one process: MPI collection -> writing



IO

• reading data:
– few thousand cores direct reading

efficient caches -> OK

– one process reads -> MPI distribution

• writing data:
– parallel writing at random positions in file:

data race! (only one process allowed, lock)

– files split like domain decomposition

(every processor separate file with local data)

– one process: MPI collection -> writing



code

• FLASH / Arepo

• C / C++ / Fortran

• MPI / MPI+OpenMP

• ca. 400.000 lines

• problem: 100.000 lines

• current sim: 40 Mio CPUh, 250 TB



problems and conclusions

• all computations must be parallel

• many runs need >1000 cores

• MPI and combined MPI/openMP

• most of work:
– numerical methods for the physics equations

– optimization and efficient parallelization

• so far missing: machine learning methods
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