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To be handed in before the exercise class or emailed as a pdf or scanned hand-written doc-
ument (via e-mail to walther@mpia.de). Remember to put your names on the document;
you can work in groups of ≤ 2 but every student should hand in his/her own solution
sheet and indicate clearly who contributed to it. All problems discuss relevant content for
the final exam; however, you are only required to solve two out of the three problems and
hence you can only earn a maximum of 20 points per problem set (which can be
accumulated from any of the three problems).

1. Power Spectrum and Correlation Function (10 points)

The power spectrum is conveniently expressed in dimensionless form as the variance
per ln k,

∆2(k) ≡ d〈δ2〉
d ln k

=
4π

(2π)3
k3P (k). (1)

Consider a dimensionless power spectrum with small-scale truncation:

∆2(k) =

(
k

k0

)n+3

exp(−k/kc). (2)

Show that the corresponding correlation function is

ξ(r) =
(kc/k0)

n+3

y(1 + y2)1+n/2
Γ(2 + n) sin[(2 + n) arctan y], (3)

where y = kcr. For this model, explain why ξ is negative at large r for n > 0. For
what values of n does ξ stay positive at large r?

Hint: to solve the final integral analytically, use the following identity

exp(−x) sin(xy) ≡ Im{exp[−(1 + iy)x]}, (4)

which suggests the change of variables z = (1 + iy)x in your integral.

2. The Zel’dovich Approximation (10 points)

Consider a one-dimensional plane parallel density perturbation. Show that in this
case, the Zel’dovich approximation provides an exact solution at all times before
particle trajectories intersect.

Hint: one way to go about this is to substitute the Zel’dovich approximation trajecto-
ries into the true equation of motion, and then to demonstrate that the gravitational
potential ~∇δΦ implied by the resulting equation is agrees with the solution for ~∇δΦ
that one gets from the Poisson equation.
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3. Imprints of Primordial Non-Gaussianity on the Distribution of Halos (10
points)

Here, we derive an analytic expression for the peak height and clustering of dark
matter halos in the presence of local non-Gaussianity in the primordial density field,

ΦNG(x ) = Φ(x )− fNL

(
Φ2(x )− 〈Φ2〉

)
, (5)

where Φ denotes the Newtonian potential, which is connected to the overdensity
δ through Poisson’s equation on subhorizon scales. With this choice of convention,
positive fNL corresponds to a positive skewness of the density probability distribution,
and hence an increased number of massive objects.

(a) Since we are interested in the formation of halos, we focus on high peaks in the
density field, where the derivative of Φ vanishes. Thus, we can neglect |∇Φ|2 in
comparison to the curvature term Φ∇2Φ in the vicinity of rare, high peaks of the
density distribution. Use Poisson’s equation in combination with equation (5)
to show that in the vicinity of high peaks, the density contrast in a model with
non-Gaussianity (δNG) is connected to the matter density contrast of a purely
Gaussian model (δ) via the equation

δNG ≈ δ (1− 2fNLΦ) . (6)

This shows that non-Gaussianity enhances the peak height by a factor that is
proportional to the primordial potential |Φ| = |Φlate|a/D+(a), where Φlate is the
evolved potential at late times and D+(a) is the linear growth factor.

(b) The halo correlation function is parametrized in terms of the halo bias b, which
is the rate of change of the halo abundance as the background density is varied.
Writing the halo overdensity as δh and the matter overdensity (in either model)
as δ, we can define the halo bias as

δh = bδ. (7)

Consider a long-wavelength mode that provides a background density pertur-
bation δ and corresponding potential fluctuation Φ. In the absence of non-
Gaussianity, this perturbation raises (small-scale) subthreshold perturbations
above the threshold, and thereby enhances the abundance of superthreshold
peaks by bLδ, where bL is the (Gaussian) Lagrangian bias. As shown in part
(a), for non-zero fNL, the long-wavelength mode also enhances the peak height
by 2fNL|Φ|δpk, and we will focus on peaks near the threshold such that δpk ' δc.
Show that in this case, the Lagrangian bias acquires the scale-dependent correc-
tion

∆bL(k) = 3bLfNL
δcΩmH2

D+(a)k2
, (8)

where the total Lagrangian bias is bL(k) = bL+∆bL(k). If you want to maximize
your constraining power on the local non-Gaussianity parameter fNL, which type
of objects would you target for a survey?

(c) Calculate the corresponding Eulerian bias in the presence of local non-Gaussianity.
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