Cosmic ray feedback and magnetic dynamos in the interstellar medium

Christoph Pfrommer

in collaboration with

PhD students: L. Jlassi¹, R. Lemmerz¹, L. Tevlin¹, M. Weber¹, J. Whittingham¹

Postdocs: T. Berlok², V. Bresci¹, L. M. Perrone¹, M. Shalaby¹, M. Sparre^{3,1}, T. Thomas¹, **M. Werhahn**⁴

Faculty: E. Puchwein¹, R. Pakmor⁴, V. Springel⁴, T. Enßlin⁴

¹AIP Potsdam, ²Niels Bohr Inst., ³U of Potsdam, ⁴MPA Garching

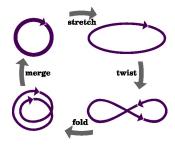
Annual meeting of the German Astronomical Society, Berlin, 2023

(ㅁ▶ ◀亹▶ ◀臺▶ ■ ∽)٩(@

Origin and growth of magnetic fields

The general picture:

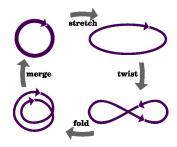
 Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery



Origin and growth of magnetic fields

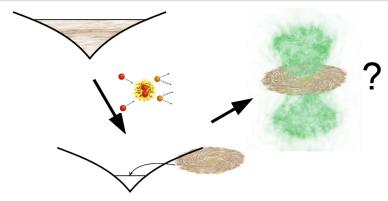
The general picture:

- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating)
 dynamo is an MHD process, in which
 the kinetic (turbulent) energy is
 converted into magnetic energy: the
 mechanism relies on magnetic fields to
 become stronger when the field lines are
 stretched

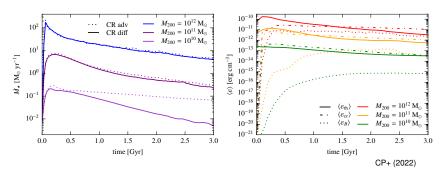


Origin and growth of magnetic fields

The general picture:


- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating)
 dynamo is an MHD process, in which
 the kinetic (turbulent) energy is
 converted into magnetic energy: the
 mechanism relies on magnetic fields to
 become stronger when the field lines are
 stretched
- Saturation. Field growth stops at a sizeable fraction of the turbulent energy when magnetic forces become strong enough to resist the stretching and folding motions

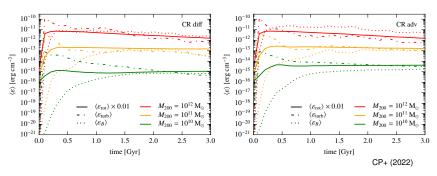
1. Magnetic dynamo in MHD galaxy simulations


CP, Werhahn, Pakmor, Girichidis, Simpson (2022)

Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far-infrared-radio correlation

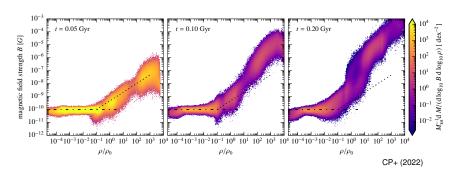
MHD + cosmic ray advection + diffusion: $\left\{10^{10},10^{11},3\times10^{11},10^{12}\right\}\,M_{\odot}$

Time evolution of SFR and energy densities



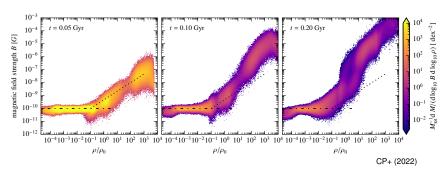
- cosmic ray (CR) pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic growth faster in Milky Way (MW) galaxies than in dwarfs and saturate at equipartition in MWs but not in dwarfs

Comparing turbulent and magnetic energy densities



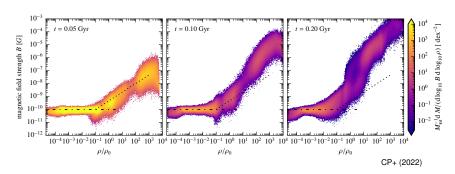
- magnetic energy saturates at the turbulent energy, $\varepsilon_B \sim \varepsilon_{\text{turb}} = \rho \delta v^2/2$ (averaged over the disk)
- saturation level similar for CR models with diffusion (left) and without (right)
- ullet rotation dominates: $arepsilon_{
 m rot} =
 ho v_{arphi}^2/2 \sim 100 arepsilon_{
 m turb}$

Identifying different growth phases



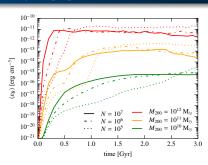
• 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)

Identifying different growth phases



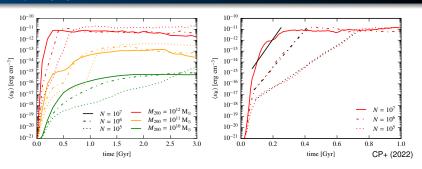
- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$

Identifying different growth phases



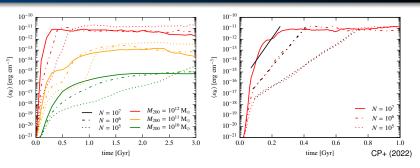
- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$
- 3rd phase: growth migrates to lower ρ on larger scales $\propto \rho^{-1/3}$

Studying growth rate with numerical resolution


CP+ (2022)

• faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$

Studying growth rate with numerical resolution



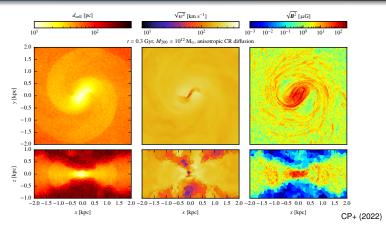
- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$
- 1st phase: adiabatic growth (independent of resolution)

Studying growth rate with numerical resolution



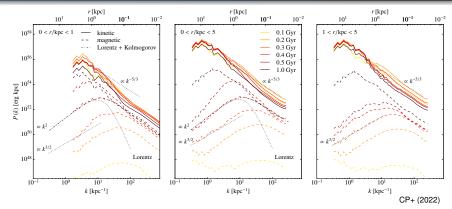
- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$
- 1st phase: adiabatic growth (independent of resolution)
- 2nd phase: small-scale dynamo with resolution-dep. growth rate

$$\Gamma = \frac{\mathcal{V}}{\mathcal{L}} \, \text{Re}_{\text{num}}^{1/2}, \quad \text{Re}_{\text{num}} = \frac{\mathcal{L}\mathcal{V}}{\nu_{\text{num}}} = \frac{3\mathcal{L}\mathcal{V}}{\textit{d}_{\text{cell}} \, \textit{v}_{\text{th}}}$$


Exponential field growth in kinematic regime

 corrugated accretion shock dissipates kinetic energy from gravitational infall, injects vorticity that decays into turbulence, and drives a small-scale dynamo

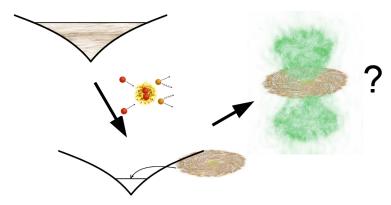
Dynamo saturation on small scales while λ_B increases



 supersonic velocity shear between the rotationally supported cool disk and hotter CGM: excitation of Kelvin-Helmholtz body modes that interact and drive a small-scale dynamo

Kinetic and magnetic power spectra

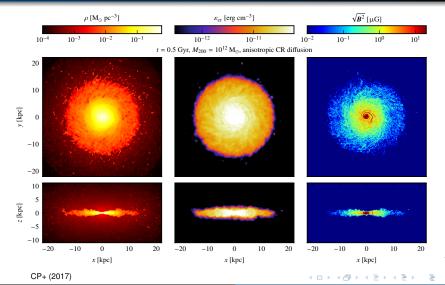
Fluctuating small-scale dynamo in different analysis regions



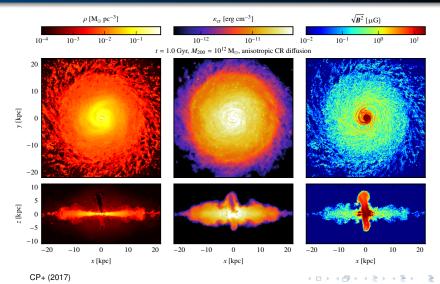
- $E_B(k)$ superposition of form factor and turbulent spectrum
- pure turbulent spectrum outside steep central *B* profile

2. Cosmic ray driven winds in galaxy simulations

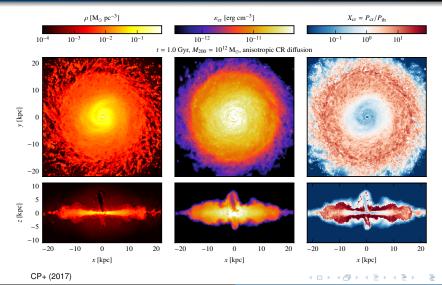
CP, Pakmor, Simpson, Springel (2017)


Simulating gamma-ray emission in star-forming galaxies

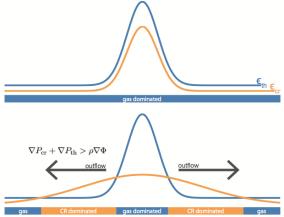
MHD + CR advection + anisotropic diffusion, {10¹¹, 10¹²} M_☉



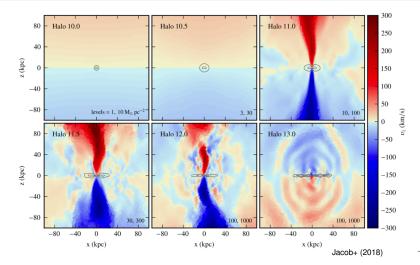
Simulation of Milky Way-like galaxy, t = 0.5 Gyr



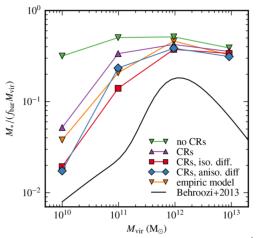
Simulation of Milky Way-like galaxy, t = 1.0 Gyr


Simulation of Milky Way-like galaxy, t = 1.0 Gyr

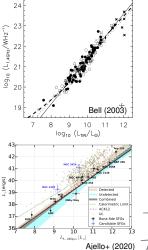
Magnetic growth and saturation Evidence for small-scale dynamo Cosmic ray driven galactic winds


Cosmic ray driven wind: mechanism

CR streaming in 3D simulations: Uhlig, CP+ (2012), Ruszkowski+ (2017) CR diffusion in 3D simulations: Jubelgas+ (2008), Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014), Pakmor, CP+ (2016), Simpson+ (2016), Girichidis+ (2016), Dubois+ (2016), CP+ (2017), Jacob+ (2018), . . .


CR-driven winds: dependence on halo mass

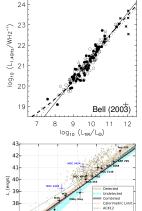
CR-driven winds: suppression of star formation



Non-thermal emission in star-forming galaxies

previous theoretical modeling:

- one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
- 1D transport models (Heesen+ 2016)
- static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)


Non-thermal emission in star-forming galaxies

previous theoretical modeling:

- one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
- 1D transport models (Heesen+ 2016)
- static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

- run MHD-CR simulations of galaxies at different halos masses and SFRs
- model steady-state CRs: protons, primary and secondary electrons
- model all radiative processes from radio to gamma rays
- gamma rays: understand pion decay and leptonic inverse Compton emission
- radio: understand magnetic dynamo, primary and secondary electrons

Aiello+ (2020)

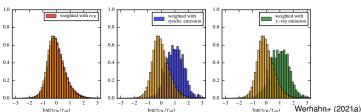
 $L_{8-1000ave}$ [L $_{\odot}$

Steady-state cosmic ray spectra

solve the steady-state equation in every cell for each CR population:

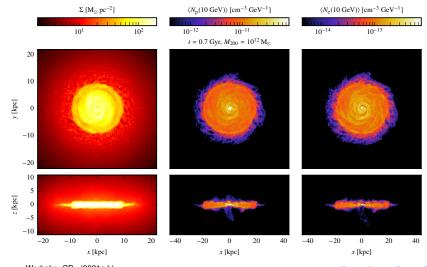
$$\frac{N(E)}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}E} \left[N(E)b(E) \right] = Q(E)$$

- lacktriangle protons: Coulomb, hadronic and escape losses (re-normalized to $\varepsilon_{\rm cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries

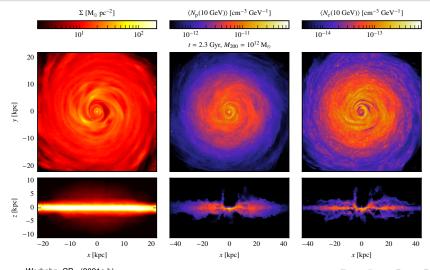


Steady-state cosmic ray spectra

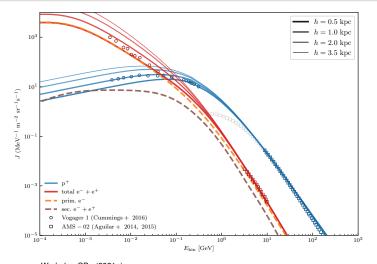
solve the steady-state equation in every cell for each CR population:


$$\frac{N(E)}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}E} \left[N(E)b(E) \right] = Q(E)$$

- ullet protons: Coulomb, hadronic and escape losses (re-normalized to $\varepsilon_{
 m cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries
- steady state assumption is fulfilled in disk and in regions dominating the non-thermal emission but not at low densities, at SNRs and in outflows

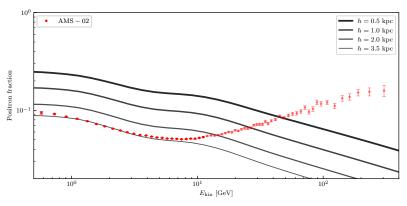


From a starburst galaxy to a Milky Way analogy

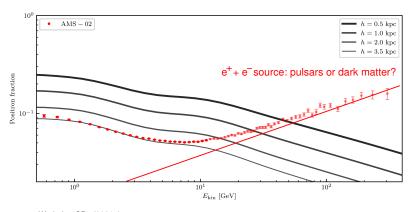

From a starburst galaxy to a Milky Way analogy

Werhahn, CP+ (2021a,b)

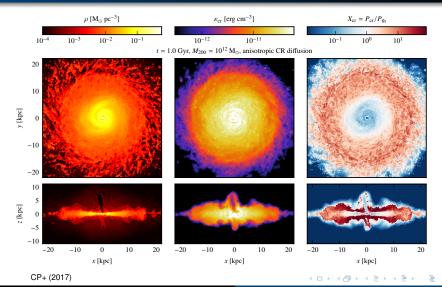
Comparing CR spectra to Voyager and AMS-02 data

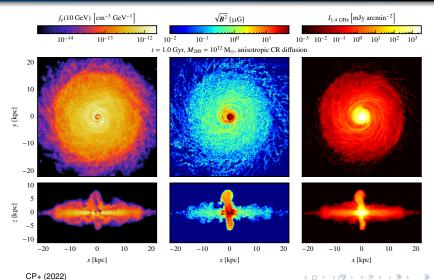


Comparing the positron fraction to AMS-02 data

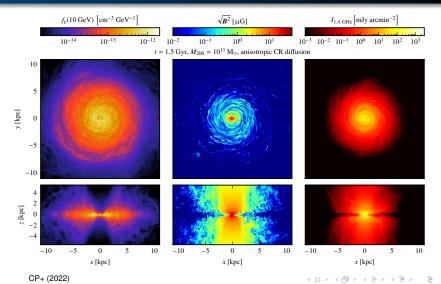


Comparing the positron fraction to AMS-02 data

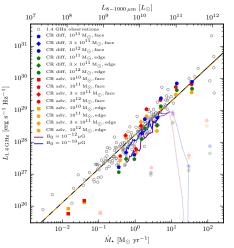




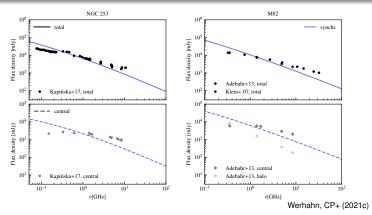
Galaxy simulation with cosmic ray-driven wind



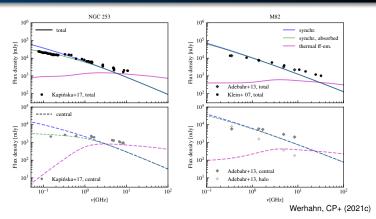
Simulated radio emission: 10¹² M_☉ halo


Simulated radio emission: 10¹¹ M_o halo

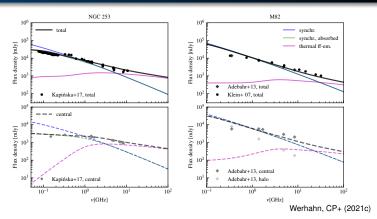
Far infra-red – radio correlation


Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Radio-ray spectra of starburst galaxies



synchrotron spectra too steep (cooling + diffusion losses)


Radio-ray spectra of starburst galaxies

- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low- ν) and thermal free-free emission (high- ν)

Radio-ray spectra of starburst galaxies

- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low- ν) and thermal free-free emission (high- ν) required to match (total and central) spectra

Conclusions

- energy budget in large galaxies is dominated by CR pressure
 CRs suppress star formation and launch galactic winds
- small-scale dynamo grows magnetic fields in isolated galaxies: driven by (i) corrugated accretion shock and (ii) Kelvin-Helmholtz body modes excited by disk-halo velocity shear
- small-scale dynamo clearly identified via growth rates, saturation at $\varepsilon_B \sim \varepsilon_{\rm turb}$, power spectra, magnetic curvature statistics

Conclusions

- energy budget in large galaxies is dominated by CR pressure
 CRs suppress star formation and launch galactic winds
- small-scale dynamo grows magnetic fields in isolated galaxies: driven by (i) corrugated accretion shock and (ii) Kelvin-Helmholtz body modes excited by disk-halo velocity shear
- small-scale dynamo clearly identified via growth rates, saturation at $\varepsilon_B \sim \varepsilon_{\rm turb}$, power spectra, magnetic curvature statistics
- magnetic fields saturate close to equipartition in Milky Way centers and sub-equipartition at larger radii and in dwarfs ⇒ too simplified ISM modeling?
- global L_{FIR} L_{radio} reproduced for galaxies with saturated magnetic fields, scatter due to viewing angle and CR transport
- synchrotron absorption (low- ν) and thermal free-free emission (high- ν) required to flatten cooled radio synchrotron spectra

Steady-state modeling and cosmic rays Far-infrared-radio correlation Radio spectra

PICOGAL: From Flasma KInetics to COsmological GALaxy Formation

Steady-state modeling and cosmic ray: Far-infrared-radio correlation Radio spectra

Additional slides

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{f}_{L} = \frac{1}{c}\mathbf{j} \times \mathbf{B} = \frac{1}{4\pi} (\mathbf{\nabla} \times \mathbf{B}) \times \mathbf{B} = \frac{1}{4\pi} (\mathbf{B} \cdot \mathbf{\nabla}) \mathbf{B} - \frac{1}{8\pi} \mathbf{\nabla} \mathbf{B}^{2},$$

two terms on RHS are *not* magnetic curvature and pressure forces!

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{f}_{\mathsf{L}} = rac{1}{c} \, \mathbf{j} imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{\nabla} imes \mathbf{B}) imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{B} \cdot \mathbf{\nabla}) \, \mathbf{B} - rac{1}{8\pi} \mathbf{\nabla} \mathbf{B}^2,$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{\mathsf{L}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) B^2 - rac{1}{8\pi} oldsymbol{
abla} B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) oldsymbol{b} - rac{1}{8\pi} oldsymbol{
abla}_{\perp} B^2 \equiv oldsymbol{f}_{\mathsf{c}} + oldsymbol{f}_{\mathsf{p}}, \end{aligned}$$

where $oldsymbol{
abla}_{\perp} = (\mathbf{1} - oldsymbol{b}oldsymbol{b}) \cdot oldsymbol{
abla}$ is the perpendicular gradient

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{f}_{\mathsf{L}} = rac{1}{c} \, \mathbf{j} imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{\nabla} imes \mathbf{B}) imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{B} \cdot \mathbf{\nabla}) \, \mathbf{B} - rac{1}{8\pi} \mathbf{\nabla} \mathbf{B}^2,$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{\mathsf{L}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot
abla
ight) B^2 - rac{1}{8\pi}
abla B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} - rac{1}{8\pi}
abla_{\perp} B^2 \equiv oldsymbol{f}_{\mathsf{c}} + oldsymbol{f}_{\mathsf{p}}, \end{aligned}$$

where $\nabla_{\perp} = (\mathbf{1} - \boldsymbol{b}\boldsymbol{b}) \cdot \nabla$ is the perpendicular gradient

 \Rightarrow f_c is the magnetic curvature force and f_p is \perp mag. pressure force

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$m{f}_{L} = rac{1}{c} \, m{j} imes m{B} = rac{1}{4\pi} \left(m{
abla} imes m{B}
ight) imes m{B} = rac{1}{4\pi} \left(m{B} \cdot m{
abla}
ight) m{B} - rac{1}{8\pi} m{
abla} m{B}^{2},$$

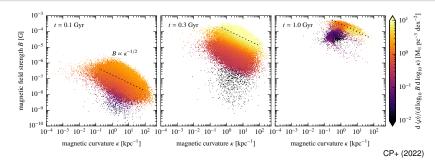
two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{oldsymbol{oldsymbol{eta}}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot
abla
ight) B^2 - rac{1}{8\pi}
abla B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} - rac{1}{8\pi}
abla_{oldsymbol{oldsymbol{b}}} B^2 \equiv oldsymbol{f}_{oldsymbol{c}} + oldsymbol{f}_{oldsymbol{p}}, \end{aligned}$$

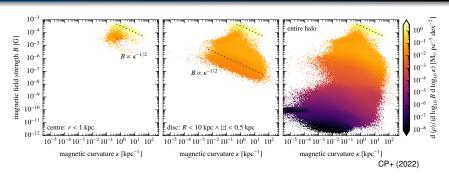
where $\nabla_{\perp} = (\mathbf{1} - \boldsymbol{b}\boldsymbol{b}) \cdot \nabla$ is the perpendicular gradient

 \Rightarrow f_c is the magnetic curvature force and f_p is \perp mag. pressure force


define a magnetic curvature:

$$oldsymbol{\kappa} \equiv (oldsymbol{b} \cdot oldsymbol{
abla}) oldsymbol{b} \cdot (oldsymbol{B} \cdot oldsymbol{
abla}) oldsymbol{B} = rac{4\pi \ oldsymbol{f}_{ ext{c}}}{B^2},$$

Correlating magnetic curvature to field strength – 1



- emergence of magnetic field and curvature in the galaxy centre
- panels show from left to right:
 - (i) exponential growth phase in the kinematic regime
 - (ii) growth of the magnetic coherence scale
 - (iii) saturation phase of the magnetic dynamo

Correlating magnetic curvature to field strength – 2

- separating different dynamo processes by spatial cuts during saturated phase
- superposition of different small-scale dynamos
- each dynamo grows at a different characteristic density or eddy turnover time

Literature for the talk

Cosmic rays, magnetic dynamo, and radio emission in galaxies:

- Pfrommer, Werhahn, Pakmor, Girichidis, Simpson, Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far infrared-radio correlation, 2022, MNRAS, 515, 4229.
- Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and non-thermal emission in simulated galaxies. I. Electron and proton spectra explain Voyager-1 data, 2021a, MNRAS 505, 3273.
- Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation, 2021b, MNRAS, 505, 3295.
- Werhahn, Pfrommer, Girichidis, Cosmic rays and non-thermal emission in simulated galaxies. III. probing cosmic ray calorimetry with radio spectra and the FIR-radio correlation, 2021c, MNRAS, 508, 4072.
- Pfrommer, Pakmor, Simpson, Springel, Simulating gamma-ray emission in star-forming galaxies, 2017, ApJL, 847, L13.
- Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on a moving mesh, 2017, MNRAS, 465, 4500.

