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Magnetic dynamo and cosmic ray winds
Far-infrared–radio correlation

Magnetic growth and saturation
Evidence for small-scale dynamo
Cosmic ray driven galactic winds

Origin and growth of magnetic fields

The general picture:
Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which
the kinetic (turbulent) energy is
converted into magnetic energy: the
mechanism relies on magnetic fields to
become stronger when the field lines are
stretched

Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions
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1. Magnetic dynamo in MHD galaxy simulations

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared–radio correlation

MHD + cosmic ray advection + diffusion:
{

1010, 1011, 3 × 1011, 1012} M⊙

Christoph Pfrommer Cosmic rays and magnetic fields in the ISM



Magnetic dynamo and cosmic ray winds
Far-infrared–radio correlation

Magnetic growth and saturation
Evidence for small-scale dynamo
Cosmic ray driven galactic winds

Time evolution of SFR and energy densities
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CP+ (2022)

cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

energy budget in disks is dominated by CR pressure

magnetic growth faster in Milky Way (MW) galaxies than in
dwarfs and saturate at equipartition in MWs but not in dwarfs
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Comparing turbulent and magnetic energy densities
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magnetic energy saturates at the turbulent energy,
εB ∼ εturb = ρδv2/2 (averaged over the disk)

saturation level similar for CR models with diffusion (left) and
without (right)

rotation dominates: εrot = ρv2
φ/2 ∼ 100εturb
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Identifying different growth phases
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CP+ (2022)

1st phase: adiabatic growth with B ∝ ρ2/3 (isotropic collapse)

2nd phase: additional growth at high density ρ with small
dynamical times tdyn ∼ (Gρ)−1/2

3rd phase: growth migrates to lower ρ on larger scales ∝ ρ−1/3
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Studying growth rate with numerical resolution
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CP+ (2022)

faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N ≳ 106

1st phase: adiabatic growth (independent of resolution)

2nd phase: small-scale dynamo with resolution-dep. growth rate
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L
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Exponential field growth in kinematic regime
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CP+ (2022)

corrugated accretion shock dissipates kinetic energy from
gravitational infall, injects vorticity that decays into turbulence,
and drives a small-scale dynamo
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Dynamo saturation on small scales while λB increases
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CP+ (2022)

supersonic velocity shear between the rotationally supported
cool disk and hotter CGM: excitation of Kelvin-Helmholtz body
modes that interact and drive a small-scale dynamo
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Kinetic and magnetic power spectra
Fluctuating small-scale dynamo in different analysis regions
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EB(k) superposition of form factor and turbulent spectrum

pure turbulent spectrum outside steep central B profile
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2. Cosmic ray driven winds in galaxy simulations

CP, Pakmor, Simpson, Springel (2017)
Simulating gamma-ray emission in star-forming galaxies

MHD + CR advection + anisotropic diffusion,
{

1010,1011,1012
}

M⊙
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Simulation of Milky Way-like galaxy, t = 0.5 Gyr
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Simulation of Milky Way-like galaxy, t = 1.0 Gyr
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Simulation of Milky Way-like galaxy, t = 1.0 Gyr
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Cosmic ray driven wind: mechanism

CR streaming in 3D simulations: Uhlig, CP+ (2012), Ruszkowski+ (2017)
CR diffusion in 3D simulations: Jubelgas+ (2008), Booth+ (2013), Hanasz+ (2013),
Salem & Bryan (2014), Pakmor, CP+ (2016), Simpson+ (2016), Girichidis+ (2016),
Dubois+ (2016), CP+ (2017), Jacob+ (2018), . . .
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CR-driven winds: dependence on halo mass

Jacob+ (2018)
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CR-driven winds: suppression of star formation

Jacob+ (2018)
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Steady-state modeling and cosmic rays
Far-infrared–radio correlation
Radio spectra

Non-thermal emission in star-forming galaxies

previous theoretical modeling:

one-zone steady-state models
(Lacki+ 2010, 2011, Yoast-Hull+ 2013)

1D transport models (Heesen+ 2016)

static Milky Way models
(Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

run MHD-CR simulations of galaxies at
different halos masses and SFRs
model steady-state CRs: protons,
primary and secondary electrons
model all radiative processes from radio
to gamma rays
gamma rays: understand pion decay
and leptonic inverse Compton emission
radio: understand magnetic dynamo,
primary and secondary electrons

Bell (2003)

Ajello+ (2020)
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Steady-state modeling and cosmic rays
Far-infrared–radio correlation
Radio spectra

Steady-state cosmic ray spectra
solve the steady-state equation in every cell for each CR population:
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primaries (re-normalized using Kep = 0.02)
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steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows
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electrons: Coulomb, bremsstr., IC, synchrotron and escape losses

primaries (re-normalized using Kep = 0.02)
secondaries

steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows
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From a starburst galaxy to a Milky Way analogy
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Comparing CR spectra to Voyager and AMS-02 data
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Comparing the positron fraction to AMS-02 data
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Comparing the positron fraction to AMS-02 data

e  + e  source: pulsars or dark matter?+     −
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Galaxy simulation with cosmic ray-driven wind
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Simulated radio emission: 1012 M⊙ halo
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Simulated radio emission: 1011 M⊙ halo
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Far infra-red – radio correlation
Universal conversion: star formation → cosmic rays → radio
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Radio-ray spectra of starburst galaxies
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synchrotron spectra too steep (cooling + diffusion losses)

thermal free-free emission (high-ν) and synchrotron absorption
(low-ν) required to match (total and central) spectra
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Radio-ray spectra of starburst galaxies
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Kapińska+17, central

102

103

104

105

106

Fl
ux

de
ns

ity
[m

Jy
]

M82

synchr.
synchr., absorbed
thermal ff-em.

Adebahr+13, total
Klein+ 07, total

10−1 100 101 102

ν[GHz]

101

102

103

104

105

Fl
ux

de
ns

ity
[m

Jy
]

Adebahr+13, central
Adebahr+13, halo

Werhahn, CP+ (2021c)

synchrotron spectra too steep (cooling + diffusion losses)

synchrotron absorption (low-ν) and thermal free-free emission
(high-ν)

required to match (total and central) spectra
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Conclusions

energy budget in large galaxies is dominated by CR pressure
⇒ CRs suppress star formation and launch galactic winds

small-scale dynamo grows magnetic fields in isolated galaxies:
driven by (i) corrugated accretion shock and (ii) Kelvin-Helmholtz
body modes excited by disk-halo velocity shear

small-scale dynamo clearly identified via growth rates, saturation
at εB ∼ εturb, power spectra, magnetic curvature statistics

magnetic fields saturate close to equipartition in Milky Way
centers and sub-equipartition at larger radii and in dwarfs
⇒ too simplified ISM modeling?

global LFIR − Lradio reproduced for galaxies with saturated
magnetic fields, scatter due to viewing angle and CR transport

synchrotron absorption (low-ν) and thermal free-free emission
(high-ν) required to flatten cooled radio synchrotron spectra
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Lorentz force: magnetic curvature and pressure
Lorentz force density, expressed in terms of B in the MHD
approximation:

f L =
1
c

j × B =
1

4π
(∇× B)× B =

1
4π

(B ·∇)B − 1
8π

∇B2,

two terms on RHS are not magnetic curvature and pressure forces!

define B = Bb, where b is the unit vector along b and rewrite f L:

f L =
B2

4π
(b ·∇)b +

1
8π

b(b ·∇)B2 − 1
8π

∇B2

=
B2

4π
(b ·∇)b − 1

8π
∇⊥B2 ≡ f c + f p,

where ∇⊥ = (1 − bb) ·∇ is the perpendicular gradient

⇒ f c is the magnetic curvature force and f p is ⊥ mag. pressure force
define a magnetic curvature:

κ ≡ (b ·∇)b =
(1 − bb) · (B ·∇)B

B2 =
4π f c

B2 ,
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Correlating magnetic curvature to field strength – 1
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CP+ (2022)

emergence of magnetic field and curvature in the galaxy centre

panels show from left to right:

(i) exponential growth phase in the kinematic regime
(ii) growth of the magnetic coherence scale
(iii) saturation phase of the magnetic dynamo
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Correlating magnetic curvature to field strength – 2
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separating different dynamo processes by spatial cuts during
saturated phase

superposition of different small-scale dynamos

each dynamo grows at a different characteristic density or eddy
turnover time
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