Exercises for Cosmology & Galaxies (Summer Term 2018)

Lecturer: Christoph Pfrommer & Lutz Wisotzki; Exercises: Kristian Ehlert Exercise sheet 5

Due: June 19, 2018, 16:00

To be emailed as a pdf or scanned hand-written document (via e-mail to kehlert@aip.de). Remember to put your names on the document and number your pages; you can work in groups of ≤ 2 but every student should hand in his/her own solution sheet and indicate clearly who contributed.

A total of 40 points can be achieved when completing this sheet of which 30 points will count as the maximum attainable.

- 1. **General questions** (10 points) Please provide a brief and concise answer to the following questions (max. 3 sentences per question):
 - (a) What is the so called *initial mass function* (IMF) and how can one constrain the IMF observationally?
 - (b) List and describe two different characteristics of the two main types of supernova (SN), i.e. SN Ia and SN II in the context of galaxy formation.
 - (c) What are four ingredients you should consider for your model when you want to do stellar population synthesis of a composite stellar population?
 - (d) What is the main degeneracy faced when attempting stellar population synthesis of a galaxy, in which stars cannot be resolved individually. Explain a way to overcome this degeneracy.
 - (e) Name three different observations that will allow you to constrain the mass to light ratio of a galaxy. Comment on their applicability to large galaxy surveys.

2. SSP for the zero-age main sequence (10 points)

Suppose a gas cloudconverts instantly into stars following a Salpeter Initial Mass Function with power-law index -2.35. We ignore very high mass and very low mass stars to avoid divergence of the mass integral and stochastic sampling of the IMF. We now explore the properties of such a simple stellar population (SSP) of age zero.

- (a) Derive an analytical relation for the main sequence, using the well-known scaling relations for main sequence stars relating mass M, radius R, luminosity L and effective temperature $T_{\rm eff}$, $L \sim M^{3.5}$, $R \sim M^{0.75}$ as well as the total power radiated by a black body $L = 4\pi R^2 \sigma_{\rm SB} T_{\rm eff}^4$ where $\sigma_{\rm SB}$ corresponds to the Stefan-Boltzmann constant. To get there, construct relations $T_{\rm eff}(M)$ and L(M) where M is the mass of the star, and then combine the two into one relation $L(T_{\rm eff})$.
- (b) Use (a) to construct "minimal" isochrones for various ages, only to the turnoff point (i.e. ignoring all the red giant evolutionary phases). Plot these isochrones into a Hertzsprung-Russell diagram and indicate the turnoff points for different

ages. You may find the following equation useful which approximates the mainsequence lifetime of a star $\tau_{\rm ms}$ as,

$$\tau_{\rm ms} \sim \frac{M}{M_{\odot}} \frac{L_{\odot}}{L} 10 \text{ Gyr.}$$
(1)

Derive an approximate analytical relation for the effective temperature at the turnoff point as a function of time.

(c) If there are 10000 stars with masses between 0.5 and 8 M_{\odot} in this SSP, how many stars have masses between 0.5-1 M_{\odot} (and 1-2, 2-4, 4-8 M_{\odot})?

3. Initial Mass Function (10 points)

Assume the following two parameterizations of the initial mass function with masses in the range $100~M_{\odot} > M > 0.01~M_{\odot}$:

- i. Salpeter with single power-law index $\alpha = -2.3$
- ii. Kroupa (broken power-law) with the power-law index α given by

$$\alpha = -2.3 \text{ for } 0.5 < M/M_{\odot} < 100$$

$$\alpha = -1.3 \text{ for } 0.08 < M/M_{\odot} < 0.5$$

$$\alpha = -0.3$$
 for $0.01 < M/M_{\odot} < 0.08$

(a) For each IMF calculate the fractional number of stars (relative to the total number) between the following mass intervals (expressed in solar masses):

i.
$$0.01 < M < 0.08$$

ii.
$$0.08 < M < 0.5$$

iii.
$$0.5 < M < 4$$

iv.
$$M > 4$$

Download an isochrone table from the website: http://stev.oapd.inaf.it/cgi-bin/cmd for a simple stellar population with age 5 Gyrs (age of the sun), solar metallicity and with a Salpeter IMF (can be selected in the web interface). Choose version PARSEC version 1.2S (instead of the default PARSEC v1.2S + COLIBRI PR16). The other parameters can be left at their default values.

- (b) Find the mass below which 50% of the mass fraction of the population resides.
- (c) Repeat the analysis for a Kroupa IMF.
- (d) What is the relative difference in the total mass of these stellar populations assuming a Salpeter or Kroupa IMF.

4. Evolution of the mass-to-light ratios (10 points)

As discussed in the lecture, the mass-to-light ratio of a galaxy M/L is essentially the total mass divided by the total luminosity of the galaxy. However, only the luminosity L can be observed directly, while the mass M has to be inferred. One way to estimate the mass of a system is to use the predictions of stellar population models to derive the M_p/L_p ratio of a population of stars p with the same age and metallicity. Through

colour	a_B	b_B	a_V	b_V	a_K	b_K
B-V	-0.942	1.737	-0.628	1.305	-0.206	0.135

Table 1: Stellar M/L as a function of colour.

spectral fitting one can determine the relevant populations, which constitute this galaxy. Thus, one knows the mass-to-light ratio of the individual populations M_p/L_p . Finally, one measures the absolute luminosity L of the system and determines the total mass M through calculating the weighted average of the determined populations as $M = \frac{\sum_{p}^{N_{\text{pop}}} w_p M_p}{\sum_{p}^{N_{\text{pop}}} w_p L_p} L$, where N_{pop} is the number of populations and w_p correspond to the weights.

The colour of a galaxy is influenced by the main properties of the main stellar populations making up this galaxy, i.e. age, metallicity,... Consequently, the information provided by the colour is sufficient to constrain M/L of the galaxy in the form:

$$\log(M/L_i) = a_i + b_i \times (m_i - m_k) \tag{2}$$

where i, j, k are different filter bands, m_j and m_k are magnitudes (so that m_j - m_k is a colour). Assume we observe a galaxy in the B, V, and K band. Then we can define:

$$\log (M/L_B) = a_B + b_B \times (B - V)$$

$$\log (M/L_V) = a_V + b_V \times (B - V)$$

$$\log (M/L_K) = a_K + b_K \times (B - V).$$
(3)

Bell et al. (2003, ApJS, 149, 289), used a large sample of galaxies from SDSS and the Two Micron All Sky Survey (2MASS) with a similar method as described above to determine the fit parameters listed in Table 1.

Here, instead of looking at galaxies, we will apply the equations 3 to a simple stellar populations where all stars share the same age in a given population. You will compare how the estimates of M/L depend on the different color bands and on the ages as well as metallicities of the populations. Table 2. lists the B and V magnitudes of these stellar populations of varying ages and metallicities.

- (a) Plot the B-V colour as a function of age for both metallicities.
- (b) Plot the mass to light ratio for the V, B and K bands and for the given metallicities as a function of time.
- (c) Fit the evolution of M/L as a function of time t to a simple power law (i.e., determine α in $M/L \sim t^{\alpha}$) for the three different bands and the two given metallicities.
- (d) Discuss the results. Briefly state the similarities and possible differences in the temporal evolution of M/L for the three different bands. What is the effect of varying the metallicity?

[Fe/H]	age [Gyr]	В	V	[Fe/H]	age [Gyr]	В	V
0.0	1	-9.25	-9.84	+0.3	1	-8.90	-9.63
0.0	1.5	-8.81	-9.57	+0.3	1.5	-8.44	-9.29
0.0	2	-8.53	-9.37	+0.3	2	-8.14	-9.08
0.0	2.5	-8.33	-9.21	+0.3	2.5	-7.92	-8.88
0.0	3	-8.17	-9.08	+0.3	3	-7.74	-8.72
0.0	3.5	-8.01	-8.92	+0.3	3.5	-7.61	-8.61
0.0	4	-7.87	-8.79	+0.3	4.5	-7.49	-8.51
0.0	4.5	-7.75	-8.67	+0.3	5	-7.39	-8.42
0.0	5	-7.64	-8.56	+0.3	5	-7.30	-8.34
0.0	5.5	-7.55	-8.48	+0.3	5.5	-7.21	-8.26
0.0	6	-7.46	-8.41	+0.3	6	-7.12	-8.18
0.0	6.5	-7.39	-8.35	+0.3	6.5	-7.05	-8.11
0.0	7	-7.32	-8.29	+0.3	7	-6.98	-8.05
0.0	7.5	-7.25	-8.23	+0.3	7.5	-6.91	-7.99
0.0	8	-7.19	-8.18	+0.3	8	-6.78	-7.87
0.0	8.5	-7.13	-8.12	+0.3	8.5	-6.78	-7.87
0.0	9	-7.07	-8.07	+0.3	9	-6.72	-7.82
0.0	9.5	-7.02	-8.02	+0.3	9.5	-6.67	-7.77
0.0	10	-6.97	-7.97	+0.3	10	-6.61	-7.72

Table 2: B and V magnitudes for individual stellar populations as a function of age and metallicity.