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ABSTRACT

High-resolution X-ray observations have revealed cawitied ‘cold fronts’ with
sharp edges in temperature, density, and metallicity wigiailaxy clusters. Their pres-
ence poses a puzzle since these features are not expectetiydriodynamically sta-
ble, or to remain sharp in the presence dafulion. However, a moving core or bubble
in even a very weakly magnetized plasma necessarily swgeg@saugh magnetic field
to build up a dynamically important sheath around the objiwt layer’s strength is
set by a competition between ‘plowing up’ of field and fieldelnslipping around the
core, and to first order depends only on the ram pressure setrebmoving object.
We show that a two-dimensional approach to the problem agestigd in previous
literature is quite generally not possible as the field camstip around. In three di-
mensions, we show with analytic arguments and in numerigaé@ments, that this
magnetic layer modifies the dynamics of a plunging core,tiyr@aodifies the &ects
of hydrodynamic instabilities on, and thus mixing of, theegsanodifies the geometry
of stripped material, and even slows the fall of the coreudlgftomagnetic tension. We
derive an expression for the maximum magnetic field streagththe thickness of the
layer, as well as for the opening angle of the magnetic wake miorphology of the
magnetic draping layer implies the suppression of therrmatlaction across the layer,
thus conserving strong temperature gradients over theacbsurface. The intermit-
tent amplification of the magnetic field as well as the ingetf MHD turbulence in
the wake of the core is identified to be due to vorticity getierawithin the magnetic
draping layer. These results have important consequencesderstanding the phys-
ical properties and the complex gasdynamical processdsedhtra-cluster medium,
and apply quite generally to motions through other magedtemvironments.g.the
ISM

Subject headingshydrodynamics — magnetic fields — MHD — turbulence — galax-
ies: clusters: general —filusion
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1. INTRODUCTION

Recent observations of very sharp ‘cold fronts’ in galaxystérs raise unanswered questions
in the hydrodynamics of galaxy clusters (see for instanegéiew of Markevitch and Vikhlin!n

), for such abrupt transitions are not expected to baestagainst either hydrodynamical
motions or difusion for extended periods of time.

It has been known for some decades in the space science camyiat an object moving
super-Alfvénically in a magnetized medium can very rapgiveep up a significant magnetic layer
which is then ‘draped’ over the projectile.@, BﬂnﬂmndjﬂmﬂnHﬁQSO). For concreteness
in discussing the process, we show in fig. 1 a picture of theshanism taken from one of our
simulations, which will be described in more detail in lagections.

There has been si nlflcant interestin applylnc this ideaajmetic draping in galaxy clusters
(e.q, \Vikhlinin et all L_deéL_zsb( ) as such a magnetic field
could naturally inhibit thermal conduction across a fromg( [Ettori and Fabidn 2000) allowing
it to remain sharp over dynamically long times. Althoughtsdcaping has been explored in the
past, in the space sciences the resulting dynamics isuehatsimpler, as generally the object
being draped is a solid body, with little interior dynamidsts own. However, in the case of for
instance a merger of gas-rich clusters, the hydrodynanfitleodraped plunging core can also
be modified, with the strong magnetic layer providing sonadiization against instabilities that
would otherwise occuL(_D_u_ i2007).

The dfect of a strong draped magnetic layer could be even greatemiderdense objects,
such as for bubbles moving through the intercluster medasygeen at the centers of many cool-
core clusters€.g, IMcNamara et 4 $__B_u:za.n_et|hL_2bO4). In this case ptit#ble would be
quickly disrupted on rising absent some sort of suppmg,dR.o.bjnsan_eLElLZO_M). However, the
draping of a pre-existing magnetic field may strongly altexr tynamics and suppress hydrody-
namic instabilities, as seen recently in simulatid.ns_(ankLet_aJLZO_Ojb). The morphology of
the draped magnetic field may be able to suppress transpmegses across the bubble interface
such as cosmic ray fiusion and heat conduction. This has important consequémcessmic ray
confinement in these buoyantly rising bubbles and may expéenergized radio ‘relic’ sources,
broad central abundance profiles of clusters, and the ¢xxcitaf the Hx line in filaments trailing
behind bubbbsLLRuszkmkae.ﬂlal..ZQb?a). Although theyaitaland simulations we discuss here
focus on the case of an overdense ‘core’ moving in an extéield| we expect the basic magnetic
dynamics to also extend to the case of an underdense buldtialpy depending on the magnetic
energy density of the plasma.

Because we are interested here in the fundamentals of arasiess — that of the draping
of a field around an object and the resulting hydrodynamifateon the object and its interaction
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with the external medium — we consider for this paper, in batin analytic and computational
work, the simplest possible case; an overdense, non-salftgting ‘blob’ moving through a qui-
escent medium with a magnetic field uniform on the scalesidered. (The term we will use for
this blob will depend on the situation; when discussingagstysical implications, we will speak
of ‘cores’ or ‘bullets’, depending on the circumstances;ubbles’ for underdense regions; for
the case of our numerical simulations, we will refer to ‘@ajles’, as the overdense fluid in the
simulations difers in structure from cores or bullets in lacking self gravih our analytic work
where the blob is a rigid sphere, we will refer to the blob aplaese or spherical body.)

We further consider the case of the object moving subsdygjaahile the case of supersonic
motion is interesting and highly relevant, we anticipat&t ih the usual case where the bow shock
is well separated from the magnetic layer — that is wheretdredsit distanceA ~ Z—ZR ~ R, (where
Ris the radius of the corey is the ambient density, and is the shocked density) is much greater
than the magnetic layer thickness: M,?R < R, (wherel is the approximate magnetized layer
thickness and\1, the alfvénic Mach number, as discussed in more detail im#x section) that
the arguments here will also hold, so we save the more coatpticgeometry and larger parameter
space of the compressible case for future work.

In & we give an overview of the physics of draping, putting ourkvim the context of
previous results; ild we describe our analytic and computational approachefl ime compare
the results of our two approaches, and from the understgngiined there ir§8 we describe
characteristics of draping; we discuss thEeet of instabilities in§d, consider the limitations of
our results and consider applying them to later time$dnand finally conclude ig8.

2. GENERAL PHYSICS OF MAGNETIC DRAPING

Previous work €.9, lB_emikmLa.nd_S.em.enHLL%b;_bLuﬂliMOB) has looked aththagic

picture of magnetic draping in a simplified way in some detag summarize some of their key
results as well as our new insight into this problem here. hiesé works, the known potential
flow around a solid sphere is taken as an input, and a purebmatic magnetic field, uniform
and perpendicular to the direction of motion, is added. Tévdtion ofi Bernikov and Semeriov
(IE&E) is clarified, and a novel set of useful approximatifarghe resulting field near the solid
sphere are given, in Appendi¥ A.

Because in this case the flow falls quickly to zero at the serfaf the moving sphere, mag-
netic field rapidly ‘builds up’ around the projectile, andthe kinematic limit eventually becomes
infinite. The high degree of symmetry along the stagnatioe (the axis of symmetry of the ob-
ject pointing in the direction of motion) greatly simplifidlse mathematics, and as shown in for



Fig. 1.— A rendering of one of the three-dimensional simolad (referred to as Run F later in
this work) performed for this work, discussed in more detailater sections but included here
to illustrate the physical picture. An overdense projedsl sent through a uniformly magnetized
medium, sweeping up magnetic field ahead of it. Plotted isaitieisosurface, corresponding to
the mean density of the bullet, and some fiducial magnetid fieés. The cut-plane is coloured
by magnetic energy density, as are the field lines. The mayied is ‘draped’ into a thin layer
forming a bow wave, leaving turbulence in a wake behind tHeebuMagnetic field lines pile up
along the stagnation line of this initially axisymmetricllet, while in the plane perpendicular to
the initial field, the field lines can slip around the bullet.

instancel;uuﬂkdvl(zo_dG), the magnetic field strength diyealong the stagnation line is given by
Bl_B_ 1

P po R\

1-(7%)

R+s

(1)

whereB is the ambient magnetic fieldg is the ambient densitRR is the radius of the solid sphere
projectile, ands is the distance along the stagnation line from the surfa¢cbeo$phere.

The analytic works cited, and presented here, considerslypimcompressible flow; for our
simulations, we consider only very modest compressibilitigh projectile motions through the
ambient fluid quite subsonic, so itfliges for the moment to consider in the external medium
p = po. The fluid here is further considered to be infinitely condhugit however, the buildup of
magnetic field without a corresponding buildup of mass datwiolate the ‘flux-freezing’ condi-



Fig. 2.— Interactive 3D version of FiguE@ 1 above, followlBarnes and Fluke (2007).

tion, as shown in the cartoon F[g. 3 as incoming fluid elemargssquished’ along the sides of the
incoming sphere, so that the magnetic flux coming out thessidi¢he fluid element remains con-

stant, even as the concentration of field lines builds upgtbe stagnation line. Further increase
in magnetic energy comes from the stretching of field linethendirection of motion of the core.

In reality, of course, the magnetic field does back-reaco dhe flow, and the kinematic
potential flow solution fails for two reasons — buildup of @aosigy magnetic field layer (which
violates the kinematic assumption) and creation of vdti@in conflict with the potential flow
assumptions).

The magnetic field should exert a significant back-reactibemthe resulting magnetic pres-
sure is comparable to the ram pressure of the incoming raitd?#/8r ~ pou?, whereu is the
speed of the core through the quiescent ambient fluid. Thepfaise this will happen is along the



Fig. 3.— A cartoon showing the distortion of incoming fluigeients and stretching of field lines
as a red spherical projectile moves upwards through theeambiedium.

stagnation line, which by symmetry will be the location oé tlargest magnetic energy density.
The layer of magnetic field with this magnitude is expectednif Eq.C1 and assuming< R) to

be of thickness 1

- Ga/Mi

where M, = u/va is the Alfvénic Mach number of the core; = B3/4npg is the ambient Alfvén
speed, and is the constant of proportionality describing the maximuagmetic pressure in units
of the incoming ram pressurBz,../8r = apou?. We will see thatr ~ 2 and fiducial values for the
situations considered here will involve(4 ~ 3, so that a typical value fdmwill be approximately
R/36. Even such a very thin layer can have importdfgats, both in terms of suppressing thermal

conduction l(.ELLo.LLa.n.d_Ea.biH.n_ZdOO) and hydrodynamic lriitees MJED.

| R (2

It should be noted here that when we use the Alfvénic Machbeimy, through this work
it should really be considered a dimensionless ratio of ragsgure to magnetic pressurk(f =
poU?/(2Pg,)), or at the least, some caution should be used when intergiieas a ratio of velocities
(u/va) as the velocities are oriented infidirent directions; in the work presented here, the velocity
of the draped object will always be completely orthogonah®ambient direction of propagation
of Alfvén waves. Thus there is an important sense in whiahpoajectiles are always (infinitely)
super-Alfvénic, which is not captured in the ratd,.

Sweeping up such a magnetic field will occur on a timesgale- Va(l/RMa ~ (VaMa)™?,
wheret, = 2R/u is the projectile’s own crossing time. This result meang,thacause the mag-
netic layer is very thin, a strong field can be built up extrgmauickly. Crucially, particularly
for the propagation of bubbles, the sweep-up time can befsigntly smaller than a single cross-
ing time; this is relevant because a purely hydrodynamidobilwill generally self-disrupt into
a torus, or smaller fragments in a turbulent medium, in orepadcrossing timel_(RQ.bjns_o.n_elI al.

2004 Pavlovski et al. 2007).




Fig. 4.— A cartoon showing the expected geometry of the dtapagnetic field (blue) over the
object (red). Seen in the plane of the direction of the antlfietd, panel (a), with the direction
of the ambient field shown, a clean bow wave is presented witkladefined opening angle. In
the plane perpendicular to the ambient field, panel (b), #id fines can slip around the projectile,
and the flow would close back in on a stagnation line on therahie of the object except for
largely-2d vortical motions induced by instabilities a¢ tmagnetic interface. The geometry of the
flow in the region indicated by dashed box depends heavilyherfihal shape, and thus internal
structure, of the moving object.

This buildup of magnetic field will greatlyfBect the flow in the direction of the ambient field
lines, and the projectile will leave a magnetic bow wave bdht; by analogy with other similar
bow waves, we expect it to have an opening angle obtanva/u. In the plane perpendicular
to the ambient magnetic field, however, the magnetic fieldl wave a much less directfect as
field lines can simply slip around the projectile and inditibs can occur. In the potential flow
simulation, the flow smoothly reattaches at the rear of tlogeptile; however, in this case, vortical
motions generated at the magnetic contact (where the magmressure and magnetic tension
force is misaligned with the density gradient) and by ingitzds at the magnetic interface (which
are not stabilized in this plane) detach the wake from theaibjeaving largely two-dimensional
vortical motions along the field lines in this plane. The I8y expected geometry is shown in
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Fig. 5.— We compare the draped magnetic pressure and rarsupegis the plane that is parallel
(perpendicular) to the initial magnetic field in the top (oot) panels with a logarithmic color
scale. In the parallel plane, the overpressure of the magdedping layer is only partly com-
pensated by a deficit in ram pressure and eventually is rediplerfor decelerating the core due
to magnetic tension. In the perpendicular plane, the raraspire in the wake of the core attains
much higher values and the draping layer closes towardsyimengtry axis unlike the parallel
plane where a nice opening cone forms. Shown here is a zo@m-ansmall region of our compu-
tational domain.

a cartoon in Figl4 and for our simulation in F[d. 5. This shatat the draping layer becomes
dynamically important and fills in the deficit of ram pressufide sum of the magnetic and ram
pressure shows an over-pressure ahead of the core thatéeadeceleration of the projectile.



—9—

3. METHODOLOGY

In order to understand the full non-linear physics of magnataping around a dynamically
evolving dense projectile moving in a magnetized plasma &réopm our analysis in two steps.
First, we analytically study the properties of the flow of @eally conducting plasma with a
frozen-in magnetic field around a sphere to explore the chariatics of the magnetic field near
the surface of the body. To this end, we disregard any passkidnge in the flow pattern by means
of the back-reaction of the magnetic field. While the deraf this problem can be found in
Appendix[4, we summarize the key results in this section.hiea $econd step, we compare this
analytical solution to an MHD adaptive mesh refinement satioh and explore it quantitatively.

3.1. Analytical solution

The potential flow solution for an incompressible flow aroaspherical body reads as

v:er(g—l)ucose+eg(;+l)usin9, 3)

whereR denotes the radius of the sphere arid the speed of the core through the quiescent ambi-
ent fluid. Using this solution, we solve for the resultingZem-in magnetic field while neglecting
its back-reaction onto the flow. For convenience, we show tex approximate solution which is
valid near the sphere,

2 3s siné )
By 35 VR 1 cos oMo ()
. R
B, = B —
0 0SiNg 4/ 3 (5)

R
B, = Bocose \/; (6)

where we introduced a radial coordinate from the surfacéefsphere, namely=r — R. These
approximate solutions uniformly describe the field neargpleere with respect to the angleAs
described in AppendixJA, the energy density of the magnegid fiorming in the wake behind the
body is predicted to diverge logarithmically. We point obat the validity of the potential flow
solution heavily relies on the smooth irrotational fluidigadn where the magnetic back-reaction
is negligible. We will see that these assumptions are niywialated in the wake.



—-10-

3.2. Numerical solution
3.2.1. Setup

The simulations presented in this paper are set up as showig.if. For clarity of under-
standing the physical picture, we consider only the madnetmdynamics (MHD); no external-
or self-gravity is considered, and we defer other physichsas self-consistent inclusion of ther-
mal conductivity to future work. In this report, we also cates only the magnetic field of the
external medium, and assume that it is uniform over the sa#lenterest here.

In the code units we consider here, the ambient material ltEnsity ofo, = 1, and a gas
pressureP = 1. The (unmagnetized) fiducial projectile has a radius thatvary in our runs
betweernR = 0.5 and 2, and a maximum density @f.x = 750. With the density profile chosen
p(r) = pmax(1 + cosfrr/R))/2, the mean density of the projectile is €16/7%)pmax/2 = 0.20max-
Both the ambient and projectile material are treated ad,igedectly conducting fluids with ratio
of specific heaty = 5/3, and so the adiabatic sound speed in the ambient mediw/3. The
pressure inside the projectile is chosen so that the mhigiiatially in pressure equilibrium.

The projectile initial velocity is typically chosen to be4l, for a Mach number into the the
ambient medium ok 0.32. The simulation in the transverse directions range frer 4], and
in the direction of motion of the projectile ranges from 2@] for an aspect ratio of 2:7; in most
of the simulations with projectiles larger than the fidudtalk= 1, the domain size is increased
proportionately. The initial magnetic field strength candedined in terms ofyy = pu?/Pg,; a
typical value used in these simulations is/250r Pg, = 1/100. Periodic boundary conditions
are used in the directions perpendicular to the directiomofion, and zero-gradient ‘outflow’
conditions are used in thedirection. Experiments with éierent horizontal boundary conditions
produced no major dlierences in results.

The projectile fluid is initially tagged with a passive scako that the material corresponding
to the projectile can be traced throughout the simulation.

3.2.2. Code Choice

As can be seen from analytic arguments, and is shown in sotai ide§lZ, two features char-
acterize the problem of magnetic draping: the formation aaerow strongly-magnetized layer,
and the relative simplicity of the dynamics, in that a poritow solution with only magnetic
field kinematics captures much of the problem, lacking ohg/magnetic field back-reaction.

Because of the separation of scales (a relatively largecbbj@ving through an ambient
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Fig. 6.— Diagram showing the geometry of the simulationsertéed here. A spherical projectile
with a smooth density profilema(1 + cosfr/R))/2 is sent in the+z direction with an initial
velocity v through an ambient medium with denspy and a uniform magnetic field pointed in
the +y direction. The magnetic field strength ‘turns on’ througk tomain with a tanh-profile
in the direction of motion of the projectile, as indicated twe shading of the box; this allows
us to start the core in an essentially field-free region andathly enter the magnetized region.
Periodic boundary conditions are used in the directionpgradicular to the direction of motion,
and zero-gradient ‘outflow’ conditions are used in #dérection.
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medium and a relatively small layer forming around it), thhghest resolution requirements would
impose a large cost on the simulations if the resolution bdzkteverywhere uniform; indeed, it is
only a small portion of the simulation domain which needsdadsolved at the highest level. This
is especially true since the simulations we will need to grenfare three-dimensional (as we will
see in the next sub-section, it is impossible to do meanirgjfioulations of magnetic draping in

two dimensions). Thus, a simulation code which allows sodaptvity of meshing is extremely

helpful for approaching this problem.

The relatively straightforward magnetic field dynamics meethat, unlike in problems of (for
instance) studying the details of MHD turbulence, we do equire high-order finite dierence
methods; this is particularly true because of the sharpoetig thin layers and the large density
gradients in this problem. Instead, an MHD solver which cacueately deal with sharp gradients
is valued.

As a result of the importance of AMR for these simulationg tlode we've chosen to per-
form these simulations with is theLksu code k.EQanlLeLdILZO_(bd..L.a.Ld.eLeﬂ h.l.._ZbOZ)LAE—I iS
an adaptive-mesh general purpose astrophysical hydrogdgeaode which is publicly avallalﬂe
The MHD solver we use here is a dimensionally-split secor#oaccurate 8-wave Godunov-
type solver which is described in more detailhn.lﬂm&l.litd&&?.ib). The smallness of spu-
rious magnetic monopoles is ensured by fugion-type ‘div-B’ clean operation. This fi-
sive cleaning approach can be problematic near strong shedkere difusion cannot operate
quickly enough; however, no such shocks occur in these sitionls. FEasa has been often
used for related problems such as hot and magnetized buinbtkse intercluster mediume(g,
Robinson et 2| 2004: Pavlovski ef al. 2007; Heinz 1 al. PBosdi Lzosbé_ﬁa.nd 106 ;

).

3.2.3. Parameters

Performing simulations of draping over a projectile withexplicit hydrodynamics code (so
that compressibility #ects will be included, for ease of comparison with later,esgpnic, work)
with a finite resolution places some restrictions on the eaofjparameter space which can be
explored.

For simulating these cases with no leading shock, we redqhatthe velocity of the pro-
jectile, u, be less than the sound speed in the ambient fluid — but to takasanable number

Thttp://flash.uchicago.edu
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of timesteps (avoiding computational expense and spuddiission) requires that the projectile
velocity remain of the order of the sound speed; thus cs, or poU? < yP, wherep, andP are
the unperturbed density and pressure of the ambient medf@mthe hydrodynamics of draping
to be realistic, the magnetic pressure in the fluid must beifstgntly less than the gas pressure,
Pg, < P. Finally, resolution requirements for resolving the thieks of the magnetic layer will
put some constraint on the thickness of the magnetic layeR/N from Eq.2, withN being the
number of points which resolve the radius of the projectypically the size of the domain (if at
full resolution) will be 8N x 8N x 28N. This constraint, expressed in terms of the relevant pressu
(ram pressure and initial magnetic pressiRg) > 3a(oou?)/N. Combined, these constraints give

SapoU?

yP 2 pou? > Pg, 2 N

(7)

For a givenu — which is more or less arbitrary, fixed to be near the (arbijraound speed — there
is thus a relatively narrow range of initial magnetic pressun terms of the ram pressure of the
ambient material onto the projectile which can Ifiéceently simulated. As we will see; ~ 2, and

for the simulations presented heM~ 32— 64, meaning we are constrained to study roughly that
part of parameter space whegigi?/Pg, ~ 1 — 10.

3.2.4. Two Dimensional Results

In two dimensions, the imposition of a symmetry greatly tgrpossible magnetic field ge-
ometries. In an axisymmetric geometry, the only meaninghiform field geometry is parallel to
the axis of symmetry, which in this case would also be thectiva of motion of the projectile;
in this somewhat artificial case magnetic field could soméwbastrain a projectile (or a bubble;

lRQ.bjns.o.n_e.LallL(ZO_dM)) but draping could not occur.

In planar symmetry, the field can have components out of taeeplin the plane parallel to
the direction of motion, or in the plane perpendicular to dlivection of motion. A component
out of the plane will only have the dynamicdtect of adding to anféective gas pressuregQ,
IChandrasekhar 1981)); the component along the directionagfon of the projectile cannot be
draped.

Previous work é.g, |A3a.Let_aJ.|_Zld5) has examined the case with two dimensiplaalar
symmetry with a magnetic field in the plane of the simulatiod perpendicular to the direction of
motion of the projectile. However, in this case, field lin@sigot cannot slip around the projectile,
and so as more and more magnetic field gets swept up by thecplmjenagnetic tension grows
monotonically and linearly ahead of the projectile unti iorces becomes comparable not only
to the ram pressure seen by the projectile of the ambientumgediut to the ram pressure of the
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projectile as seen by the ambient medium. At this point, ttogeptile trajectory is reversed. A
figure describing this is shown in Figl 7, where the magnetitsion forces are seen to compress
the projectile (with mean density 150 times that of the magnetized medium) before repelling it

This outcome is hinted at in Fig. 4 bf Asai et ell_(ZbOS), whier@d the magnetic energy
increases linearly and without bound, while the 3d modedshiea maximum magnetic energy.

3.2.5. Three Dimensional Simulations

A listing of the eight main runs done for this work are showrrable[3.2.b, and the basic
setup follows the discussion earlier. The parametersdaiie the size of the projectile, its velocity,
and the strength of the ambient magnetic field. Other ruresdtuivalent of run B but with half
the resolution, or with the same resolution buteling boundary conditions) were run to confirm
that the results did not change; they are not listed here.

Run R u Ryo pu?/Ppo R/AX
A 11 L 625 64
B 11 1 625 64
c 21 A 625 32
D 1 1 & 3125 64
E 11 1 15625 32
F £ 1 L 625 32
G 1 1 & 25 32
H 2 1 L 15625 128

Table 1: Details of 3-dimensional simulations run for thisrku Simulations were run with an
ambient density and pressure of 1 in code units,yagtb/3. Simulations were run until maximum
magnetic field on stagnation line was approximately constgpically 40-80 time units.

To show that these runs were producing results independesgaution, the maximum mag-
netic field strength along the stagnation line for all thesrwith the samég, andpuj are plotted
versus time in Figld8. The maximum field strength is senstiivehe resolution of the magnetic
field layer, but we see here that varying the resolution byctofeof two does notféect the results,
as the field layer is adequately resolved (but only margynalkthe case oR/Ax = 32). We also
see, as we'd expect from the discussion§idihthat the field strength in the layer does not depend
on the size of the core.

The magnetic layer in Run G is under-resolved; while the waiR/Ax is the same as other
runs, the velocity is higher, so that by Hd. 2 the layer istlein We include this run because it
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Fig. 7.— The above is a plot of the projectile position (céted here by the maximum height
at which there is significant projectile material at any giviene) over time in a two dimensional

draping simulation. At about time 75, the projectile is attytbounced back under the extremely
strong magnetic tension which in two dimensions must grogadtof the projectile. The top panel
showsB? in a closeup of the simulation domain at three represemtditiwes during the bounce,

with a white contour indicating the position of the origimmabjectile material.
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Fig. 8.— A plot of the maximum magnetic field strength along ftagnation line for runs with
three diferent projectile sizes and twoftBrent resolutions across the projectile, all with the same
velocity into the ambient medium and the same ambient magfietd. Plotted is the maximum
magnitude of the magnetic field along the stagnation linédhegime (scaled to the crossing time
of the projectile). The projectile initially sits in an ungreetized region. The maximum magnetic
field strength along the stagnation line is a sensitive nreasfuvhether the structure of the draped
magnetic field is being resolved; we see here clear eviddratentith the resolution used in this
simulation the draped layer is being adequately resolvedhé low-resolutiorR = 1 simulation,
which also was run in a somewhat smaller box, towards the étiskaun the draping layer begins
to leave the top of the simulation domain, leading to the saddpid drop in magnetic field
strength.
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demonstrates certain robustness of results; althoughagtes structure is not adequately resolved
at the stagnation point, other global properties of the retigriayer (geometry and dynamical
effects) otherwise remain robust.

Indeed, one should be careful about what one means by ‘e$ol\his discussion should
not be taken to mean that the other simulations are in allespesolved. In particular, as we
will see in§ and§H, and as suggested Iﬁh@bon, the flow around the butbtie xzplane
(e.g, transverse to the initial magnetic field) is unstable todfeHelmholtz and Rayleigh-Taylor
instabilities, not stabilized by the presence of magnegidfi Since we have not prescribed any
small-scale dissipative physics in these simulationsglestabilities will never properly converge
with increased resolutiore(g,ba.Ld.QLeLdlLZ(XbZ) as new unstable scales are added. Thismba
be corrected by adding small-scale physeg). thermal ditusion; this is left for future work, as
the relevant microphysics is itself a current research feraliyutikov (2007)| Schekochihin etlal.

). While the rate of development of the instabilitiad éheir properties is very important for
long-term mixing of the material of the moving object withathof the surrounding medium, we
restrict ourselves here to studying the development of thgmatic layer and its global properties.

Another thing worth noting in our runs is that for run &f3 = 1/2(ou?/Pgg) ~ 0.78 < 1; that
is, this run has the projectile moving sub-Alfvénicallpnly marginally. However, because of the
field geometry, we will see that this makes essentially ffi@cénce for the draping. This is simply
because the Alfvén speed in the direction of motion of tluggatile is zero — no component of the
magnetic field points in that direction. While the exact irspion of this condition in our initial
conditions is somewhat artificial in this case, it is alwaygtthat it is only the component of the
magnetic field that lies transverse to the direction of motlwat will be draped.

4. COMPARISON OF THEORY AND SIMULATIONS
4.1. Magnetic field along the stagnation line

The first comparison we make is to the one-dimensional ptiedie made along the stagna-
tion line, for instance ith_mullkd\/l_(zo_d)G), where a very siiecprediction is made for the ramp
up, with a particular functional form, of the magnetic fiekdesmigth given in Eql, and it is not
necessarily clear that such a prediction will hold when tieggetile begins to deviate significantly
from spherical.

To make this comparison, we extract the magnetic field sthealpng the stagnation line for
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an output, and fit it to the equation

1Bl _ Bo 1
P [ ay ©
1- (&)

whereBy, pg are known, and the fit is for the paramet&swvhich would correspond to the radius
of the sphere, ang, which would be the position of the centre of the sphere. Refar a typical
output are shown in Figl 9. Not only do the fits well represbattiehaviour magnetic field strength,
but they also suggest a physical interpretation for thetional forms interpretation even when the
projectile becomes significantly non-spheridalbecomes the radius of curvature of the working
surface of the projectile at the stagnation line. As thegqutile becomes more distorte®,can
become significantly larger than the initial radius of thejpctile; in this example, the expansion

is a relatively modest 15%.

17r

16

14

13

Fig. 9.— Shown is, left, the magnetic field along the stagmaline in the simulation ¢’) and a
fitted theory prediction, with the two fitting parametersrigethe position of the peak and a radius
giving a characteristic fallf of the field strength. On the right are cut-planes along anossdhe
initial magnetic field of the density of the projectile, wighcircle of radius and position given by
the fit to the magnetic field structure, left. The radius gitagrihe fit corresponds with the radius of
curvature at the working surface of the projectile. Resaitestaken from run B at time= 38.75;
results from other simulations and other times give sirtylgood fits.

4.2. Comparison of the velocity field

To compare the potential flow calculations, done in the fravhéhe spherical body, with
those of the numerical simulations, we transform the nucaésimulations into the frame of the
projectile. Because the projectile slows down over time,deenot use the initial velocityg for
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Fig. 10.— Comparison of the velocity field of the analyticallgion in the kinematic approxima-
tion (top panels) with our numerical simulation (bottom el in the plane of the initial magnetic
field. While the velocity fields resemble each other very virelthe upper half-space, there are
distinct diferences in the lower half-space. These are due to the nearllvack-reaction of the
dynamically important magnetic field in the draping layetio@ MHD flow that generates vorticity

in the wake of the projectile (c§&.4). Shown here and in the next figures is a zoom-in on a small
region of our computational domain that extends up to 118tleanits and is four times larger in

x andy direction. Note that we symmetrized the color map ofidl@omponent in order not to be
dominated by one slightly larger eddy.
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pu? around draped projectile pu? of kinematic MHD solution
———————————————— 38

Fig. 11.— Comparison of the ram pressure in our numericabkation (left panel) with the an-
alytical solution in the kinematic approximation (righted). Ahead of the projectile, the ram
pressure resembles an exact potential flow behavior up tdréEeng layer which can be seen as a
black layer around the projectile with a deficit of hydrodgmieal pressure. Non-linear magnetic
back-reaction of the draping layer causes the flow to depamt the potential flow solution and to
develop vorticity.
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this transformation, but measure the instantaneous meggited velocity of the projectile, by
making use of the fact that we are tracking the fluid thatafitiresided in the projectile by use of
an advected passive scalar,Thus we measure the instantaneous velocity of the prigexdi

_ (pavy)

u= o (9)

The top panels of Fig._10 show the analytical solution of takeeity field around the spher-
ical body with radiusk in the kinematic approximation. For convenience and to ifgnthe
comparison to the magnetic field visualization, we show the&sian components of the velocity
field. At infinity, the fluid is characterized by a uniform velty v = —e,u. The quadrupolar
flow structure results from the fluid decelerating towards $tagnation line, the successive ac-
celeration around the sphere urti= 7/2 and mirroring this behavior in the lower half-plane by
symmetry. The bottom panels of FIg]10 show the numericaitgmi of the velocity field around
an initially spherical projectile that deformed in respens the non-linear evolution of the mag-
netized plasma. The white line reflects the 0.9 contour ofghsgectile fluid’ and corresponds to
an iso-density contoﬂr.The guadrupolar flow structure in the upper half-plane rédemnicely
the analytic potential flow solution. As the flow approachws projectile and surrounds it, there
are important dierences visible. In the analytical solution, the flow aceats ford < x/2 and
decelerates for larger anglésin the numerical solution, the magnetic draping layer éishary
with respect to the projectile. This causes the flow almoste®to rest in the magnetic draping
layer. The back-reaction of the magnetic draping layer @flilw casts a ‘shadow’ on the wake
of the projectile. It prevents the flow to converge towards sgmmetry axis and suppresses the
deceleration of the flow. Instead, vorticity is generatethatdraping layer which will be studied
in detail in§&.4. The comparison of the ram pressure in Eif. 11 underpissatgument.

4.3. Comparison of the magnetic field

It is instructive to compare the analytic solution of thezia-in magnetic field in the kine-
matic approximation to the numerical solution in the platieg are parallel and perpendicular to
the initial magnetic field. We compare the individual Cadascomponents of the field (Figd12
andIB) as well as the magnetic energy density in[Elg. 14. thatave only show a Taylor expan-
sion of the highly complex exact solution as derived in Apgigfl Strictly, this solution applies
only near the sphere with an accuracyQ(r — R)*?) as well as for flow lines that have small

°Note that the apparent grid structure seen in the upper paiosimulatedv,-component is an artifact of our
plotting routine as well as small grid noise. The interpolatscheme of the plotting routine falsely interpolates a
smooth velocity gradient with an entire AMR block while ittaally drops quickly to the velocity value at infinity.
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Initial magnetic field in the plane:

B, of kinematic MHD solution B, of kinematic MHD solution B, of kinematic MHD solution
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Fig. 12.— Comparison of the magnetic field in our numericatidation (bottom panels) with
the Taylor expansion of the analytical solution in the kigimapproximation that strictly applies
only near the sphere (top panels). We show the Cartesian@oenps (left to rightx, y, 2) of the
magnetic field in the plane that is parallel to the initial matc field. There is a nice agreement
between both solutions in the upper half-space, while thegeagain distinct dierences in the
lower half-space. The magnetic shoulders behind the pilgexan be identified that prevents the
draping layer from contracting towards the symmetry axmsaddition, MHD turbulence starts to
develop in the wake of the projectile.
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Initial magnetic field out of the plane:

B, of kinematic MHD solution B, of kinematic MHD solution B, of kinematic MHD solution
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Fig. 13.— Same as previous figure, but in the the plane thariggmdicular to the initial magnetic
field. Shown is, left to right, the,y,z components. As expected from our analytic solutions,
the draping layer forms by piling up magnetic field lines aheéthe projectile. The irregular
magnetic field in the wake is generated by the vorticity thathsent by definition in our potential
flow solution.
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Initial magnetic field in the plane:

B? around draped projectile

B? of kinematic MHD solution
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Fig. 14.— Comparison of the magnetic energy density in oumerical simulation (left panel)
with the analytical solution in the kinematic approximati@ight panel). The top (bottom) panels
show the plane that is parallel (perpendicular) to theahitmagnetic field. In the analytical solu-
tion there is a narrow magnetic layer draped around the ggidrody, while in our simulations
the draping layer peelsfiobehind the projectile due to vorticity generation. The getmof the
magnetic draping layer in the upper half-plane is very samiih both planes suggesting there an
approximately spherical symmetry. In the wake of the prilecthe draping layer forms a char-
acteristic opening angle while the field lines can swipe adbithe projectile in the perpendicular
plane and the draping layer closes towards the symmetry axis
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impact parameters initially at infinity. Using afférent expansion, we verified that the general
solution has the appropriate behavior of the homogeneogmetia field at infinity in the upper
half-space pointing towards the positiyeoordinate axis, i.e. rightwards in FIg.J12. As expected,
they-component of the magnetic field increases as we approadptieze since the field lines are
moving closer to each other. In the immediate vicinity of splere, théB field attains a dipolar
z-component as the field lines are carried around the sphénelné fluid and causes them to bend
in reaction to the ram pressure of the sphere. As pointed)dﬂﬂnnikmmnd_Sﬁm_enb{L(lQSO) the
magnetic lines of force that end at the stagnation pointt@oagly elongated as the swipe around
the sphere parallel to the line of flow reaching from the sgigm point into the rear. This leads
to the unphysical increase of the magnetic field as it appreathe line of symmetry in the wake
and eventually to a logarithmic divergence of the magnetergy density there.

In the upper half-plane, the analytic solution matches tiraerical one closely. Interestingly,
in the region behind the deformed projectilanagnetic draping conéevelops that stems from the
dynamically important draping layer that has swiped arotlmedsphere and advected downstream
the projectile. In addition, the magnetic pressure in thkenat the projectile is also amplified by a
moderate factor of roughly five (cf. Fig.114). We will show fioser down, that this field is generated
together with vorticity in the draping layer. In tiparallel planeto the initial magnetic field, the
magnetic draping cone causes the stationary flow not to cgevewards the symmetry axis and
protects the region in the wake against the increase of tigmet& energy without bounds. The nu-
merical solution can qualitatively be obtained by remagphe analytic solution fof > /2 onto
the coordinate along the magnetic draping cone. Irp#rpendicular plango the initial magnetic
field, there is even better agreement between the analydith@mnumerical solution. The magnetic
field in that plane lies primarily in its initiaJ-direction. This behaviour can easily be understood in
terms of the field lines sweeping around the sphere in a larfim& Numerically, we simulate the
response of the geometry of the projectile to the hydrodyosmVortices in the wake deform the
projectile leading to a cap-geometry and a mushroom shapeegtcomponent of the magnetic
field. This implies that the flow lines detach from the dens¢ema of the projectile generating
furthermore vorticity and MHD turbulence in the wake. Thebulent field mixes the Cartesian
components which can be nicely seen in the[Ely. 13. The magpressure summarizes our results
nicely showing the draping cone in the parallel plane andiishroom shaped magnetic energy
density in the plane perpendicular to that (cf. fEig. 11). eNibtat we choose the same color scale
as derived from the simulations which leads to a saturaticthe@magnetic energy density in the
kinematic approximation at the contact of the sphericaltad on the axis in the wake.
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5. CHARACTERISTICS OF MAGNETIC DRAPING
5.1. Field strength in draping layer

The kinematic solution predicts the magnetic pressurergeseat the stagnation point, which
is clearly unphysical. From our discussions$id and§d, we expect that the magnetic pressure
in the draping layer should be on ordew?, at which point the magnetic back-reaction begins
to strongly dfect the flow; to first order there is no dependence on othempatexs, such as
background magnetic field. One would expect, too, from Iogkat figures such as Figl 5 that
the maximum magnetic pressure should exceed the ram pegsgwome factor, as the magnetic
pressure distribution at the head of the drape is respafbkredirecting the flow in the plane of
the draping.

We can test this by plotting, for all our runs, the steady mmaxin magnetic pressure at the
stagnation line (the field quantity that is easiest to caestly characterize) versus the mean ram
pressure seen by the projectitgu)?, where(uy is the mean of the projectile velocity (calculated
as in by Eqn[P) during the run, andis the ambient density. The plot is shown in Higl 15 and
verifies our expectation.

5.2. Opening Angle

The magnetic bow wave behind the projectile is expecteddpgate transversely away from
the projectile aty, along the field lines, and of course to fall behind the praectt velocityu.
This suggests a natural opening angle in the plane along dgaetic field, ta = v,/u. That the
direction of the scaling is correct can be determined byitatale inspection of a sequence of 3d
renderings of simulation outputs as the velocity changes; Eigs[IB L8 fou = 1/8,1/4,1/2
anduw, fixed at 01414.

Although the field lines are stretched during the drapings the initial v, that is relevant,
as the stretching of the field lines in tkalirection do not &ect the propagation speed in tire
direction. For instance, consideizavelocity shear iry, v = (0,0, y/7), with B = (0, By, 0). The
induction equation gives U8 = V x (v x B) = (0,0, By/7), so that the magnetic field is only
changed in thé-direction; thusua, = va - § = vaB - § = (IB|/ +/47p)(B - 9)/IB| = B,/ \/47p = vay

One can quantify the agreement with this scaling by meaguhe opening angle for the
drapes in our simulations. The maxima of magnetic field ohegiside of the stagnation line in
they — z plane are found and tabulated along #rdirection of the simulations, and — omitting the
regions above or near the projectile itself, and the regiglow which the drape becomes weaker
than transient features in the wake — lines are fit, and theestpves the (half-)opening angle.
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Fig. 15.— A plot for the 3d runs presented here showing thermatig pressure on the stagnation
line once a steady value had been achieved for this quastayfanction of the mean ram pressure
(0(u)?) as seen by the projectile. Omitted is run G, for which the nedig layer was under-resolved
and thus the maximum magnetic field strength in the layes fallich lower; however, as we will
see, even this under-resolution does not strongflgce other global properties of the magnetic
drape.
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The results of the fitting procedure are shown for the sameetlsimulations in Fid—20, and a
scatter plot for all are runs are given in Figl 21. The scdtiethis quantity, and agreement with
the prediction, is somewhat worse than for the other quastite consider, possibly because the
large-scale geometry of the draping is more sensitive tdothendaries and the finite size of the
domain than other, more local, quantities.

5.3. Deceleration by magnetic tension

In the scatter plots presented above, we use the mean yelagibf the projectile over time,
because there is a measurable deceleration of the prejeétit example, for run F, is shown in
Fig.[2Z2. Before the projectile encounters the magnetic flzl = 10, hydrodynamic drag — in
principle either (numerical) viscous drag or the the dragdacaused by the creation of a turbulent
wake — is all that can play a role, and for the simulations gmésd here, it is the second which
dominates. The well-known form for the drag on a spherégs= 1/20u?ACp, or in terms of a
deceleration, ,
I

8 (opR
whereCp is the drag coficient, experimentally known to be betweel®@D- 0.5, with 0.5 for a
turbulent wakep, is the density and\ is the cross-sectional area of the projectile in the diogcti
of motion.

Up = (10)

However, once the magnetized region is reached and a madagdr built up, then another
force acts on the projectile — the magnetic tension from tletched field-lines. This transition can
be seen in Fid22 for run F; other runs behave similarly. \etkat the deceleration caused by
the magnetic field draping is actually significantly strontfen the hydrodynamic draping. This
magnetic tension force iBr = B?/(4nR); we know the magnetic strength in the draping layer
scales agu? (§5.1) and so we can write the deceleration as

. 3 pu?
Ur = — P

8(ppR ©

whereCg is a geometric term taking into account the fact that bothniagnetic field strength
and radius of curvature of the field lines vary over the ‘cafthe projectile, and we have chosen
to normalizeCg so that Eqns.[10 arld111 have the same numeric prefactor feen@mnce in
comparison. We can test this scaling, and at the same tim&ieatly obtainCg, by plotting the
decelerations for our éfierent runs, as is done in FIg.123; we fi6d ~ 1.87.

(11)

It is interesting to note first that the two deceleration terseale in the same way, so that
their relative importance remains constant; and that saldring is such that the magnetic tension



—29—

deceleration is always more important, by a factord.7, for the case of highly turbulent (Re
1000) hydrodynamic drag @p = 0.5. In the case of our simulations, we do not have the reseolutio
to achieve that highly turbulent state. Thiéeetive Reynolds number of our simulations can be
estimated by examining the hydrodynamic drag, for examplbeé first 20 time units of Fig.23.
This does not quite give enough data to make a good readirnvge san four simulations with the
fiducial parameterR = 1, Ax/R = 32), varyingu, (0.125 0.25, 0.5, 0.75) and outputting only(t).

An excellent fit to the data is provided I8 ~ 0.77, which corresponds to (seeg, Fig. 34 in

1V, §45 of[La.ndau_an.d_LLts.hiki(_’L&BY)) a Re of just under 200; evethis more viscous case, the

magnetic draping deceleration exceeds the hydrodynarceeiation by a factor of 2.5.

5.4. \Vorticity generation

The flow pattern around a moving body looks as follows for éaRgynolds numbers. The
flow is laminar and reflects a potential flow solution in almtst entire volume except for a
narrow boundary layer and the turbulent wake. The charnattedrag coéficient decreases as
the Reynolds number increashs_(_La_n_da.u_a.n_d_Liﬂihjlﬂ1987Ds firbulent wake exerts a drag on
the body that decelerates it as describedBmd and shown in Fid_22. This figure shows two
distinctive deceleration regimes where only the turbutrag) is present in the initial phase, where
the magnetic field has not been switched on, and a magnesiotedominated drag phase at later
times.

An independent argument is provided by Higl 24. In the purdrégynamic case, we do
not expect any statistical anisotropy of the flow patterruatbthe moving body. However in
our MHD flow, there is an unambiguous anisotropy visible foe stream lines. In the plane
perpendicular to the ambient initial magnetic field, thedléiows smoothly over the projectile
with only mild perturbations for streamlines near the boanydayer. In the plane of the initial
magnetic field where the draping cone forms, the stream dnebend towards the turbulent wake
and experience the generation of vorticity= Vxwv. The magnitude of vorticity in our simulations
is shown in Fig[ZZb. Vorticity is generated as the fluid entbesregion in the draping layer where
magnetic field lines are slipping around the projectile, amtjgular in the plane transverse to the
initial magnetic field. The resulting velocity field can natyamore be described by the potential
flow solution which causes the analytical solution to breaia at the magnetic draping layer and
behind the magnetic shoulder. The vorticity in the wake sstgjthe presence of MHD turbulence
that might be responsible for stretching and amplifyingrtregnetic field furthermore.

We are interested how exactly the topology of the magnetpidg layer can be responsible
for generating vorticity into an initially vorticity-frelow pattern. The equation of motion for an
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inviscid and magnetized fluid without gravity may be writiarthe form

dv v
Pae P e
where we define the convective derivative in the first stepagmdiedV x B = 4rj in the last step.
The first term on the right-hand side describes the potefutiak due to the sum of the isotropic
thermal pressur® and magnetic pressui?/(8r), while the second term describes the magnetic
tension force. Applying the curl operator to Eq](12) anehitifying the vorticityw = V x v, we
arrive at the equation governing the evolution of vorticity

2

: B
+p('U-V)’U:—VP+j><B:—V(P+

1

2

E E — EV v+ 1 VX(BV)B‘l‘inX
di\p) \p Ar p? I

V(P+E)—i(B-V)B]. (13)
8r] 4n

This equation describes the condition that the vorticityfigzen’ in the plasma if the last two
terms are negligibIE.Vorticity is necessarily generated, if the curl of the fofeed generated by
magnetic tension does not vanish (referred towa$-tension termn Another source of vorticity is
given by a flow wher&p is not aligned with the potential force due to thermal or metgrpressure
as well as the magnetic tension force (referred tba®clinic-type term Figure[2Z¥ studies the
relative importance of both source terms. Due to the largesithe gradient, the baroclinic-type
term dominates the vorticity injection in the magnetic dngplayer. The curl of the magnetic
tension force seems to be the dominant injection mechamdimei wake. We caution the reader
that we cannot quantify the level of vorticity injected by ane of a turbulent boundary layer and
refer to our phenomenological argument at the beginnindpisfgection that clearly indicates the

importance of the magnetic draping layer for the vorticitjection.

6. INSTABILITIES

The magnetic tension force as well as the magnetic layer gagrhas implications for the
instabilities experienced by the projectile. 8 and§H, we saw that the flow in the plane paral-
lel to the initial magnetic field is stable and the hydrodyiamstabilities are suppressed by the

3This can be seen by considering the evolution of an infinitasivectorsx connecting two neighboring fluid
parcels, as the fluid moves with the velocity field. The panitially at positionx at timet will be displaced to the
positionx + v(X)At at timet + At. The neighboring point initially at + 6x at timet will be displaced to the position
X + 6X + v(X + 6X)At at timet + At. Hence this ‘frozen’ connecting line evolves according to

% (6x) = (6% - V). (14)

which resembles Eqrl{IL3) if we neglect the last two termsidedtify 6x = sw/p initially, wheree > 0 is a small
guantity. Since the dierential equation is true for any time, the same relatiohlvald for all times for the vorticity.
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magnetic draping layer (suggested@@OO?). In cehtthe flow around the projectile in
the plane transverse to the initial magnetic field is unstablKelvin-Helmholtz and Rayleigh-
Taylor instabilities, not stabilized by the presence of metge field. We will show that the Kelvin-

Helmholtz instability remains stronger and leads to gradiszuption of the projectile, although
the impact of the Rayleigh Taylor instability in our MHD casegreater than the purely hydrody-
namical case because of the greater deceleration. For andereous initial magnetic field the
induced vorticity remains largely two-dimensional.

The projectile is being decelerated by magnetic tensiorhas/s in §6.3. This makes the
Ero'!ectile subject tdRayleigh-Taylor instabilitiesvith a characteristic frequencLL(_C_ha.n.dLas_ekhar

)

wéT:@rﬁ—Po z§2ﬂpoCGU_2£Z37TPoCGU_2,

<pp> + o 8 (pp> R2 ko 4<pp> R?

whereky, = 27/R defines the the smallest wavenumber of the system and we wdHeilimit
where(pp) > po.

Ur k (15)

The flow around the projectile causes a shear at the inteofitbe projectile that can get non-
linear by means of thelvin-Helmholtz instabilitand has the characteristic frequeﬂ.c;dﬁ.han.dmslekhar

)
V{Pp) Po 3ru [po k 3nru [ po
CH = o i T TR Ve - RV on (16)

Here we neglect the self-gravity of the projectile and agply maximal velocity shear from the
potential flow solution around a spherical body= 3/2ue,, which is valid atr = Randd = /2.

Which instability will eventually dominate and set the relat timescale? It turns out that the
ratio of the characteristic frequencies is independenhefarojectile properties and only depends
on the wave number of the considered mode,

wey 12 k 12

2 2 =
(J)RT CG ko CG

20. (17)

where from the previous sectio@g ~ 1.87 takes into account the fact that both the magnetic field
strength and radius of curvature of the field lines vary otaer‘tap’ of the projectile. The largest
length scale of the problem is given by the size of the prdgit the direction of motion and sets
the largest timescale of the problem,

Taw 1 [Coko
—_— = = <0.22 1
TRT 2 3rk — 0 ( 8)

Thus, we expect the Kelvin-Helmholtz instability in theqdaransverse to the initial magnetic field
to be responsible for the eventual disintegration of thegatde. These considerations allow us to
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estimate the associated time- and length-scale on whictxpeceto see the projectile material in
the boundary layer to become unstable,

LKHZTKHUZEZAQ @&35 @:16.3 (19)
WKH 3 Po Kk 3 Lo

in terms of the length units in the code. This explains nitké&/instability features in the wake of
Fig.[Z8 that appear every 10 length units and indicate thab@enthat is slightly smaller than the
projectile dimension is becoming unstable and leads to asigpn of projectile material.

7. DISCUSSION AND LIMITATIONS

We have investigated in detail the rapid formation of a mégriraping layer over a projec-
tile, and examined some of the immediate dynamical consemse It is worth considering how
well these insights continue to hold over longer timescalad whether the draped field cafiey
much protection over significant distances.

While details of how mixing might take place will depend déwely on the structure of
the object in question, one requirement for a projectile t® significantly into the surrounding
medium will be for the projectile to sweep past on order itfionass in the ambient medium; only
then will there have been enough shear to significantly distiue moving object. This requires
the projectile to traverse a distance~ ((op)/po)R. For the runs considered in previous sections,
modeling this while continuing to resolve the magnetic drgpayer would require extremely
costly simulations, even with AMR.

However, at the cost of complicating direct comparison vgitbvious simulations, one can
gain some insight into what will happen over longer times bgsidering those regions of param-
eter space which make the computation more feasible. Incpkat, for this section we perform
an analog to run B made with a maximum projectile density ceduby a factor of 10, so that
(Pp)/po ~ 15. With this reduced density contrast, mixing happens neastly and the projectile
sweeps past its own mass in a computationally approachaide Results from this run are shown
in Fig[Z9, at a time when the projectile has approximatelymwierough its own mass of ambient
medium.

In this run, the same features are seen as in previous sectiemdevelopment of the strong
narrow magnetic field layer, the opening angle//u, and the large-scale vorticity oriented pri-
marily along field lines generated in the wake. However, twmeg times the anisotropy imposed by
the direction preferred by the magnetic field, and as sugdestFigld, becomes much more pro-
nounced, as the projectile becomes extremely aspherigsigreatly flattened along the direction
of the magnetic field lines.
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The long-time distortion of the projectile by the magneteldi— which, again, is initially
strongly subthermal3 ~ 100) and a factor of 6 less than the ram pressure seen by tfecil®
— is particularly evident when seen compared to the restiltseosame projectile moving in the
absence of a magnetic field, as in Higl 30. In this case, deissjilotted in two cut planes at
the same time for the simulation with and without magnetildfi@hree dimensional interactive
density isosurfaces are also plotted in Eid. 31.

Several features are immediately apparent. The first isigmeficantly different density dis-
tributions between the two scenarios. The densest materiabre contained in the case with
magnetic draping, but in the plane along the magnetic fieltenal which is strippedfdis more
extended, piling up along the draped magnetic contact. Taeepacross the initial magnetic
field lines is even more interesting; here the stripped madter much more contained, even with
the presence of the Kelvin-Helmholtz instability. Herapgied material stays almost completely
within a cylinder of radiuk = 1, the initial radius of the projectile, along the path of fhiejectile.

Also evident s that, although the two simulations are exediat the same time, the projectile
without magnetic fields is significantly further ahead in th@main than the simulation with the
magnetic field; this is the result of the deceleration dertratexd in§ [B.3.

In this work we have made several simplifying assumptionallmw us to begin to under-
stand the process of the draping. We have neglected coasaenf the interior structure of the
projectile, by for instance omitting any self gravity whialould be relevant for a minor merger.
This will effect the rate of stripping of materiattoof the core, and thus long-term evolution, but
is unlikely to directly @fect the draping process itself. We have also not considergdji@adient
of properties in the medium the projectile moves throughijevthis again would fect long term
behaviour, the set-up of the magnetic draping layer ocanirgusckly that it is unlikely that any
background quantities would greatly change over the snisttdces involved.

We have also omitted explicit treatment of dissipative Mysici_uullkd/l(zcﬂ?tﬁ.chﬂkmhihin_d al.

). Following up with simulations which included theskects self-consistency will be im-
portant for examining in detail the resulting sharpnesshefdold fronts (as done, for example,
by|Asa.Le1_a|. |(29_d6)) and thefiiérent dissipation physics may also wedflext the long time be-
haviour of mixing. However, the initial draping layer is sg4, and its properties are determined,
on timescales much faster than the dissipative timescsbabese results will be uffacted.

We have also considered here only subsonic motions thrauglambient medium. Many
of the astrophysical processes where draping is relevanbeasupersonic, and so an important
next step is to consider this case, where a bow shock willrdoefore the magnetic draping layer.
While the bow shock will almost certainly be well separatexhf the magnetic draping layer, the
shock will afect both the geometry of the flow onto the draping layer anétyreamplify the
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importance of the thermal pressure. On the other hand, dehim bow shock the flow will be
subsonic, so much of the discussion here will directly aplynilar detailed studies of draping in
the supersonic case will be considered in future work. Rexinaore seriously, we have considered
here only the simplest case of an initial magnetic field unif@ver the scales of interest. It will
be necessary to consider more realistic field geometriess, 1o, is being considered in future
work, and will require much more careful treatment of theailetl magnetic structure of the field.

8. CONCLUSION

This work aims at understanding the morphology and the dycelproperties of magnetic
draping to set a solid ground for its astrophysical appiliret. A core, bullet, or bubble that moves
super-alfvénically in even a very weakly magnetized plasracessarily sweeps up enough mag-
netic field to build up a dynamically important sheath arothmelobject; the layer’s strength is set
by a competition between ‘plowing up’ of field and field linéipping around the core, and to first
order depends only on the ram pressure seen by the movingtofijeis layer is developed very
quickly, potentially faster than a crossing time of the potile. The energy density in the draped
layer, at its maximum, exceeds the ram pressure by a factwamfnecessary to anisotropically
redirect the flow. This #ect has important implications for galaxy cluster physie# @uppresses
hydrodynamic instabilities at the interface of AGN bubblésnaturally explains so-called ‘cold
fronts’ by keeping temperature and density interfaces afying cores sharp that would otherwise
be smoothed out by thermal conduction anfiiudiion. Other important astrophysical implications
of this dfect include draping of the solar wind magnetic field at the sback of the Earth as well
as pulsar wind nebulae.

In this paper, we compare a simplified analytical solutiorthegf problem that neglects the
back-reaction of the dynamically important magnetic field tbe potential flow with a high-
resolution AMR simulation and find very good agreement betwboth solutions in the region
ahead of the bubble. Non-linear back-reaction of the magfietd in the draping layer necessar-
ily implies the generation of vorticity in the flow. The indeat vortices in the wake deform the core
hydrodynamically and eventually cause the magnetic shegtieel dt. There is a strong indica-
tion that the vorticity generation is responsible for theemmittent amplification and stretching of
the magnetic fields as well as the injection of MHD turbuleimdiae wake of the core. If this with-
stands further critical analysis, this mechanism mighehaofound astrophysical implications for
the amplification and generation of large-scale magnetidsim the inter-galactic medium.

The magnetic layer, once fully developed, has a charatteggometry which we have
shown here to be roughly conical in the plane along the magfield lines, with opening angle
0 ~ arctan{/a/u), and remains contained in the perpendicular plane, wighkialvin-Helmholtz
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instability acting on the object interface. The magnetitsten in the layer significantly decelerates
the object, dominating over any hydrodynamic drag.

Over long times, the anisotropy imposed by the field — desbédact that the field is initially
highly subthermal and with an energy density significandgsl than the kinetic energy of the
ambient medium in the frame as the projectile — can signifigatistort the projectile, keeping
it significantly more constrained in the plane perpendictdahe ambient field, and keeping any
stripped material inside the drape.

If a magnetic draping layer such as generated in these dilmngawere astrophysically ob-
servable, it would be possible to get independent measuntsnoé the magnetic field strength in
the ambient medium provided the local gas density and tleeitglof the moving object is known.
The tools are both the opening angle of the drape and thertbsskof the magnetic field layer —
but not through the layer’s field strength. Similarly, formdewn magnetic field strength, we would
have an alternate measure of the velocity of the projectile.

The authors thank M. Lyutikov for suggesting this work, YtHwick for fruitful discussions,
and M. Zingale, Y. Lithwick, and M. Lyutikov for helpful suggtions on this manuscript. The
authors gratefully acknowledge the financial support ofNlaéonal Science and Engineering Re-
search Council of Canada. The software used in this work wamit developed by the DOE-
supported ASQ Alliance Center for Astrophysical Thermonuclear Flashetha University of
Chicago. All computations were performed on CITAs McKanaind Sunnyvale clusters which
are funded by the Canada Foundation for Innovation, ther@ritanovation Trust, and the Ontario
Research Fund. 3D renderings were performed with OpenD$.Wbrk made use of NASA's As-
trophysical Data System.
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Fig. 16.— As in Fig[L, but for Run E; that is, with the projées velocity reduced by a factor of
one-half (so thati = 0.125 in code units).
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Fig. 17.— Interactive 3D version of Figurel16 above.
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Fig. 18.— As in Fig[L, but for run G; that is, with the projéets velocity increased by a factor of
two (so thatu = 0.5 in code units).
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Fig. 19.— Interactive 3D version of Figufel18 above.
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Fig. 20.— Plot of magnetic energy density in the plane for simulations witfiR = 0.5 and, left

to right,u = 0.125 0.25, 0.5; shown with black lines are the fitted opening angles of thgmetic
draping layer, omitting the region including the materiar the projectile. The fit slopeg.@.
tand) are 1.24, 0.515, 0.261, and those predicted fy(u) are 1.13, 0.566, 0.283; this agreement
is within 10%.
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Fig. 21.— A plot for the 3d runs presented here showing thgdahof the fit opening angles of
the drape in thgzplane versus,/(u). Data from all runs are shown.
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Fig. 22.— A plot showing, with squares, the evolution of ijle velocity (calculated as in by
Eqn[®) over time for run F. Note that the projectile encotsitbe magnetic field at time 20 in these
units. Plotted as a thin line is the best fit deceleratioa,—5.98 x 1074, for times greater than 20.
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Fig. 23.— A plot for the 3d runs presented here showing thesuneal deceleration of the projectile
versus the functional form we expect it to take, proportldna/8ou?/({pp)R), Where(p,) is the
mean density of the projectile (in code units,150). Because the magnetic field strength and
curvature varies over the draped layer, there is an undé@techgeometrical factor in the magnitude
of the deceleration; we find it here to be approximate871
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Fig. 24.— Plot of streamlines over the= 2 projectile through # = 100 medium. Streamlines
are calculated in the frame of the mean velocity of the ptdgcThe streamlines are coloured by
the magnitude of velocity, and the plane is once again cdlbyemagnetic energy density. At this
time, no instabilities have developed in the plane perpridr to the ambient magnetic field, so
fluid flows smoothly over the projectile in this plane; howeviid traveling close to the other
plane experience a gain of vorticity.
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Fig. 25.— Interactive 3D version of Figuiel24 above.
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Fig. 26.— The magnitude of vorticity is shown in color in thiae parallel and transverse to the
initial magnetic field (left and right panel). The dotteddsrepresent iso-density contours. The
magnetic energy density is shown in the contour plot. Vagtim the draping layer is generated
predominantly by a baroclinic-type term whereas the viytimjection in the wake is dominated
by the curl of the magnetic tension force.
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Fig. 27.— Plot of the source terms for the specific vorticitjection rate as defined in Eql13 for
the plane transvergegarallel to the initial magnetic field (Igftght panels). The upper panels show
the contribution of the baroclinic-type term whe¥g is not aligned with the thermal and magnetic
pressure force. Due to the large density gradient, this tlyminates the vorticity injection in the
magnetic draping layer as we verified with a linear color ecdlhe curl of the magnetic tension
force seems to be the dominant injection mechanism in thewak
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Fig. 28.— Kelvin-Helmholtz instability dissolves the pegile in the plane perpendicular to the
initially homogeneous magnetic field. The flow is accelatatethe density enhancements of the
stripped material due to the Bernoulifect. In the wake of the projectile, there is a characteristic
length scale ot~ 10 length units between the striped material which corredpdo an unstable
mode with a wavelength of/3R.
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Fig. 29.— As in Fig[lL, but for thé&o,) = 15 run, at a time where the projectile has swept past
approximately its own mass in ambient fluid.
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Fig. 30.— Plots of density shown for the,)/po = 15 run, at a time when the projectile has
swept past roughly its own mass of ambient medium. Showrpaat® simulations with no initial
magnetic field, and at bottom which a magnetic field as in RuwiBy 8 = 100 andogu?/Ppo =
6.25. Panels on the left are along thelirection €.g, the direction of the initial magnetic field
lines in the second case) and along ihéirection (perpendicular to the magnetic field lines) on
the right. These snapshots are taken at the same simuletieriidr the two runs; the projectile in
the magnetized case lags because of the deceleration deatedsn§ B.3.
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Fig. 31.— Interactive 3D version of Figukel30 above
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A. DERIVATION OF THE MHD FLOW AROUND A MOVING BODY
A.1. The exact MHD solution

The full non-linear solution of the MHD flow around a movingishynamically evolving body
is extremely complex because of its significant three-dsr@rality and non-linearity. Owing to
the range of scales involved this problem is perfectly sliite an MHD adaptive mesh refinement
simulation. In order to gain credibility and improve our @mstanding of the properties of the
numerical solution including its scaling behavior, we sotlie problem of an ideally conducting
plasma around a spherical body analytically. To this endsabee for the flow of a plasma with
a frozen-in magnetic field around a sphere to explore theatheristics of the magnetic field near
the surface of the body. We disregard any possible change ifidw pattern by means of the back-
reaction of the magnetic field. The same problem has beestigated b)"_B_em'LkQALa.n.d_S_em.ehov
M) who find that the energy density of the magnetic fietchfog in the wake behind the body
diverges logarithmically. In passing by we correct the raiszeption that lead to this unphysical
behavior of their solution and derive a criterion for the dtdown of our simplified analytical
solution that we then successfully apply to our numerichltsan.

The governing equations of ideal MHD with infinity condudtiyvare given by
curlflvoxB)=0 and divB =0. (A1)

We solve this system of equations outside the sphere forengielocity field that is derived for
a viscous and incompressible flow around the sphere. Witlogstof generality, we choose the
origin of our spherical coordinate system to coincide with tenter of the sphere with radiis
(Fig. 1) and thez-axis being anti-parallel to the fluid velocity at infinityh& potential flow solu-
tion of the pure hydrodynamical problem reads in spherioardinates as followm al.

v = er(;—Rj —1)ucose+e9(; +1)usin9: -u+ ; [Be(u-€)—-u], (A2)

where we employed the coordinate independent represemtaitithe homogeneous fluid velocity
at infinity in the second step, = e (u-e)+ey(u-e). Since for any stream line holds s, = rdé/v,,
we can thus derive the equation of the line of flow using S®keethod of the stream function

p:rsin@ﬂl—?, (A3)

wherep is the impact parameter of the given line of the flow from th@ordinate axis on an in-
finitely distant plane in the left half-space. We assume adgeneous magnetic field at infinity in
the left half-space pointing towards the positweoordinate axis yielding the boundary conditions
for B:

Bl = Bosindsing, By, = Bocosdsing, By|_ = Bycos. (A4)
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Writing Eqns. [A1) for the components yields

curl,(v xB) : %[sin O(vy By — v4B;)] + i(vr By) =0, (A5)
0
curly(v x B) : E[V(Ur By — vyBy)] — m@&p( 0By) = (A6)
0 0
curl,(v x B) : a(rur By) + %(U(.)Bq;) =0, (A7)
o 110/, 1 J, . 1 0By
divB : ﬁ [E (r Br)l + Fsing [@(S”’]HBQ)] + rsin@% =0. (A8)

By substituting[[AP) into[[Al) we obtain the equation 8y

6 Uy 6 3B¢R3

g+ 22 A
o a0t T T -R) (A9)

wherevy/(rv,) = —tand (2r3 + R®)/[2r(r® — R®)]. Equation [AD) is a linear inhomogeneous first-
order partial diferential equation which can be solved by the method of cheriatics. We take
as parameter in the characteristic equations and expresstiable® and¢ in terms ofr, using

_ 900t 9B 0p 0t _ OBy vy 95 A10
ar ~ or | 90 ator  dp otor . or  ru, 06 (AL0)

Thus, on the line of the flow that is uniquely characterized®ympact parametep at infinity, we
obtain a first order ordinary fferential equation foB,,

dB,  3B,R

a ~ 2r(r3-R3)’ (AL1)

Integrating this equation by the separation of variableddg the solution foB, that contains a
constant which is determined from the homogeneous magfiaticat infinity (A4),

B, = _Bocosg (A12)
RS
1%

To determineB, andB,, we turn to Eqns.[(A5) and_(A6). By multiplying EqiL_{]A5) withand
@A8) with sing, definingK = r sind(v, B, — v4B;), and combining[{Al) and(A5), we obtain the

equation forK:
oK vy 0K

or o ruy Frin
Equation [AIB) can again be solved by the method of chaiatitar as [AD) yieldingk = K,
whereK is a constant on each flow line that is labeled with its impacametemp. Determining

(A13)
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this constant from Eqnl{A4) and substituting #rand K, their values, we obtain the following
equation that relatel8, and By,

r siné (v, By — vyB;) = —puBy sing. (A14)

SubstitutingBy, expressed in terms dd,, from Eqn. [AT#) andB, from Eqn. [AI2) into the
solenoidal condition foB ([A8)), we obtain the equation f@,. Similarly, substitutind3,, expressed
in terms ofB, and following the same steps, leads to the equatioBfor

0B, v, 0B, [2 2+ R 1 By Sing sing
AR B, = - : A15
ar ru, 96 it 2r(r3 — R3) T cog0)| = (AL5)
: r{l- 3 C0% 0
aBg Uy aBg >2 2I’3 + R3 9I’2R3
— + = +|=- + By =
an  ru a0 |r 2r(P-R)  2r3+R)(r3-R°)
2By sing (r® + 2R®) (AL6)

rcosd (2r3 + R J1- &

Both equations can again be solved by the method of chaistatsr expressing the variablés
and¢ in terms ofr which we take to be the independent parameter along the fies knd using
Eqgn. [A3). Note that for a potential flow, the varialglés always constant on the line of the flow
by symmetry. The resulting linear inhomogeneous first-oatdinary diferential equations are
easily solved by an integrating factor that is derived frdv@a homogeneous equations, leading to
the solutions foB, andB,,

rP-R . ' p(r’e)r’4 dr’ ]
B = cosd |Cy F By sing , (A17)
' r3 [ o ¢ (3 —Re—p(r,0))¥* Vi3 - R8
3 r 13 (¢’3 A3 — ’
By = LR [Cz + 2Bosin¢f (" RN Rodr ] (A18)
5213 — R3 ¢ (23 + R3)24r3 — R — p(r, 0)2r’

whereC; andC, are integration constants a#ds the initial value for whicHB, andBy, are known.
The upper signs refer to the regiorx® < 7/2, and the lower signs to/2 < 6 < «.

A.2. The approximate MHD solution near the sphere

We aim at understanding the behavior of the magnetic fieldhénregion near the sphere.
To this end, we investigate the behavior of the integraldAfid) and [AIB) for small impact
parameters and keep only the main terms with respegt t¥Ve find that the integral iH{A17)
diverges at the lower limit logarithmically for/2 and the integral ii{A18) has a linear divergence



— 655 —

at the lower limit. Thus we will usd{A17) in the region<00 < x/2 and [AIB) in the region for
n/2<6< .

We divide the region of integration into two: the first framto r; wherer; > Ris the radius
of the sphere on which the asymptotic form of the magnetid fiblanges, and the second from
to ro, whererg is the radial value of the flow of line under considerationdes 7/2. This implies
that the following expansions only apply to small impactgmaetersp with ro < r;. By expanding
the integrand of{AT7) in powers of L forr > r; > Rand in the region & 6 < n/2, we determine
C,; = 0 and we recover the homogeneous field at infinity with an aoyutoO(1/r). Near the
surfacer; > r > ro we perform a change of the variablede- r — R. We defines; = r; — Rand
S = o — Randsvaries withingy < s < s;. The equation of the line of floW {A3) has the form

= V3sRsing with an accuracy t@(s*?) and from this we obtais, = p?/(3R) for 6 = n/2 and
S= .

The value ofB; in this region will be composed of two terms: the value of theegral in
@&ID) from o to r; with a factor to leading ordex s*2, and the value of the integral fross to s,
which behaves lik€(s'?). Neglecting the first term in comparison with the second plv&in for
B, with an accuracy t@(s¥?) or O(p®):

B = —3—80 psm¢cos€f (A19)

9 (32 550)3/ 2

For impact parameteng with s < s;, we obtain with an accuracy ©(sy/s,):

2 3s sing .
B = §B°‘/E1+ v~ sing. (A20)

Using Eqn.[ATH) leads to the componddt Thus,B, andB, near the sphere are determined by

0 35,

R
B, = Bocosy ‘/3_5' (A22)

It turns out that these formulae are also correct for theomgi/2 < 6 < n as follows from
Eqn. [AIB). The integral in this expression is regular $grand by computind3, in the approxi-
mations < Rfor s = 5, we findC, = sing R By/3. ThenBy is equal to[[AZIl) with an accuracy
to terms of ordeD(sY?). We obtain[AZR) by usind{A14). Thus, Eqns._{A20) o (A2 2jformly
describe the field near the sphere with respect to the @ngle

In order to facilitate comparison to our numerical solutieve transform the approximate
solution forB given by the components in the spherical coordinate sysfEf)(to (A22) into
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Cartesian system yielding

. R (2s
By = Bgcosgsing (1 - cosh) ’/3_5 (E — 1), (A23)
R . 2s R
By = Bo,/?)—s [smqu(l—cose) (E - 1)+ 1| = By tang + BO,IS—S, (A24)
. . /R 2s cosf
B, = BoS|n¢S|n9 3_8 (E m - 1) (A25)

Note that we introduced the radial coordinate from the srfaf the sphers = r — R and that
this solution applies only near the sphere with an accurac)($*?) as well as for small impact
parameterg with an accuracy to(sy/s,).

Using the method of regularization of the integral In (A1 7fhwrespect to the lower limit

0= 7r/2,lB.emjKosLa.nd_S.em.en|olL(]_§80) investigate the behavidi®fitagnetic field in the wake

of the sphere. They find that, when neglecting a term thaesad0(1/r), B is given by

B ff By sing

B ;
r 3 p

(A26)

which, with proximity to the axis of the wakp — 0, leads to an unlimited increase Bf — oo.
The magnetic lines of force that end at the stagnation pessaongly elongated as the swipe
around the sphere parallel to the line of flow reaching fromdtagnation point into the rear. This
leads to the unphysical increase of the magnetic field agitogghes the symmetry line. While
this might be the mathematically correct solution, it leta logarithmic divergence of the energy
density of the magnetic field in the volume near the wall.
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