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Cosmic rays and magnetic fields in the universe
Outline of the five lectures

Magnetic fields (Christoph Pfrommer)
* Generation and evolution of magnetic fields
* Magneto-hydrodynamic (MHD) waves and turbulence

Gamma-ray astronomy (Frank Rieger)
* Radiative processes
* Origin of High Energy Radiation

Particle acceleration in astrophysics (FR)
* Constraints & challenges of particle acceleration
* Particle acceleration in gaps, via the Fermi process and by reconnection

Cosmic rays (CP)
* Cosmic ray transport and particle-wave interactions
* Cosmic ray acceleration in shocks and by turbulence

The physics of galaxy formation (CP)
* Puzzles in galaxy formation
* Feedback by stars and active galactic nuclei
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Properties of magnetic fields

The plasma within and between galaxies is magnetized:
magnetic fields enable life on Earth by shielding it from cosmic rays

magnetic pressure and tension modify the dynamics and properties of
stars/galaxies by adding additional macroscopic degrees of freedom

magnetic fields trace dynamical processes in the Universe by coupling
collisionless charged particles to a single but complex fluid

magnetic fields imply anisotropic transport processes in diffuse plasma
because the gyroradius is much smaller than the particle mean free
path: anisotropic heat conduction and cosmic ray diffusion along 〈B〉
magnetic fields are essential for accelerating cosmic rays (CRs):
diffusive shock acceleration (1st order Fermi),
turbulent MHD interactions with CRs (2nd order Fermi)

magnetic fields trace violent high-energy astrophysical processes by
illuminating distant CR electron populations through synchrotron
emission: structure formation shocks, supernovae, . . .
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Model of the magnetic field of the Sun





Model of a pulsar or magnetar



Synchrotron emission of the Cygnus A jet (radio)



Synchrotron emission of the M87 jet (radio/optical)







Magnetic field on the largest scales
Giant radio halo in the Coma galaxy cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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Magnetic field on the largest scales
Radio mini halo in the Perseus galaxy cluster

thermal X-ray emission

(ROSAT; NASA/IoA/A.Fabian et al.)

radio synchrotron emission

(Pedlar/VLA)
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Diffuse radio phenomena in galaxy clusters

radio halos:
centrally located, more regular morphology, unpolarized

giant radio halos: occur in merging clusters, > 1 Mpc-sized,
morphology similar to X-rays
radio mini halos: occur in cool core clusters, few times 100 kpc in
size, emission extends over cool core

radio relics:
irregular morphology, polarized

radio shock: at cluster periphery (< Mpc), in some cases
coincident with weak X-ray shock, polarized→ diffusive shock
acceleration (Fermi I)
radio relic bubble: aged radio cocoon, steep spectrum
radio phoenix: shock-revived bubble that has already faded out of
the radio window→ adiabatic compression
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Radio shock: double relic sources

CIZA J2242.8+5301 (“sausage relic”)

(X-ray: XMM; radio: WSRT; Ogrean+ 2013)

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Radio phoenix

thermal X-ray emission

(Slee, Roy, Murgia, Andernach, Ehle 2001)
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Shock overruns an aged radio bubble (Pfrommer & Jones 2011)
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Media File (video/mpeg)



Bubble transformation to vortex ring

Enßlin & Brüggen (2002): gas density (top) and magnetic energy density (bottom)
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Cosmic magnetic fields
From the strongest to weakest field strengths and from compact to diffuse sources

Akahori+ (2014)
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Observing magnetic fields in astrophysics – 1

Zeeman effect:
The Zeeman effect describes the
splitting of an atomic level and
hence the associated spectral line
into several components in the
presence of a static magnetic field.

The amount of splitting depends on
the strength of the magnetic field.
The splitting is associated with the
orbital angular momentum
quantum number.

Detection requires high spectral
resolution and sources of high
densities (stars, cores of molecular
clouds, . . . ).
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Observing magnetic fields in astrophysics – 2

Synchrotron emission:
Charged particles emit electromagnetic
radiation when accelerated, e.g. due to
the Lorentz force of a magnetic field.

This emission is axisymmetric with
respect to the acceleration direction in
the particle’s rest frame.

If the particles move relativistically, then
the emission in the lab frame is beamed
into a forward cone of an opening angle
θ ∼ γ−1 (where γ is the Lorentz factor).

Because the emission (= transverse
electromagnetic wave) propagates in a
narrow cone, it is linearly polarized.

The typical synchrotron frequency is

νsynch =
3eB

2πmec
γ2 ' 1 GHz

B
µG

(
γ

104

)2
.

Power-law cosmic ray electron
momentum distributions imply power-law
(radio) synchrotron spectra.
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Observing magnetic fields in astrophysics – 3

Faraday rotation:
Faraday rotation describes rotation of a linearly polarized electro-magnetic wave
in the presence of a line-of-sight magnetic field because of the birefringent
property of a plasma.

This can be seen by splitting the linearly polarized wave into right- and left-hand
circularly polarized waves, which propagate at slightly different speeds.

The observed polarization angle φobs is modified from its intrinsic position angle,
φintrinsic.

The rate of rotation scales with the
wavelength squared and is given by

φobs(x⊥) = λ2RM(x⊥) + φintrinsic(x⊥),

RM(x⊥) =
e3

2πm2
ec4

∫ d

0
ne(x⊥, l) B · dl

= 812
rad
m2

B
µG

ne

10−3cm−3

d
Mpc

.
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Origin and growth of magnetic fields

The general picture:
Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery.

Growth. A small-scale (fluctuating)
dynamo is a magneto-hydrodynamical
process, in which the kinetic (turbulent)
energy is converted into magnetic
energy: the mechanism relies on
magnetic fields to become stronger
when the field lines are stretched.

Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions.
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The Biermann battery – 1
Electron and proton momenta change due to the Lorentz force, the pressure and
viscous forces:

me
dve

dt
= −e

(
E +

ve

c
× B +

1
ene
∇Pe

)
−
νviscme

ne
(ve − vp),

mp
dvp

dt
= e

(
E +

vp

c
× B +

1
enp
∇Pp

)
.

If Tp = Te, we can neglect the proton equation because protons move on
average slower than electrons by a factor

√
mp/me.

Viscous forces are very small on large scales: we drop the term ∝ νvisc.

We assume a steady state (i.e., τ > ω−1
pl , where ω2

pl = 4πnee2/me is the plasma
frequency) and solve for E :

E = −
ve × B

c
−
∇Pe

ene
.

Multiplying this equation by −c, taking the curl of it and using Faraday’s law, we
obtain

∂B
∂t

= −c∇× E =∇× (ve × B) +
c
e
∇×

(
∇Pe

ne

)
. (1)
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The Biermann battery – 2

Using Pe = nekBTe and the identities∇× (f∇g) ≡∇f ×∇g and
∇×∇f ≡ 0, we can rewrite the second term of Eq. (1):

1
kB
∇×

(
∇Pe

ne

)
=∇×

[
1
ne
∇(neTe)

]
=∇× (∇Te) +∇×

(
Te

ne
∇ne

)
=∇

(
Te

ne

)
×∇ne =

1
ne
∇Te ×∇ne −

Te

n2
e
∇ne ×∇ne

=
1
ne
∇Te ×∇ne.

Hence, we obtain the Biermann battery equation,

∂B
∂t

=∇× (ve × B)−
ckB

ene
∇ne ×∇Te.

This equation shows that if there is no magnetic field to start with (i.e., a
vanishing first term on the right-hand side), then the magnetic field can be
generated by a baroclinic flow with∇ne ×∇Te 6= 0.

This could be achieved in shocks of the interstellar medium, in ionization fronts,
or similar astrophysical sites; in general, baroclinic flows are sourced by
rotational motions at shocks of finite extent such as the chaotic collapse of a
proto-galaxy.
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The Biermann battery – 3

Consider a shock of finite extent that propagates into zero-pressure medium.
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The Biermann battery – 4

Magnetic fields generated through this process have very small field strengths:
adopting a characteristic density and temperature gradient length of L of a
proto-galaxy and assuming gravitational collapse on the free-fall time,
τ ∼ 1/

√
Gρ, we obtain

B ∼
ckBTe

e
τ

L2
∼

ckBTe

e
1√

GρL2

∼ 10−20G
(

Te

104 K

)(
n

1 cm−3

)−1/2 ( L
kpc

)−2
.

Naively, going to smaller length scales L should increase B. However, in order to
explain the coherence on scales of several kpcs, we would have to evoke a
process such as a small-scale wind that moves the magnetic fields back to kpc
scales and in that process we would have to account for adiabatic losses that
accompany the expansion from small to large scales: in the end we would gain
nothing from running a Biermann battery on smaller scales.

This solves the cosmological magneto-genesis problem, but the big challenge
remains in growing coherent large-scale magnetic fields from a small-amplitude,
small-scale fields: this is a major challenge of dynamo theory!
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Cosmological magneto-genesis: the Biermann battery

Cosmological simulations of the Biermann battery during the epoch of
reionization with a state-of-the-art galaxy formation model find magnetic field
generation at reionization fronts and at supernova-driven outflows (Attia+ 2021)
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The induction equation – derivation
To derive the equations of magneto-hydrodynamics, we need
1. an equation for the magnetic field evolution, i.e., the induction equation, and
2. work out the magnetic force and stress.

We start with Ohm’s Law:

E = η j −
v
c
× B,

where η is the resistivity, v is the fluid velocity.

Using Faraday’s Law,
∂B
∂t

= −c∇× E , we get

∂B
∂t

=∇× (v × B)−∇× (c η j).

Using Ampère’s Law,∇× B = 4π j/c, we get

∂B
∂t

=∇× (v × B)−
c2

4π
∇× (η∇× B).

Assuming η = const, using the identity∇× (∇× B) ≡∇(∇ ·B)−∇2B and
the solenoidal condition,∇ ·B = 0, we arrive at the induction equation:

∂B
∂t

=∇× (v × B) + D∇2B, where D =
c2 η

4π
. (2)
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The induction equation – discussion

The magnetic induction equation reads:

∂B
∂t

=∇× (v × B) + D∇2B, where D =
c2 η

4π
.

1st term: the “convective term” states that the field is frozen into the flow (as we
will see momentarily): an important property for astrophysical plasmas!

2nd term: the “diffusive term” represents the diffusive leakage of magnetic field
lines across the conducting field, which is important for changing the magnetic
topology, e.g. in reconnection.

The “diffusive term” can be neglected for infinite conductivity σ = η−1 or for large
magnetic Reynolds numbers Rem →∞:

Rem =
|convective term|
|diffusive term|

=
L−1v B
D L−2B

=
L v
D
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Magnetic force and stress – 1
Using Ampère’s law at low frequencies,∇× B = 4πj/c, we will now show that the
Lorentz force can be written as follows:

F L =
1
c

j × B =
1

4π
(∇× B)× B = −

1
8π
∇B2 +

1
4π

(B ·∇) B = −∇ ·M,
where

Mij =
1

8π
B2δij −

1
4π

Bi Bj

is the magnetic stress tensor: it plays a role analogous to the fluid pressure in ordinary
fluid mechanics (explaining the minus sign introduced in its definition).

We have
(∇× B)× B|i = εijkεjlm(∂l Bm)Bk = εkijεjlm(∂l Bm)Bk

= (δklδim − δkmδil )(∂l Bm)Bk = (∂k Bi )Bk − (∂i Bk )Bk

=

[
(B ·∇)B −

1
2
∇B2

]
i
.

Because∇ ·B = 0, we can rewrite this, yielding

1
4π

[
(B ·∇)B −

1
2
∇B2

]
i

=
1

4π
∂k

(
Bi Bk −

1
2

B2δik

)
= −∂k Mik .

The first term is the magnetic curvature or tension force and the second term is
the gradient of the magnetic pressure B2/8π.
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Magnetic force and stress – 2

To get a better understanding, we show that the surface force (per unit area) exerted by
a bounded volume V on its surroundings is given by

F S = n ·M =
1

8π
B2n −

1
4π

BBn,

where Bn = B ·n is the component of B along the outward normal n to the surface of
the volume.

The net Lorentz force acting on a volume V of fluid can be written as an integral
of a magnetic stress vector acting on its surface,∫

V
F LdV =

∫
V

1
4π

(∇× B)× B dV = −
∫

S
∇ ·M dV = −

∮
S

n ·M dS.

To get the force F S exerted by the volume on its surroundings, we need to add a
minus sign,

F S = n ·M =
1

8π
B2n −

1
4π

BBn,

where Bn = B ·n.
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Magnetic force and stress – 3

To understand the meaning of magnetic stress, we take a uniform magnetic field along

the z-direction (B = Bez ) and compute the surface forces F S exerted by a rectangular

volume that is aligned with the magnetic field (there are 6 different surface elements

but symmetry limits the surface forces to two different types). In particular, we ask

which magnetic forces (pressure or tension) are contributing to these surface forces:
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Magnetic force and stress – 4

Take the surface perpendicular to the x axis on the right-hand side of the box:

n = ex : F right = ex ·M,
Fright, x =

1
8π

B2 −
1

4π
Bx Bz =

1
8π

B2, Fright, y = Fright, z = 0.

The stress exerted by the magnetic field at the top of the surface element is

n = ez : F top = ez ·M, note that we have here: B2 = B2
z ,

Ftop, z =
1

8π
B2 −

1
4π

BzBz = −
1

8π
B2, Ftop, x = Ftop, y = 0.

The stress is also perpendicular to the surface and of equal magnitude to that of
the magnetic pressure exerted at the vertical surfaces, but of opposite sign!
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Magnetic force and stress – 5

Conclusions:

The magnetic pressure causes the fluid volume to expand in the perpendicular
directions to the magnetic field (in x and y for a field in z direction)

The magnetic stress in the direction of B forces the fluid element to contract
along the field lines. This acts like a negative pressure similar to a stretched
elastic rubber band!
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Magneto-hydrodynamics

For a collisional fluid on scales larger than the particle mean-free path and on
time scales longer than the inverse plasma frequency, τ > ω−1

pl , the evolution of
the magnetic vector field B is given by magneto-hydrodynamics (MHD).

Ideal MHD assumes an inviscid (i.e., no viscosity), ideally conducting fluid.

To derive MHD, we add the Lorentz force to the momentum evolution equation
(the Euler equation) and supplement the system of conservation equations of
mass, momentum and entropy by the equation for magnetic induction, Eq. (2)
without the diffusion term and obtain the equations of ideal MHD:

∂ρ

∂t
+∇ · (ρv) = 0,

ρ

(
∂v
∂t

+ v ·∇v
)

= −∇P + j × B = −∇ ·
[(

P +
B2

8π

)
1̄ +

1
4π

BBT

]
,

∂s
∂t

+ v ·∇s = 0,

∂B
∂t
−∇× (v × B) = 0, subject to the constraint ∇ ·B = 0,

where ρ = ρ(x), P = P(x), v = v(x), j = j(x), s = s(x), and B = B(x) are the
density, pressure, velocity, electric current, entropy, and magnetic field.
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Magnetic flux freezing – 1
To show that the magnetic flux is “frozen” into the plasma, we start with the
induction equation (2) without the diffusion term:

∂B
∂t

=∇× (v × B),

Using∇ ·B = 0, we obtain

∂B
∂t

= (B ·∇)v − (v ·∇)B − (∇ · v)B,

which can be rearranged to yield

dB
dt
≡
∂B
∂t

+ (v ·∇)B = (B ·∇)v − (∇ · v)B.

With the continuity equation
dρ
dt

= −(∇ · v) ρ, we get

dB
dt
≡
∂B
∂t

+ (v ·∇)B = (B ·∇)v +
B
ρ

dρ
dt
.

Multiplying this equation by ρ−1 and rearranging terms yields

d
dt

(
B
ρ

)
=

1
ρ

dB
dt
−

B
ρ2

dρ
dt

=

(
B
ρ
·∇
)

v ,

This is the flux-freezing equation of magnetic fields.
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Magnetic flux freezing – 2

Flux freezing condition:
d
dt

(
B
ρ

)
=

(
B
ρ
·∇
)

v

Consider the evolution of δx which connects two neighboring points in the fluid:

∆x(t) = δx

∆x(t + ∆t) = δx + (δx ·∇) v ∆t +O(∆t2)

dδx
dt

=
∆x(t + ∆t)−∆x(t)

∆t
= (δx ·∇) v

B/ρ and δx satisfy the same ODE, hence if initially δx = εB/ρ, the same
relation will hold for all times. If δx connects two particles on the same field line
then they remain on the same field line.
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Magnetic flux freezing – 3

Flux freezing condition:
d
dt

(
B
ρ

)
=

(
B
ρ
·∇
)

v

What does this flux-freezing condition imply for a uniform contraction/expansion
of the plasma?

The plasma resides in a sphere of radius r and conserves mass and magnetic
flux dΦ = B · dA (where dA is the surface element on the sphere). Thus, both
ρr3 and Br2 are constant and we obtain

B ≡
√
〈B〉 ∝ r−2 ∝ ραB , αB =

2
3
,

for isotropic contraction or expansion, independent of the magnetic topology.

Note that the scaling exponent αB depends on the type of symmetry invoked
during collapse (whether it is isotropic or not) and can differ for contraction along
a homogeneous magnetic field (αB = 0) or perpendicular to it (αB = 1).

Thus, flux freezing alone predicts a tight relation between B and ρ. Moreover, it
has a surprising property called magnetic draping.
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What is magnetic draping?
Interaction of an obstacle (Earth, star, galaxy, . . . ) with a magnetized plasma
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What is magnetic draping?
Interaction of an obstacle (Earth, star, galaxy, . . . ) with a magnetized plasma

Is magnetic draping similar to ram
pressure compression?
→ no, the density is not increased in
magnetic draping as shown by ideal
MHD simulations (right)

Is magnetic flux still frozen into the
plasma?
yes, but plasma can also move along
field lines while field lines get stuck at
obstacle
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Applications of magnetic draping

Solar-wind magnetic field is draped around the magnetopause of Earth: this
protects Earth from cosmic rays during times of spin flip of the magnetic poles

draping of solar-wind magnetic field
at other moons and planets of the
solar system: plasma physics

hydrodynamic stability of underdense
radio bubbles

sharpness (Te, ne) of cold fronts:
without B, smoothed out by diffusion
and heat conduction on & 108 yrs

Guicking et al. (2010): magnetic draping around Venus

magnetic draping on spiral galaxies in galaxy clusters: method for detecting the
orientation of cluster magnetic fields
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Polarized synchrotron emission in a field spiral: M51

MPIfR Bonn and Hubble Heritage Team

grand design ‘whirlpool galaxy’
(M51): optical star light
superposed on radio contours

polarized radio intensity follows the
spiral pattern and is strongest in
between the spiral arms

the polarization ‘B-vectors’ are
aligned with the spiral structure
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Ram-pressure stripping of cluster spirals

Brueggen (2008)

3D simulations show that the
ram-pressure wind quickly strips the
low-density gas in between spiral
arms (Tonnesen & Bryan 2010)

being flux-frozen into this dilute
plasma, the large scale magnetic field
will also be stripped

→ resulting radio emission should be
unpolarized
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Polarized synchrotron ridges in Virgo spirals

NGC 4396

NGC 4402

NGC 4501

NGC 4522

NGC 4548

NGC 4654

Vollmer et al. (2007): 6 cm PI (contours) + B-vectors; Chung et al. (2009): HI (red)
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Magnetic draping around a spiral galaxy

Athena simulations of spiral galaxies interacting with a uniform cluster
magnetic field. There is a sheath of strong field draped around the leading
edge (shown in red). CP & Dursi (2010, Nature Phys.)
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Magnetic draping around a spiral galaxy – physics

the galactic ISM is pushed back by the
ram pressure wind ∼ ρυ2

the stars are largely unaffected and lead
the gas

the draping sheath is formed at the
contact of galaxy/cluster wind

as stars become SN, their remnants
accelerate CRes that populate the field
lines in the draping layer

CRes are transported diffusively (along field lines) and advectively as
field lines slip over the galaxy

CRes emit radio synchrotron radiation in the draped region, tracing out
the field lines there→ coherent polarized emission at the galaxies’
leading edges
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Modeling the electron population

cooling time scale of synchrotron emitting electrons (CRe):

νsync =
3eB

2πmec
γ2 ' 5 GHz

(
B

7µG

) ( γ

104

)2
,

τsync =
E
Ė

=
6πmec
σTB2γ

= 5× 107 yr
( γ

104

)−1
(

B
7µG

)−2

typical SN rates imply a homogeneous CRe distribution

FIR-radio correlation of Virgo spirals show comparable values to the
solar circle: take MW CRe distribution inside our galaxies,

ncre = C0 e−(R−R�)/hR e−|z|/hz

with normalization C0 ' 10−4 cm−3 as well as scale heights hR ' 8 kpc
and hz ' 1 kpc, normalized at Solar position

truncate at contact of ISM-ICM, attach CRe distribution ⊥ to contact
surface with h⊥ ' 150 pc phase)
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Magnetic draping and polarized synchrotron emission
Synchrotron B-vectors reflect the upstream orientation of cluster magnetic fields
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Simulated polarized synchrotron emission

Movie of the simulated polarized synchrotron radiation viewed from various
angles and with two field orientations.
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Varying galaxy inclination and magnetic tilt
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Observations versus simulations

Christoph Pfrommer Magnetic fields



Mapping out the magnetic field in Virgo

                     υ <   600 km/s

  600 km/s < υ < 1300 km/s

1300 km/s < υ < 2000 km/s

2000 km/s < υ 

B

NGC 4654

NGC 4501

B
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Discussion of radial field geometry

The alignment of the field in the plane of the sky is significantly more
radial than expected from random chance. Considering the sum of
deviations from radial alignment gives a chance coincidence of less
than 1.7% (∼ 2.2σ).

For the three nearby galaxy pairs in the data set, all have very similar
field orientations.

→Which effect causes this field geometry?

Perhaps this is a residual of radial infall of gas into the galaxy cluster
(Ruszkowski+2010)
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Conclusions on magnetic draping around galaxies

NGC 4501

draping of cluster magnetic fields
naturally explains polarization ridges at
Virgo spirals

this represents a new tool for measuring
the in situ 3D orientation and coherence
scale of cluster magnetic fields

application to the Virgo cluster shows
that the magnetic field is preferentially
aligned radially

this finding has consequences for thermal conduction across clusters if
there is a residual radial field component

important implications for thermal cluster history→ galaxy cluster
cosmology
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Jellyfish galaxies in clusters

The spiral galaxy ESO 137-001 (NASA, ESA, CXC)
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Protective layer: magnetic field of a jellyfish galaxy
Observations of aligned B polarization vectors along the tail of galaxy JO206

Müller+ (2021, Nature Astronomy)
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Simulating a jellyfish galaxy

Müller+ (2021, Nature Astronomy), Sparre, CP+ (2020)

A jellyfish galaxy experiences ram-pressure stripping as a result of its
fast motion in the intracluster medium.

The turbulent wind magnetic field is wrapped around the galaxy and
stretched in the wake by shear motions as well as cooling of thermally
unstable mixed wind material.

The magnetic field facilitates the formation of long gaseous filaments.
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Interaction of a cold cloud with a hot wind
Magnetic tension and pressure modify the dynamics of the interaction

Sparre, CP, Ehlert (2020)
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Magnetic field configurations

Sparre, CP, Ehlert (2020)
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Magnetic field alters dynamics of cloud shattering

Sparre, CP, Ehlert (2020)
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Magnetic field alters dynamics of cloud shattering

Sparre, CP, Ehlert (2020)
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Magnetic field alters dynamics of cloud shattering

Sparre, CP, Ehlert (2020)
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A magnetic draping layer protects against instabilities
Magnetic pressure and tension forces alter the dynamics of the interaction
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A turbulent B field extends cloud’s lifetime

KHI instability shatters a small cloud into small pieces that mix
with and dissolve into the hot wind

magnetic field protects against instabilities, increases survival
time by 30%, but does not halter the cloud’s destruction (Sparre, CP,

Ehlert 2020)
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A uniform B field initially accelerates cloud more

KHI instability shatters a small cloud into small pieces that mix
with and dissolve into the hot wind

magnetic field protects against instabilities and increases
survival time by 30%, but does not halter the cloud’s destruction
(Sparre, CP, Ehlert 2020)
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The growth regime
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ram-pressure stripped gas from a large
cloud mixes with the hot wind to
intermediate temperatures

thermal instability causes further cooling
and net accretion of hot gas to the
cold tail (Armillotta+ 2017, Gronke & Oh 2018, 2019, Li+

2019, Sparre+ 2020, Kanjilal+ 2020)

momentum transfer from hot wind to cooling accreting
material implies formation of long gaseous tail of the jellyfish
galaxy!
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hot-wind cooling time sets transition radius and not the
mixed-phase cooling time ⇒ cloud growth criterion (Sparre+ 2020):

tcool,wind

tcc
< 10f (M,Rcloud,nwind, vwind)
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Conclusions on magnetic fields dynamics

Interaction of a cold cloud with a hot wind:

magnetic field provides tension on a moving object and
decelerates it

magnetic field protects against instabilities and increases the
survival time

destruction regime: transport of dense gas to several kpcs hard
to explain because cloud shatters and dissolves in the wind

growth regime: momentum transfer from hot wind to the cooling
and accreting material implies formation of long gaseous tail of
the jellyfish galaxy
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Sound Waves – 1
We can derive the hydrodynamic dispersion relation by perturbing the mass,
momentum and entropy equation of a hydrodynamic fluid without conduction and
viscosity. How many equations do you have and how many eigenvalues does the
linearized system of equations allow for?

The hydrodynamic system of five equations reads (without viscosity and heat
conduction) ∂ρ

∂t
+∇ · (ρv) = 0,

∂

∂t
(ρv) +∇ ·

(
ρvvT + P1̄

)
= 0,

∂s
∂t

+ v ·∇s = 0.

The dispersion relation for sound waves is derived by combining the first four
equations (for mass and momentum). We perturb the fluid, split the dynamical
quantities into background values (that do not depend on time) and small
perturbations: ρ = ρ0 + δρ, v = δv (note: v0 = 0), P = P0 + δP. The constraint
equation for the background reads

∇P0 = 0. (3)

The perturbed mass and momentum equations are to first order (after using
Eq. 3): ∂δρ

∂t
+∇ · (ρ0δv +��δρv0) = 0,

∂

∂t
(ρ0v) +∇ · (���δρv0vT

0 +���ρ0δvvT
0 + 1̄δP) = 0.
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Sound Waves – 2
We recap the perturbed mass and momentum equations to first order:

∂δρ

∂t
+∇ · (ρ0δv) = 0

∣∣∣∂t ( · )

∂

∂t
(ρ0δv) +∇ · (1̄δP) = 0

∣∣∣∇ · ( · )

Subtracting the second from the first equation yields a wave equation,

∂2
t δρ−∇

2δP = 0. (4)

Using the Fourier transformation convention

δρ(x , t) =

∫
d3k

(2π)3
δρ̂(k , ω) e−iωt+ik·x ,

we decompose Eq. (4) into plane waves to obtain the dispersion relation for
sound waves

− ω2δρ̂+ k2δP̂ = 0,

ω2 =
δP̂
δρ̂

k2 =⇒ ω = ±

√
δP̂
δρ̂

k , (5)

where only the positive root has a physical meaning and k = |k |.
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Sound Waves – 3

We recap the dispersion relation for sound waves

ω =

√
δP̂
δρ̂

k .

Adopting the equation of state P = P(ρ, s), we can relate Fourier to
configuration space quantities:

δP̂
δρ̂

=
∂P
∂ρ

∣∣∣∣
s
.

Hence, the phase and group speed of sound waves are given by

cs =
ω

k
=
∂ω

∂k
=

√
∂P
∂ρ

∣∣∣∣
s
.

Sound waves are longitudinal perturbations of the pressure that propagate with
cs and have vgr = vph.
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Hydrodynamic waves
We can derive the dispersion relation for sound waves by perturbing the mass,
momentum and entropy equation of a hydrodynamic fluid without conduction and
viscosity. How many equations do you have and how many eigenvalues does the
linearized system of equations allow for?
The hydrodynamic system of five equations reads (without viscosity and heat
conduction) ∂ρ

∂t
+∇ · (ρv) = 0,

∂

∂t
(ρv) +∇ ·

(
ρvvT + P1̄

)
= 0,

∂s
∂t

+ v ·∇s = 0.

By combining the first four equations (for mass and momentum), we got

ω2 =
δP̂
δρ̂

k2 =⇒ ω = ±

√
δP̂
δρ̂

k ,

i.e., the sound wave is a degenerate solution and accounts for four eigenvalues.
Perturbing the entropy equation yields to first order in Fourier space

iωδŝ − δv̂ ·∇s0 = 0

=⇒ ω = 0 and s0 = const.

The entropy mode is a compressible zero-frequency mode with eigenfunctions
δP = δv = δB = 0 and δT/T = −δρ/ρ = 2δs/5.
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Magneto-hydrodynamic waves – 1

Add magnetic fields to the system in the ideal MHD approximation. How many
equations and eigenvalues do you have now?

∂ρ

∂t
+∇ · (ρv) = 0,

ρ

(
∂v
∂t

+ v ·∇v
)

= −∇P + j × B = −∇ ·
[(

P +
B2

8π

)
1̄ +

1
4π

BBT

]
,

∂s
∂t

+ v ·∇s = 0,

∂B
∂t
−∇× (v × B) = 0 with the constraint ∇ ·B = 0,

where ρ = ρ(x), P = P(x), v = v(x), j = j(x), s = s(x), and B = B(x) are the
density, pressure, velocity, electric current, entropy, and magnetic field.

There are a total of 8 equations: 5 hydrodynamics equations plus 3 components
of the induction equation. However, the constraint equation,∇ ·B = 0, reduces
the dimensionality to seven degrees of freedom.
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Magneto-hydrodynamic waves – 2

In a magnetized plasma, there are seven different wave modes:

The 2 polarization states of shear Alfvén modes are polarized transverse to the
unperturbed magnetic field; the restoring force of these transverse magnetic
perturbations is the tension force; the group velocity is along the mean magnetic
field with vph = vA = B/

√
4π ρ; Alfvén modes are incompressible, i.e., δρ = 0,

and δvA ∝ δB.

The 2 polarization states of fast magnetosonic modes are equivalent to sound
waves in high-β plasmas, where β = Pth/PB = 2cs/vA; the restoring force of
these longitudinal (compressible) magnetic perturbations is the magnetic
pressure force; fast modes do not interact with Alfvén modes.

There are 2 polarization states of slow magnetosonic modes. In a high-β
plasma, they represent a compressible Alfvén mode.

The entropy mode: zero-frequency wave with fluctuations in n and T such that
the thermal pressure P = const.
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Alfvénic turbulence – the picture

B

wave packets

Interacting Alfvén wave

packets.

Alfvénic turbulence is incompressible:

δvA

vA
=
δB
B

What happens when the two wave packets are
interacting?

The down-going packet causes field line wandering
such that the upward going packet is broken apart
after a distance L‖(λ).

In other words, the travel time across this wave
package in the direction of the mean magnetic field
equals the eddy turn-over time in the perpendicular
direction.

This gives rise to the critical balance condition of
Alfvénic turbulence
(Goldreich & Shridhar 95, 97, Lithwick & Goldreich 01)
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Alfvénic turbulence - the scaling

B

λλ

| λ(   )

b

|L

Geometrical interpreta-

tion of the “critical bal-

ance” condition.

The critical balance condition reads:

L‖ =
λB
bλ

In Kolmogorov turbulence, the energy flux of the
fluctuating field at scale λ is constant, b2

λ/tλ = const.
Equating the wave travel time along B, t‖, with the
eddy turn-over time in the perpendicular direction, tλ,
we get

t‖ =
L‖
vA

=
λB

vA bλ
= tλ ∝ b2

λ,

Because B ∝ vA = const. in incompressible
turbulence, we obtain the scaling of Alfvénic
turbulence:

bλ ∝ λ1/3 or L‖ ∝ λ2/3 L1/3
MHD

⇒ the smaller the scale λ, the more anisotropic is the
turbulent scaling and the more elongated are the
eddies (L‖/λ ∝ λ−1/3) whose long axis is aligned with
the local 〈B〉!
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Multi messenger approach for non-thermal processes
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Hadronic cosmic ray proton interaction
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Hadronic cosmic ray proton interaction

radio
+ IC

p
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magnetic field
e+
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Magnetic fields in galaxy clusters
Giant radio halo in the Coma galaxy cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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Magnetic fields in galaxy clusters
Radio shock: double relic sources

CIZA J2242.8+5301 (“sausage relic”)

(X-ray: XMM; radio: WSRT; Ogrean+ (2013))

Abell 3667

(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Cosmic rays and magnetic fields in clusters – 1
The energy loss rate of a relativistic electron of energy Ee = γmec2 is given by

Ėe =
σTc
6π

(B2
cmb + B2)γ2,

where σT is the Thomson cross section, me is the electron rest mass, c is the light
speed, γ is the Lorentz factor, B is the magnetic field strength and Bcmb ' 3.2µG is the
equivalent field of the cosmic microwave background (cmb) energy density today.

The first term in the parenthesis ∝ B2
cmb describes energy loss due to inverse

Compton (IC) scattering off of CMB photons, while the second term in the
parenthesis ∝ B2 describes energy loss due to synchrotron emission. The
structural similarity of the formulae is not a coincidence but caused by the same
Feynman diagram of the scattering process: while IC emission evokes real
photons, synchrotron emission borrows a virtual photon from the magnetic field.

The cooling time tcool = Ee/Ėe of a relativistic electron is given by

tcool =
Ee

Ėe
=

6πmec
σT
(
B2

cmb + B2
)
γ
≈ 200 Myr,

for B = 1 µG and γ = 104.
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Ėe =
σTc
6π

(B2
cmb + B2)γ2,

where σT is the Thomson cross section, me is the electron rest mass, c is the light
speed, γ is the Lorentz factor, B is the magnetic field strength and Bcmb ' 3.2µG is the
equivalent field of the cosmic microwave background (cmb) energy density today.

The first term in the parenthesis ∝ B2
cmb describes energy loss due to inverse

Compton (IC) scattering off of CMB photons, while the second term in the
parenthesis ∝ B2 describes energy loss due to synchrotron emission. The
structural similarity of the formulae is not a coincidence but caused by the same
Feynman diagram of the scattering process: while IC emission evokes real
photons, synchrotron emission borrows a virtual photon from the magnetic field.
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Cosmic rays and magnetic fields in clusters – 2

Recall the cooling time tcool = Ee/Ėe of a relativistic electron,

tcool =
Ee

Ėe
=

6πmec
σT
(
B2

cmb + B2
)
γ
≈ 200 Myr,

for B = 1 µG and γ = 104.

The synchrotron frequency in the monochromatic approximation is given by

νsynch =
3eB

2πmec
γ2 ' 1 GHz

B
µG

(
γ

104

)2
.

Combining both equations by eliminating the Lorentz factor γ yields the cooling
time of electrons that emit at frequency νsyn,

tcool =

√
54πmec eBν−1

syn

σT (B2
cmb + B2)

. 190
(

νsyn

1.4 GHz

)−1/2
Myr,

The cooling time tcool is then bound from above and attains its maximum cooling
time at B = Bcmb,0/

√
3 ' 1.8µG, independent of the magnetic field.
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Giant radio relics in galaxy clusters
Recall the cooling time of electrons that emit at frequency νsyn,

tcool =

√
54πmec eBν−1

syn

σT (B2
cmb + B2)

. 190
(

νsyn

1.4 GHz

)−1/2
Myr.

We assume that the relativistic electrons are accelerated at a strong cluster
merger shock and are advected with the post-shock gas. Assuming that the
incoming gas had a pre-shock velocity of v1 = 1200 km/s in the shock frame, we
get a post-shock velocity

v2 =
ρ1

ρ2
v1 =

(γ − 1)M2
1 + 2

(γ + 1)M2
1

v1 = 400
(

v1

1200 km s−1

)
km s−1

for a shock Mach number ofM1 = 3.
This implies a maximum cooling length Lcool,max = v2tcool,max = 80 kpc, which
decreases for larger magnetic field strengths to assume a value of

Lcool = v2tcool =
v2

√
54πmec eBν−1

syn

σT (B2
cmb + B2)

≈ 30
(

νsyn

1.4 GHz

)−1/2
kpc

for 5 µG. Typical radial extends of radio relics are of that size. Hence, one can
use the relic geometry to estimate magnetic field strengths (projection effects!).
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Giant radio halos in galaxy clusters

The maximum cooling length is
Lcool,max = v2tcool,max = 80 kpc at
1.4 GHz.

The spatial extend of giant radio
halos is ∼ 2 Mpc and the emission
is not polarized.

Because synchrotron emission is
intrinsically polarized, this means
that the emission is a projection of
causally uncorrelated regions along
the line of sight or there is beam
depolarization.

Because Lhalo ≈ 25Lcool,max there
must be a volume filling acceleration
process of relativistic electrons.

radio synchrotron emission (Deiss/Effelsberg)

Hadronic model: relativistic protons interact hadronically with gas protons and
produce secondary electrons/positrons that emit in the radio.

Reacceleration model: fossil or secondary electrons interact with turbulent
magneto-hydrodynamic waves and experience Fermi-II acceleration that makes
them visible at radio wave lengths.
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Simulations – flowchart
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Cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Mach number distribution weighted by εCR,inj
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Mach number distribution weighted by εCR,inj(q > 30)
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CR pressure PCR
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Relative CR pressure PCR/Ptotal
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Relative CR pressure PCR/Ptotal
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Cosmic web: Mach number
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Radio web: primary CRe (1.4 GHz)
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Radio web: primary CRe (150 MHz)
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Radio web: primary CRe (15 MHz)
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Radio web: primary CRe (15 MHz), slower magnetic decline
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Magnetic fields in the universe – 1
Recap of today’s lecture

Properties of astrophysical magnetic fields:
* magnetic fields exist in all astrophysical objects on scales from km

to several Mpcs and show field strengths from 10−9 G to 1015 G
* magnetized objects include planets, stars, pulsars/magnetars,

black-hole accretion discs and jets, galaxies, galaxy clusters
* magnetic observables: Zeeman effect, synchrotron intensity & polarization,

Faraday rotation

Magnetic field evolution:
* Biermann battery can generate B field from a baroclinic flow without B0

* the magnetic dynamo stretches, folds, twists, and merges the field so that it
grows exponentially fast until saturation

* the magnetic flux is frozen into the thermal plasma

Magnetic force and stress:
* magnetic pressure causes the fluid to expand perpendicular to the mean

magnetic field if PB = B2/8π > Pth

* magnetic stress forces the fluid element to contract along the field lines
if PB > Pth: analogy of a stretched elastic rubber band!
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Magnetic fields in the universe – 2
Recap of today’s lecture

Magneto-hydrodynamic waves and turbulence:
* MHD supports 7 modes: two polarization states of Alfvén waves, slow- and fast

magnetosonic waves each, and the zero-frequency entropy mode
* MHD turbulence has an anisotropic cascade where eddies become more

elongated towards smaller scales and locally align with 〈B〉

Magnetic draping:
* an object moving (super-Alfvénically) through a magnetized medium drapes

a dynamically strong magnetic sheath around it
* magnetic draping suppresses interface instabilities and modifies dynamics
* polarized radio emission from draping sheath allows to infer upstream magnetic

field orientation

Non-thermal processes in clusters:
* radio relics and halos prove the existence of volume-filling magnetic fields and

relativistic electrons in the ICM
* the radial extent (short axis) of radio relics that propagate on the sky enables

to estimate the magnetic field strength via a cooling length argument
* what powers radio halos? hadronic interactions or Fermi-II reacceleration?
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Literature
There are many excellent texts on magnetic fields in the universe. If I had to select
three I would probably pick these ones that range from a basic introduction to
numerical modeling to a solid review:

Introductory text to magneto-hydrodynamics (MHD):
Essential Magnetohydrodynamics for Astrophysics, Spruit,
https://arxiv.org/abs/1301.5572

Review of numerical techniques for ideal and non-ideal MHD, applied to the
context of star formation simulations:
Numerical Methods for Simulating Star Formation, Teyssier & Commercon,
2019, FrASS, 6, 51
https://arxiv.org/abs/1907.08542

Review of astrophysical magnetic fields with a focus on their generation
and maintenance by turbulence:
Astrophysical magnetic fields and nonlinear dynamo theory, Brandenburg &
Subramanian, 2005, PhR, 417, 1
https://arxiv.org/abs/astro-ph/0405052

If you want to refresh your memory on the derivation of the hydrodynamic equations, of
shock waves and hydrodynamic turbulence, I suggest to read Section 3.1 of my

Lecture notes that cover many topics in theoretical astrophysics:
The Physics of Galaxy Clusters, Pfrommer,
https://pages.aip.de/pfrommer/Lectures/clusters.pdf
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