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1. Angular Momenta of Galaxies (10 bonus points)

The angular momentum of a galaxy (L) can be expressed in terms of the dimension-
less spin parameter

λ ≡ L|E|1/2

GM5/2
, (1)

where E is the binding energy and M is the mass of the galaxy. A system with
appreciable rotational support has λ ∼ 1. Observations suggest that disk galaxies
have λ ≈ 0.4− 0.5.

One possible way of understanding the angular momenta of galaxies is through the
effects of tidal torques during gravitational collapse. Simulations indicate that this
process can provide an initial λ of λi ≈ 0.05, which is only about 10% of the observed
value. During the collapse of gas the binding energy increases due to cooling, while
mass and angular momentum remain the same. This will allow λ to increase as
λ ∝ |E|1/2 and (possibly) reach observed values.

(a) Consider the collapse of a homogeneous overdense sphere of mass M and initial
radius R0 from its initial state that is expanding with the Hubble flow. Show
that the collapse time is given by

tcoll ∼ π

(
R3

0

2GM

)1/2

. (2)

(b) Examine the idea of the increase of the spin parameter λ during the collapse in
the absence of dark matter halos and show that it is not viable by estimating
the initial size that the gas cloud would need and the timescale for it to collapse
to the scales associated with galaxies (Mdisk ∼ 1011M� and Rdisk ∼ 10 kpc).

(c) Next, consider the same process in the presence of a dark matter halo. Show
that the difficulties in part (b) can be circumvented and a sufficiently high value
of λ can result if Mdisk ≈ 0.1Mhalo.
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2. Gravitational Lensing at Galaxies (10 bonus points)

Suppose that a galaxy has an effective radius rg ' 10 h−1kpc, and an effective cross
section of πr2

g. Furthermore assume a constant comoving number density of galaxies

ng ' 0.02 h3Mpc−3.

(a) Show that the optical depth due to galaxies for an object at redshift z in a flat,
matter dominated model is

τ ' 10−2
[
(1 + z)3/2 − 1

]
. (3)

(b) Keep the model flat by lowering Ωm and introducing Λ. At what value of ΩΛ

does the optical depth become unity? Evaluate your answer analytically and
express it as a function of redshift. This sensitivity to path length is the principle
behind limits on Λ from e.g., gravitational lensing.

3. Imprints of Primordial Non-Gaussianity on the Distribution of Halos (10
bonus points)

Here, we derive an analytic expression for the peak height and clustering of dark
matter halos in the presence of local non-Gaussianity in the primordial density field,

ΦNG(x ) = Φ(x )− fNL

(
Φ2(x )− 〈Φ2〉

)
, (4)

where Φ denotes the Newtonian potential, which is connected to the overdensity
δ through Poisson’s equation on subhorizon scales. With this choice of convention,
positive fNL corresponds to a positive skewness of the density probability distribution,
and hence an increased number of massive objects.

(a) Since we are interested in the formation of halos, we focus on high peaks in the
density field, where the derivative of Φ vanishes. Thus, we can neglect |∇Φ|2 in
comparison to the curvature term Φ∇2Φ in the vicinity of rare, high peaks of the
density distribution. Use Poisson’s equation in combination with equation (4)
to show that in the vicinity of high peaks, the density contrast in a model with
non-Gaussianity (δNG) is connected to the matter density contrast of a purely
Gaussian model (δ) via the equation

δNG ≈ δ (1− 2fNLΦ) . (5)

This shows that non-Gaussianity enhances the peak height by a factor that is
proportional to the primordial potential |Φ| = |Φlate|a/D+(a), where Φlate is the
evolved potential at late times and D+(a) is the linear growth factor.

(b) The halo correlation function is parametrized in terms of the halo bias b, which
is the rate of change of the halo abundance as the background density is varied.
Writing the halo overdensity as δh and the matter overdensity (in either model)
as δ, we can define the halo bias as

δh = bδ. (6)
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Consider a long-wavelength mode that provides a background density pertur-
bation δ and corresponding potential fluctuation Φ. In the absence of non-
Gaussianity, this perturbation raises (small-scale) subthreshold perturbations
above the threshold, and thereby enhances the abundance of superthreshold
peaks by bLδ, where bL is the (Gaussian) Lagrangian bias. As shown in part
(a), for non-zero fNL, the long-wavelength mode also enhances the peak height
by 2fNL|Φ|δpk, and we will focus on peaks near the threshold such that δpk ' δc.
Show that in this case, the Lagrangian bias acquires the scale-dependent correc-
tion

∆bL(k) = 3bLfNL
δcΩmH2

D+(a)k2
, (7)

where the total Lagrangian bias is bL(k) = bL+∆bL(k). If you want to maximize
your constraining power on the local non-Gaussianity parameter fNL, which type
of objects would you target for a survey?

(c) Calculate the corresponding Eulerian bias in the presence of local non-Gaussianity.
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