Summer Semester 2018:

Master course Astrophysics II: Galaxies and Cosmology

Lecture 9, 12 Jun 2018: Chemical evolution of galaxies

Responsible: Prof. Christoph Pfrommer, Prof. Lutz Wisotzki

University of Potsdam

The two phases of cosmic nucleosynthesis

Element abundances in the sun / solar system

The Origin of the Solar System Elements

Astronomical Image Credits: ESA/NASA/AASNova

Graphic created by Jennifer Johnson

Cosmic cycle of matter \rightarrow enrichment with heavy elements

Collapse

Gas cloud

DENSE CLOUD

Star formation

DIFFUSE CLOUD

Mixing

ACCRETION DISK

Main sequence

Ejection of outer layers

STELLAR SYSTEM

MASS LOSS

Example for abundance effects in stellar spectra: Discovery of the extremely low metallicity star HE 0107–5240

Example for determination of mean metallicities of early-type galaxies from SSP model fitting of their integrated starlight spectra

Example for interstellar absorption lines from a high-redshift galaxy

Velocity Relative To $z_{sys} = 3.07331$ (km s⁻¹) Quider et al. 2010 Example for measuring gas-phase oxygen abundances in emission line spectra from photoionised interstellar gas

Observed metallicity distribution for stars in the solar neighbourhood

based on Geneva-Copenhagen Survey, Casagrande et al 2011

Comparison of the "Simple Model" of galactic chemical evolution with observations of stars in the solar neighbourhood

Comparison of the "Simple Model" of galactic chemical evolution with observations of stars in the solar neighbourhood

