Exercises for Cosmology (WS2014/15)

Lecturer: Christoph Pfrommer; Exercises: Michael Walther

Exercise sheet 4

Due: Nov. 14, 2014 11:00

To be handed in before the exercise class or emailed as a pdf or scanned hand-written document (via e-mail to walther@mpia.de). Remember to put your names on the document; you can work in groups of ≤ 2 but every student should hand in his/her own solution sheet and indicate clearly who contributed to it. All problems discuss relevant content for the final exam; however, you are only required to solve two out of the three problems and hence you can only earn a **maximum of 20 points per problem set** (which can be accumulated from any of the three problems).

- 1. Non-relativistic Gas (10 points)
 - (a) **Decoupling.** Show that for a particle of mass m that decouples at temperature T_d with $mc^2 \gg kT_d$ the distribution remains thermal but with a modified temperature T and chemical potential μ

$$T = T_{\rm d} \left(\frac{a_{\rm d}}{a}\right)^2 \qquad \text{and} \qquad \mu = mc^2 + \left(\mu - mc^2\right) \frac{T}{T_{\rm d}}.\tag{1}$$

Hint: employ the non-relativistic limit of the phase space distribution (don't forget the rest-mass contribution to the energy), recall that particle momenta scale as $p \propto a^{-1}$ and use the conservation of the comoving number density, $N = na^3 = \text{const.}$

(b) Adiabatic Index. By analogy to the calculation in the script, show that the grand-canonical potential for a non-relativistic gas well after decoupling (see equation (1)) can be written in the form

$$\Phi = -AVT^{5/2},\tag{2}$$

where A > 0 is a constant. Use this to show that pressure and entropy scale with temperature as

$$P = A(kT)^{5/2}, (3)$$

$$S = \frac{5}{2} AV k (kT)^{3/2}.$$
 (4)

Use the relations U = TS - PV and dU + PdV = 0 to show that

$$P \propto V^{-5/3},\tag{5}$$

i.e., the adiabatic index of a non-relativistic gas is $\gamma = 5/3$.

2. QCD Phase Transition (10 points)

In case there are multiple particle species in *thermal equilibrium*, we can define an effective degeneracy factor (or effective statistical weight) of

$$g_* \equiv \sum_{i=\text{bosons}} \tilde{g}_i + \frac{7}{8} \sum_{i=\text{fermions}} \tilde{g}_i = \sum_{i=\text{bosons}} g_i + \sum_{i=\text{fermions}} g_i.$$
 (6)

We will focus on the quantum chromodynamics (QCD) phase transition, which takes place at kT = 200 MeV. You may wish to use the fact that below 200 MeV, the "light" particles are e (g = 7/2), $\gamma (g = 2)$, $\nu (g = 21/4)$, $\mu (g = 7/2)$, and $\pi (g = 3)$.

- (a) Justify the values of the corresponding statistical weights g_i .
- (b) Calculate the mass, in M_{\odot} , contained within the horizon at the QCD phase transition. You may approximate the horizon distance as ct and the background density at the critical density at that time.

3. Cosmological Bounds on the Neutrino Mass (10 points)

A neutrino with mass less than 1 MeV will decouple when $kT \simeq 1$ MeV at which temperature the effective statistical weight is given by $g_* = 10.75$. If the neutrino does not interact then n/s will be conserved. For a singe massive species with g = 2show that the bound $\Omega_{\nu}h^2 < 1$ gives

$$m_{\nu}c^2 < 92 \text{ eV}.\tag{7}$$