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Origin of the cosmic microwave background
In the early Universe, according to the theory of inflation,
quantum fluctuations were inflated to macroscopic size.

These fluctuations were then present in the density fields of dark
matter, the ionized gas, and the photon field.

Once these fluctuations entered the sound horizon, the
gravitational attraction in overdensity regions was balanced by
the radiation pressure of photons → acoustic oscillations.

The Universe continued to expand and to cool adiabatically; at
the characteristic temperature of T ' 3× 103 K hydrogen
recombined → the Universe became transparent to photons.

The oscillations ended since the radiation pressure ceased to
act as restoring force; the line-of-sight velocity of the photons
caused a Doppler boost → fluctuations in the microwave
background with a characteristic amplitude of δT/T ∼ 10−5

→ WMAP
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Hierarchical structure formation

Since dark matter (DM) does not interact with photons, it had
time to form tiny potential wells through gravitational interactions
before recombination. Once set free from oscillations, the almost
neutral primordial gas streams into those wells.

The fluctuations continued to grow and accumulated more mass
until they became non-linear.

The originating very small dark matter halos decoupled from the
general Hubble expansion of the Universe.

When the continuously infalling gas impacted the dense halo
gas, shock waves formed which heated the cold accreted gas to
the virial temperature.

These halos merged with other halos to form larger and larger
objects which came into virial equilibrium, Epot + 2Ekin = 0.
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The origin of galaxies and galaxy clusters
Once the halos reached the size of a dwarf galaxy, gravitational
attraction becomes stronger that the gas pressure → the gas
collapsed, became denser and cooled by means of radiation
processes in order to form a rotating gas disk in the halo center.
Stars started to form – the birth of a spiral galaxy.

In the course of structure formation, galaxy halos merged to form
the largest virialized objects in the Universe: galaxy clusters.

The forming shock waves are sourced by the gravitational
energy of galaxy clusters: cluster mergers are the most
energetic events in the Universe (after the Big Bang) and heat
the gas to temperatures of T ∼ 108K:
GM2/R ∼ 1064 erg ∼ 108 K× 1015 M�/mp

The accelerated expansion of the Universe, caused by dark
energy, delays and eventually stops structure formation →
galaxy clusters will remain forever the largest objects in our
Universe and the first to be disrupted again!
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The structure of our Universe

The "cosmic web" today. Left: the projected gas density in a cosmological simulation.

Right: gravitationally heated intracluster medium through cosmological shock waves

(C.P. et al. 2006).
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Shock waves

shock waves: sudden change in density, temperature,
and pressure that decelerates supersonic flow.

thickness∼ mean free path λmfp

in air, λmfp ∼ µm,
on Earth, most shocks are mediated by collisions.

Mean free path to Coulomb collisions is huge:
λmfp ∼ 100 pc (SNR), λmfp ∼ 100 kpc (clusters)

Mean free path� scales of interest!

→ shocks must be mediated without collisions,
but through interactions with collective fields
→ collisionless shocks

(slide concept Spitkovsky)
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Collisionless shocks in supernova remnants

Astrophysical collisionless shocks can:

accelerate particles (electrons and ions)

amplify magnetic fields (or generate them from scratch)

exchange energy between electrons and ions

SN 1006 X-rays (CXC/Hughes) G347.3 HESS TeV
(Aharonian et al. 2006)

Tycho X-rays (CXC)
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Collisionless shocks
Astrophysical collisionless shocks can:

accelerate particles (electrons and ions)
amplify magnetic fields (or generate them from scratch)
exchange energy between electrons and ions

Particle-in-cell simulations of unmagnetized, relativistic pair shocks that are
mediated by the Weibel instability (Spitkovsky 2008)

magnetic energy density (Spitkovsky 2008) post-shock Maxwellian and accelerated CR power-law
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Diffusive shock acceleration – Fermi 1 mechanism (1)
conditions:

a collisionless shock wave

magnetic fields to confine energetic particles

plasma waves to scatter energetic particles→ particle diffusion

supra-thermal particles

mechanism:
supra-thermal particles diffuse upstream across shock wave

each shock crossing energizes particles through scattering off magnetic
fields (analogy: ping-pong ball in between approaching walls)

momentum increases exponentially with number of shock crossings

particle number decreases exponentially with number of crossings

→ power-law cosmic ray (CR) distribution
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Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f
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Galactic cosmic ray spectrum

data compiled by Swordy

Galactic CR all particle spectrum:

spans ∼ 40 decades in flux when
accounting for solar modulation
that blocks low energy CRs

ranges 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin
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A theorist’s perspective of a galaxy cluster . . .

Galaxy clusters are dynamically evolving dark matter potential wells:

gas to the virial temperature
shock waves heat the infalling

Energy

Space

galaxy velocity dispersion

probes the DM potential
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. . . and how the observer’s Universe looks like

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Giant radio halo in the Coma cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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High-energy astrophysics in galaxy clusters

consistent picture of non-thermal processes in galaxy
clusters (radio, soft/hard X-ray, γ-ray emission)
→ illuminating the process of structure formation
→ history of individual clusters: cluster archeology
understanding the non-thermal pressure distribution to
address biases of thermal cluster observables
gold sample of clusters for precision cosmology: using
non-thermal observables to gauge hidden parameters
nature of dark matter: annihilation signal vs. cosmic ray
(CR) induced γ-rays
fundamental plasma physics:

diffusive shock acceleration
origin and evolution of large scale magnetic fields
nature of turbulent models
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Radiative cool core cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Radiative simulations – flowchart

C.P., Enßlin, Springel (2008)
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Our philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description

p = Pp/mp c

Enßlin, C.P., Springel, Jubelgas (2007)

f (p) = dN
dp dV = C p−αθ(p − q)

q(ρ) =
(

ρ
ρ0

) 1
3 q0

C(ρ) =
(

ρ
ρ0

)α+2
3 C0

nCR =

∫ ∞

0
dp f (p) = C q1−α

α−1

PCR =
mpc2

3

∫ ∞

0
dp f (p) β(p) p

=
C mpc2

6 B 1
1+q2

(
α−2

2 , 3−α
2

)
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Hadronic cosmic ray proton interaction
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Hadronic cosmic ray proton interaction
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γ-ray source function in hadronic CRp-p interactions
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compute the π0-decay induced γ-ray
source function qγ analytically (with
simplified assumptions)

introducing complex physics e.g., at
the threshold of particle production
phenomenologically

for a CRp distribution, fCRp ∝ p−α,
the γ-ray source function is given by
(C.P. & Enßlin 2004)

qγ ∝

24 2 Eγ
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+

 
2 Eγ

mπ0 c2

!−δ
35−α/δ

below: relative deviation of our
semi-analytic approach to
numerically obtained γ-ray spectra
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Mach number distribution weighted by εCR,inj
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CR pressure PCR
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Multi messenger approach for non-thermal processes
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Cosmic web: Mach number
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Radio gischt: primary CRe (150 MHz)
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Radio gischt: primary CRe (150 MHz), slower magn. decline
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Radio gischt illuminates cosmic magnetic fields
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Structure formation shocks triggered
by a recent merger of a large galaxy
cluster (Battaglia, C.P., et al. 2008).
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Cluster radio emission by hadronically produced CRe
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Thermal X-ray emission

10-9

10-8

10-7

10-6

10-5

10-4

S X
 [

 e
rg

 c
m

-2
 s

-1
 h

3  ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ 

h-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

Christoph Pfrommer Galaxy Clusters and High-Energy Astrophysics



Physical cosmology
High-energy phenomena

Dark matter searches

Observations and simulations
Cosmic ray physics and cosmology
Non-thermal cluster emission

Radio gischt: primary CRe (150 MHz)
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Radio gischt + central hadronic halo = giant radio halo
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observation – simulation of A2256

Clarke & Enßlin (2006) C.P., Battaglia, Pinzke (in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Conclusions on non-thermal emission from clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

LOFAR, GMRT, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

NuSTAR: future hard X-ray satellite (E ' (1− 100) keV)

Fermi γ-ray space telescope (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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Outline

1 Physical cosmology
Structure formation in the Universe
Concept of shock waves
Particle acceleration

2 High-energy phenomena
Observations and simulations
Cosmic ray physics and cosmology
Non-thermal cluster emission

3 Dark matter searches
Theory and observations
Gamma-ray signatures
Implications for cosmological structure formation
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The matter content of the Universe – 2009

WMAP Five-Year: Komatsu et al. (2009)
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The WIMP miracle

Fermi introduced a new mass scale
of mweak ∼ 100 GeV to describe the
beta decay: n → p e− ν̄

assuming a new (heavy) particle X ,
initially in thermal equilibrium, with a
relic density

ΩX ∼
1

mPlT0 〈συ〉
∼

m2
X

mPlT0 g4
X

mx ∼ mweak ∼ 100 GeV
gx ∼ gweak ∼ 0.6

}
ΩX ∼ 0.1

Remarkable coincidence: particle physics independently
predicts particles with the right density to be dark matter
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WIMP detection

Correct relic density → DM annihilation in the Early Universe
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Indirect detection of dark matter
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Springel et al. 2008
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Indirect detection of dark matter
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Fermi
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and cooling:
limiting horizon ~ 1 kpc

Diffusive transport
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PAMELA and HESS data on electrons and positrons

Energy (GeV)

1 10 100

 )
)

-
(e
!

)+
 

+
(e
!

) 
/ 

(
+

(e
!

P
o

s
it

ro
n

 f
ra

c
ti

o
n

  
  

0.01

0.02

0.1

0.2

0.3

PAMELA  

PAMELA: (Adriani et al. 2009)

rising positron fraction with energy
→ e−/e+ pair acceleration source
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HESS: (Aharonian et al. 2009)

break in the e−/e+ spectrum
→ maximum voltage of accelerator
or DM particle mass
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Combining recent electron and positron data
Fermi: excess number of leptons compared to background model (Abdo et al. 2009)

Bergström, Edsjö & Zaharijas 2009

MDM = 1.6 TeV, 100% μ+μ-, EF=1100
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Interpretations of recent electron and positron data

excess number of leptons compared
to background (Fermi/HESS)

break in the e−/e+ spectrum
indicates special energy scale
(HESS)

rising positron fraction with energy
(PAMELA)

Bergström, Edsjö & Zaharijas 2009

MDM = 1.6 TeV, 100% μ+μ-, EF=1100

Fermi
HESS (×0.85)
HESS LE (×0.85)
Total
Background (×0.85)
DM signal
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1.) nearby pulsars:
energetics convincing but smoothness of Fermi data remains difficult
to model (Harding & Ramaty 1987, Aharonian et al 1995, Malyshev et al. 2009)

2.) DM annihilations:
excellent fit to data but enhancement of cross-section over standard
value and muon decay channel necessary (Bergström et al. 2009)

→ Sommerfeld enhancement: 〈συ〉 ∼ c/υ (Arkani-Hamed et al. 2009)
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The key questions

How can we test this scenario?
Which are the most promising objects to target?
What are the cosmological implications of such an effective
dark matter annihilation?

I will argue in favor of gamma-ray observations of galaxy
clusters being able to scrutinize the DM interpretation of
Fermi/HESS/PAMELA data and will end with a surprising
cosmological result.

Pinzke, C.P., Bergström, 2009, Phys. Rev. Lett., 103, 181302
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Indirect detection of DM through gamma-rays
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Indirect detection of DM through gamma-rays
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Indirect detection of DM through gamma-rays
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Gamma-ray spectrum from DM annihilations
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Galaxy clusters vs. dwarf galaxies

1 The DM annihilation flux of the smooth halo component scales
as F ∼

∫
dVρ2/D2 ∼ M/D2 assuming a universal density

scaling1: the smooth component of dwarfs and galaxy clusters
are equally bright!

2 Substructure in dark matter halos is less concentrated compared
to the smooth halo component (dynamical friction, tidal heating
and disruption): the DM luminosity is dominated by substructure
at the virial radius, IF present!
→ these regions are tidally stripped in dwarf galaxies
→ galaxy clusters are dynamically ‘young’ and their subhalo
population can boost the DM luminosity by up to 200
(Springel et al. 2008).

1A more refined argument that takes into account the different halo
formation epochs breaking scale invariance yields the same result.
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Hadronic cosmic ray proton interaction
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Hadronic γ-ray emission, Eγ > 100 GeV
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Universal CR spectrum in clusters

IACT:       ~ 2.2αp

pαFermi:       ~ 2.4
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Normalized CR spectrum shows universal concave shape→ governed
mainly by hierarchical structure formation and adiabatic CR transport
processes. (Pinzke & C.P. 2010)

→ very promising for disentangling the dark matter annihilation signal!
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Gamma-ray spectrum from DM vs. CR interactions
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Gamma-ray spectrum for various galaxy clusters
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DM gamma-rays: without substructure
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DM gamma-rays: with substructure
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DM gamma-rays: with substructure and Milky Way
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Probing small scales with gamma-rays
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Implications for cosmological structure formation
Probing the linear power spectrum on the smallest scales
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Conclusions on dark matter searches

Gamma-ray observations of galaxy clusters by Fermi will test the
DM interpretation of the Fermi/HESS/PAMELA data in the next
years.

If the DM interpretation is correct, then we either live in a warm
dark matter Universe or there is a new dynamical effect during
non-linear structure formation that wipes out the smallest
structures.

Gamma-ray observations might be the most sensitive probes of
the smallest cosmological structures.
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Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of
CRs preserve the information about their injection and transport
processes and provide thus a unique window of current and past
structure formation processes!

1 Cosmological hydrodynamical simulations are indispensable for
understanding non-thermal processes in galaxy clusters
→ illuminating the process of structure formation

2 Multi-messenger approach including radio synchrotron, hard
X-ray IC, and HE γ-ray emission:

fundamental plasma physics: diffusive shock acceleration,
large scale magnetic fields, and turbulence
nature of dark matter
gold sample of clusters for precision cosmology
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