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Feedback

feedback n -s often attrib:
1 the return to the input of a part of the output of a machine,

system, or process
2 the partial reversion of the effects of a given process to its

source or to a preceding stage so as to reinforce or modify
this process

3 the solution of all problems in galaxy formation
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Feedback by galactic winds

supernova Cassiopeia A
X-ray: NASA/CXC/SAO; Optical: NASA/STScI;
Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.

galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

star formation and supernovae
drive gas out of galaxies by
galactic super winds

critical for understanding the
physics of galaxy formation
→ may explain puzzle of low
star conversion efficiency in
dwarf galaxies
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Multiphase gas in winds

Kinematic signatures of M82 wind con-
sistent with a hot outflow bounded by a
cone of atomic and molecular gas:

hot 106-107 K ionized gas is
traced by X-rays (Strickland+ 2004, 2007)

warm 104 K atomic gas is traced
by HI and Hα (Yun+ 1994, Lee+ 2009)

cold 10-20 K molecular gas is
traced by CO (Leroy+ 2015)

How can we accelerate a warm cloud by a hot wind?

wind ram pressure aided by magnetic tension acting on the cloud

cosmic ray (CR) pressure gradient applying work on the cloud

thermal instability of hot wind that cools & transfers momentum

Christoph Pfrommer Multi-phase gas in and around galaxies



Galaxy formation
Cosmic ray transport

Cold cloud in a hot wind

Puzzles in galaxy formation
Multiphase gas in galaxies
Cosmological simulations

Multiphase gas in winds

Kinematic signatures of M82 wind con-
sistent with a hot outflow bounded by a
cone of atomic and molecular gas:

hot 106-107 K ionized gas is
traced by X-rays (Strickland+ 2004, 2007)

warm 104 K atomic gas is traced
by HI and Hα (Yun+ 1994, Lee+ 2009)

cold 10-20 K molecular gas is
traced by CO (Leroy+ 2015)

How can we accelerate a warm cloud by a hot wind?

wind ram pressure aided by magnetic tension acting on the cloud

cosmic ray (CR) pressure gradient applying work on the cloud

thermal instability of hot wind that cools & transfers momentum

Christoph Pfrommer Multi-phase gas in and around galaxies



Galaxy formation
Cosmic ray transport

Cold cloud in a hot wind

Puzzles in galaxy formation
Multiphase gas in galaxies
Cosmological simulations

Cosmological galaxy formation
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Cosmic rays in cosmological galaxy simulations

Auriga galaxy formation model
primordial and metal line cooling

sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM

cold dense gas stabilized by pressurized ISM

thermal and kinetic energy from supernovae modeled
by isotropic wind – launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10−10 G seeded at z = 128

Simulation suite (Buck+ 2020)

2 galaxies, baryons with 5 × 104 M� ∼ 5 × 106

resolution elements in halo, 2 × 106 star particles

4 different CR models for each galaxy:
no CRs
CR advection
+ CR anisotropic diffusion
+ CR Alfvén wave cooling

The Auriga Project Grand+ (2017)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport changes disk sizes but not the stellar mass

50
 k

pc

Buck, CP, Pakmor, Grand, Springel (2020)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport modifies the circum-galactic medium
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Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV cosmic ray:

rcr =
p⊥

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)
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Interactions of CRs and magnetic fields

B

Cosmic ray

sketch: Jacob

gyro resonance: ω − k‖v‖ = nΩ

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

CRs scatter on magnetic fields→ isotropization of CR momenta
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CR streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ va

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling→ CR stream with waves
strong wave damping: less waves to scatter→ CR diffusion prevails
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Modes of CR propagation
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Modes of CR propagation

advection diffusion streaming
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Analogies of CR and radiation hydrodynamics
CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
• tangled B, CR diffusion diffusive transport

strong scattering in clumpy medium

• resolved B, CR streaming Thomson scattering (τ � 1)
strong scattering with va → advection with v

• weak scattering CR streaming flux-limited diffusion/
and diffusion M1 closure (τ & 1)

• no scattering CR propagation vacuum propagation
with c

Jiang & Oh (2018), Thomas & CP (2019)

but: CR hydrodynamics is charged RHD
→ take gyrotropic average and account for anisotropic transport
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CR vs. radiation hydrodynamics
capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)

derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

lab-frame equ’s for CR energy and momentum density, εcr and fcr/c2

∂εcr

∂t
+∇ · fcr = −w± · bb

3κ±
· [fcr − w±(εcr + Pcr)] − v ·gLorentz+Sε

1
c2

∂fcr

∂t
+∇ · Pcr = − bb

3κ±
· [fcr − w±(εcr + Pcr)] − gLorentz +Sf

Alfvén wave velocity in lab frame: w± = v ± va,
CR scattering frequency ν̄± = c2/(3κ±)

lab-frame equ’s for radiation energy and momentum density, ε and f/c2

(Mihalas & Mihalas, 1984, Lowrie+ 1999):

∂ε

∂t
+∇ · f = −σsv · [f − v · (ε1 + P)] + Sa

1
c2

∂f
∂t

+∇ · P = −σs [f − v · (ε1 + P)] + Sav

problem: CR lab-frame equation requires resolving rapid gyrokinetics!
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lab-frame equ’s for radiation energy and momentum density, ε and f/c2
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∂ε

∂t
+∇ · f = −σsv · [f − v · (ε1 + P)] + Sa

1
c2

∂f
∂t

+∇ · P = −σs [f − v · (ε1 + P)] + Sav

solution: transform in comoving frame and project out gyrokinetics!
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Alfvén-wave regulated CR transport

comoving equ’s for CR energy and momentum density (along B), εcr

and fcr/c2, and Alfvén-wave energy densities εa,± (Thomas & CP 2019)

∂εcr

∂t
+∇ · [v(εcr + Pcr) + bfcr] = v · ∇Pcr

− va

3κ+
[fcr − va(εcr + Pcr)] +

va

3κ−
[fcr + va(εcr + Pcr)] ,

∂fcr/c2

∂t
+∇ ·

(
v fcr/c2

)
+ b · ∇Pcr = −(b · ∇v) · (bfcr/c2)

− 1
3κ+

[fcr − va(εcr + Pcr)] − 1
3κ−

[fcr + va(εcr + Pcr)] ,

∂εa,±
∂t

+∇ · [v(εa,± + Pa,±) ± vabεa,±] = v · ∇Pa,±

± va

3κ±
[fcr ∓ va(εcr + Pcr)] − Sa,±.
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Non-equilibrium CR streaming and diffusion
Coupling the evolution of CR and Alfvén wave energy densities

Thomas & CP (2019)
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Non-equilibrium CR streaming and diffusion
Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Anisotropic CR streaming and diffusion – AREPO
CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

CR streaming and diffusion
along magnetic field lines in
the self-confinement picture

moment expansion similar to
radiation hydrodynamics

accounts for kinetic physics:
non-linear Landau damping,
gyro-resonant instability, . . .

Galilean invariant and causal
transport

energy and momentum
conserving Thomas, CP, Pakmor (2021)
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CR flux accelerates a warm, dense cloud

vA = B0√
4πρ

Thomas, CP, Pakmor (2021), see also Wiener+ (2017, 2019)
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CR flux accelerates a warm, dense cloud
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MeerKAT image of the Galactic Center Haywood+ (Nature, 2019)



  

MeerKAT image of the Galactic Center Haywood+ (Nature, 2019)
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Radio synchrotron harps: the model

shock acceleration scenario
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shock acceleration scenario
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Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)
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Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR diffusion
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Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR streaming and diffusion
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Interaction of a cold cloud with a hot wind
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Magnetic field configurations

Sparre, CP, Ehlert (2020)
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A magnetic draping layer protects against instabilities
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Conclusions

A turbulent B field extends cloud’s lifetime

KHI instability shatters a small cloud into small pieces that mix
with and dissolve into the hot wind

magnetic field protects against instabilities, increases survival
time by 30%, but does not halter the cloud’s destruction (Sparre, CP,

Ehlert 2020)
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Impact of magnetic fields on cloud interaction
Cloud growth and destruction
Conclusions

A uniform B field initially accelerates cloud more

KHI instability shatters a small cloud into small pieces that mix
with and dissolve into the hot wind

magnetic field protects against instabilities and increases
survival time by 30%, but does not halter the cloud’s destruction
(Sparre, CP, Ehlert 2020)

Christoph Pfrommer Multi-phase gas in and around galaxies



Galaxy formation
Cosmic ray transport

Cold cloud in a hot wind

Impact of magnetic fields on cloud interaction
Cloud growth and destruction
Conclusions

The growth regime
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ram-pressure stripped gas from a large
cloud mixes with the hot wind to
intermediate temperatures

thermal instability causes further cooling
and net accretion of hot gas to the
cold tail

momentum transfer from hot wind to cooled accreted
material implies fast outflow of cold/warm phase:
transformational understanding of galactic winds!
(Armillotta+ 2017, Gronke & Oh 2018, 2019, Li+ 2019, Sparre+ 2020, Kanjilal+ 2020)
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hot-wind cooling time sets transition radius and not the
mixed-phase cooling time⇒ cloud growth criterion (Sparre+ 2020):

tcool,wind

tcc
< 10f (M,Rcloud,nwind, vwind)
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Tracer analysis reveals physics of transition radius
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rate-limiting step in cooling process is the initial decline from
107 K to 106.5 K (Sparre, CP, Ehlert 2020)

initial decline of Twind is caused by mixing or compressible
fluctuations⇒ scatter in tcool at fixed temperature
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Conclusions

CR transport in multiphase plasmas:

novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

synchrotron harps: CR streaming dominates over diffusion

CR bottleneck effect causes acceleration of warm cloud

Interaction of a cold cloud with a hot wind:

magnetic field protects against instabilities and increases the
survival time

destruction regime: transport of dense gas to several kpcs hard
to explain because cloud shatters and dissolves in the wind

growth regime: momentum transfer from hot wind to the cooling
and accreting material implies fast outflow of cold/warm phase
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