Exercises for Cosmology (WS2013/14)

Lecturer: Christoph Pfrommer; Exercises: Michael Walther Exercise sheet 1 Due: Oct. 22, 2013 16:00

To be handed in before the exercise class or emailed as a pdf or scanned hand-written document (via e-mail to walther@mpia.de). Remember to put your names on the document; groups of ≤ 3 are allowed.

1. The Metric of Robertson-Walker space (10 points)

In the lecture, we defined the radial function

$$f_K(w) = \begin{cases} K^{-1/2} \sin(K^{1/2}w) & (K > 0), \\ w & (K = 0), \\ |K|^{-1/2} \sinh(|K|^{1/2}w) & (K < 0), \end{cases}$$
(1)

where K is a constant parametrizing the curvature of spatial hypersurfaces.

(a) Show that the spatial line element of the Friedmann metric,

$$\mathrm{d}l^2 = \mathrm{d}w^2 + f_K^2(w)\mathrm{d}\Omega^2 \tag{2}$$

can equivalently be written in the form

$$\mathrm{d}l^2 = \frac{\mathrm{d}r^2}{1 - Kr^2} + r^2 \mathrm{d}\Omega^2 \tag{3}$$

(b) For both forms of the metric, calculate the surface area of a sphere with constant unit radius w = 1 resp. r = 1.

2. Newtonian Friedmann Equations (10 points)

Consider a spherical sub-volume of radius r(t), within an (infinite) expanding, homogeneous mass density distribution $\rho(t)$ of a idealized pressureless fluid. The radius $r(t) \equiv a(t) \cdot R$ (where R = const.) is defined to enclose constant mass as a function of time. At $t = t_0$, we have $r(t_0) = R$ and $\rho(t_0) = \rho_0$ and some expansion rate $\dot{a}(t_0)$.

- (a) What is the equation of motion for a(t)?
- (b) What is the total energy of the system E_{tot} , and what is the solution to this equation of motion for $E_{\text{tot}} = 0$?
- (c) If a(t = 0) = 0, how does the time t_0 since that 'big bang' (i.e. a = 0) compare to $1/\dot{a}(t_0)$? Does that t_0 depend on the choice of R?

(to be continued on the back)

3. Loitering Universes (10 points)

Consider a Friedmann model with non-relativistic matter ($\rho_{\rm m} \propto a^{-3}$) and a cosmological constant ($\rho_{\Lambda} \propto a^0$) with densities relative to critical of $\Omega_{\rm m}$ and Ω_{Λ} , respectively.

(a) By considering the 'second Friedmann equation' for \ddot{a} show that there is an inflexion point in the scale factor evolution when

$$(1+z)^3 = \frac{2\Omega_{\Lambda,0}}{\Omega_{m,0}}.$$
 (4)

(b) Show that the age of the Universe becomes infinite when $\dot{a} \rightarrow 0$ at the inflexion point or

$$27 \,\Omega_{\rm m,0}^2 \Omega_{\Lambda,0} = 4(\Omega_{\rm m,0} + \Omega_{\Lambda,0} - 1)^3.$$
(5)

Models near this one, with a long period where a is nearly constant, are known as loitering models. The extreme loitering model is Einstein's static universe, also known as Eddington-Lemaitre universes, and are the reason Einstein introduced Λ in the first place. Models with long loitering phases are heavily disfavored by the classical tests (and eventually by Olber's paradox!).

4. Necessity of a Big Bang (10 points)

Again, consider the universe of the previous problem (you may also use the results obtained there).

- (a) What region of the $\Omega_{m,0} \Omega_{\Lambda,0}$ plane leads to models with no 'big bang' (i.e., *a* does not tend to zero at early times)?
- (b) Show that such universes have a maximum redshift z_{max} with

$$\Omega_{\rm m,0} \le \frac{2}{z_{\rm max}^2 (z_{\rm max} + 3)}.$$
(6)

Since we observe objects at $z \gtrsim 5$ and $\Omega_{\rm m,0} \gg 0.01$ argue that such models are ruled out.