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Feedback

feedback n -s often attrib:

@ the return to the input of a part of the output of a machine,
system, or process
@ the partial reversion of the effects of a given process to its

source or to a preceding stage so as to reinforce or modify
this process
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Feedback

feedback n -s often attrib:

@ the return to the input of a part of the output of a machine,
system, or process

@ the partial reversion of the effects of a given process to its
source or to a preceding stage so as to reinforce or modify
this process

© the solution of all problems in galaxy formation
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Galaxy formation Puzzles in galaxy formation
Multiphase gas in galaxies

Cosmological simulations

Feedback by galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

supernova Cassiopeia A

X-ray: NASA/CXC/SAQ; Optical: NASA/STScl;
Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.
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Cosmological simulations

Feedback by galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA
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Cosmological simulations

Feedback by galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

@ critical for understanding the
physics of galaxy formation
— may explain puzzle of low

super wind in M82 star conversion efficiency in

NASA/JPL-Caltech/STScl/CXC/UofA dwarf galaxies E
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Feedback by galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

@ critical for understanding the
physics of galaxy formation
— may explain puzzle of low
B star conversion efficiency in
e oo 1. LT dwarf galaxies E

© Sydney Harris
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Multiphase gas in winds

Kinematic signatures of M82 wind con-
sistent with a hot outflow bounded by a
cone of atomic and molecular gas:

@ hot 108-107 K ionized gas is
traced by X-rays (strickiand+ 2004, 2007)

° is traced
by HI and Ha (vun+ 1994, Lee+ 2009)

@ cold 10-20 K molecular gas is
traced by CO (Leroy+ 2015)
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Multiphase gas in winds

Kinematic signatures of M82 wind con-
sistent with a hot outflow bounded by a
cone of atomic and molecular gas:

@ hot 108-107 K ionized gas is
traced by X-rays (strickiand+ 2004, 2007)

° is traced
by HI and Ha (vun+ 1994, Lee+ 2009)

@ cold 10-20 K molecular gas is
traced by CO (Leroy+ 2015)

How can we accelerate a warm cloud by a hot wind?
@ wind ram pressure aided by magnetic tension acting on the cloud
@ cosmic ray (CR) pressure gradient applying work on the cloud F

@ thermal instability of hot wind that cools & transfers momentum AP

Christoph Pfrommer Multi-phase gas in and around galaxies
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Cosmological galaxy formation
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Multiphase gas in ga es
Cosmological simulations

Cosmic rays in cosmological galaxy simulations

Auriga galaxy formation model
primordial and metal line cooling
sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM
cold dense gas stabilized by pressurized ISM

thermal and kinetic energy from supernovae modeled
by isotropic wind — launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10~ 1% G seeded at z = 128

The Auriga Project Grand+ (2017, AIP

around galaxies
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Multiphase gas in galaxies
Cosmological simulations

Cosmic rays in cosmological galaxy simulations

Auriga galaxy formation model
primordial and metal line cooling
sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM
cold dense gas stabilized by pressurized ISM

thermal and kinetic energy from supernovae modeled
by isotropic wind — launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10~ 1% G seeded at z = 128

Simulation suite (Buck+ 2020)

@ 2 galaxies, baryons with 5 x 10* Mg ~ 5 x 10°
resolution elements in halo, 2 x 10° star particles

@ 4 different CR models for each galaxy: -
@ noCRs \"' N
@ CR advection
@ -+ CR anisotropic diffusion —_—
@ +CR Alfvén wave cooling The Auriga Project Grand+ (2017, AIP

around galaxies
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Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport changes disk sizes but not the stellar mass
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Buck, CP, Pakmor, Grand, Springel (2020) AIP
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Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport modifies the circum-galactic medium
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@ Cosmic ray hydrodynamics
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics

Radio synchrotron harps

Cosmic ray transport: an extreme multi-scale problem

| @~
O e

Milky Way-like galaxy: gyro-orbit of GeV cosmic ray:
1
rga|~104pc rcr:e'[;iGNm*GpCNZAU

= need to develop a fluid theory for a collisionless,
non-Maxwellian component! _E

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019) e

Christoph Pfrommer Multi-phase gas in and around galaxies
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Radio synchrotron harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob

@ gyro resonance: w — k“ VH = nQ2
Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency ~ —.

AIP

Christoph Pfrommer Multi-phase gas in and around galaxies



Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics

Radio synchrotron harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob
@ gyro resonance: w — k“ VH = nQ2
Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency ~ —.

@ CRs scatter on magnetic fields — isotropization of CR momenta _&
AIP
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CR streaming and diffusion

@ CR Streaming lnstablllty' Kulsrud & Pearce 1969

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas
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CR streaming and diffusion

@ CR Streaming lnstablllty' Kulsrud & Pearce 1969

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

CR streaming and diffusion

@ CR Streaming lnstablllty' Kulsrud & Pearce 1969

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas
— CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling — CR stream with waves E

strong wave damping: less waves to scatter — CR diffusion prevails
AIP
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Modes of CR propagation

advection
A0
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Thomas, CP, EnBlin (2020) E
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Modes of CR propagation

advection diffusion
“OAA
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Thomas, CP, EnBlin (2020) E
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Cosmic ray transport

Modes of CR propagation

Introduction and motivation
Cosmic ray hydrodynamics
Radio synchrotron harps

advection diffusion streaming o
— T - N .
0.8
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0.4
0.2
—— — — 0.0
Vadvl 2kt Vat

Christoph Pfrommer

Thomas, CP, EnBlin (2020)

Multi-phase gas in and around galaxies
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
e tangled B, CR diffusion diffusive transport
strong scattering in clumpy medium
e resolved B, CR streaming Thomson scattering (7 > 1)
strong scattering | with v, — advection with v
e weak scattering | CR streaming flux-limited diffusion/
and diffusion M1 closure (7 = 1)
e no scattering CR propagation | vacuum propagation
with ¢

Jiang & Oh (2018), Thomas & CP (2019)

a
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Introduction and motivation
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Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
e tangled B, CR diffusion diffusive transport
strong scattering in clumpy medium
e resolved B, CR streaming Thomson scattering (7 > 1)
strong scattering | with v, — advection with v
e weak scattering | CR streaming flux-limited diffusion/
and diffusion M1 closure (7 = 1)
e no scattering CR propagation | vacuum propagation
with ¢

Jiang & Oh (2018), Thomas & CP (2019)

but: CR hydrodynamics is charged RHD F

— take gyrotropic average and account for anisotropic transport =
A

Christoph Pfrommer Multi-phase gas in and around galaxies
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CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
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CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, e¢ and fy/c?
afcr bb

at + V . fcr =—Wi- @ * [fcr - Wi(gcl’ + PCF)] -V gLorentZ+SE
1 0of; bb
?T‘;r 4+ V. Py =— @ . [fcr - Wi(gcr + PCY)] — Giorentz +Ss

Alfvén wave velocity in lab frame: wi = v + v,,
CR scattering frequency 7+ = ¢®/(3x+)

=
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Cosmic ray transport Cosmic ray hydrodynamics
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CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, e¢ and fy/c?

afcr +V-fcr = —w, - bb

ot % * [fo - Wi(&cr + PCT)] -V gLorentz+SE
1 of; bb
?T;r +V Py =-— @ . [fcr - Wi(gcr + Pcr)] — G orentz + S5

Alfvén wave velocity in lab frame: wi = v + v,,
CR scattering frequency 7+ = ¢®/(3x+)
@ lab-frame equ'’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas, 1984, Lowrie+ 1999):
%Jrv-f — oV [f—V-(1+P)| + S
10f P= f 1+P S.
Ea‘i’v = —O0s [*V'(é + )]+ aV

=

AIP
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, e¢ and fy/c?

0¢, bb

a;r +V fy =—wy- @ . [fcr - Wi(gcl' + PCT)] -V gLorentz+SE
1 of. bb
?T;r +V :Pyg=— @ . [fcr - Wi(&?l' + PCY)] — Giorentz +S¢

Alfvén wave velocity in lab frame: wi = v + v,,
CR scattering frequency 7+ = ¢®/(3x+)
@ lab-frame equ'’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas, 1984, Lowrie+ 1999):
%Jrv-f — oV [f—V-(1+P)| + S
10f P= f 1+P S.
Ea‘i’v = —O0s [*V'(é + )]+ aV

=

@ problem: CR lab-frame equation requires resolving rapid gyrokinetics! A"

Christoph Pfrommer
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, e¢ and fy/c?

afcr +V-fcr = —w, - bb

ot % * [fo - Wi(&cr + PCT)] -V gLorentz+SE
1 of; bb
?T;r +V Py =-— @ . [fcr - Wi(gcr + Pcr)] — G orentz + S5

Alfvén wave velocity in lab frame: wi = v + v,,
CR scattering frequency 7+ = ¢®/(3x+)

@ lab-frame equ'’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas, 1984, Lowrie+ 1999):

%Jrv-f — oV [f—V-(1+P)| + S
1 of A
o TV P=-0s [f-v:(1+P)]+Sv E
@ solution: transform in comoving frame and project out gyrokinetics! AIP

Christoph Pfrommer
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

Alfvén-wave regulated CR transport

@ comoving equ’s for CR energy and momentum density (along B), qr
and fy/c?, and Alfvén-wave energy densities £, + (Thomas & CP 2019)

Ocer
ot

+ V [V(Ecr + Pcr) + bfcr] =V- VPcr

[fcr - Va(acr + Pcr)] + [fcr + Va(gcr + Pcr)]

e/ C?
Cé/fc + V. (vfcr/cz) +b-VPy=—(b-Vv)-(bl/c?)
1
_ 3 [fcr — Va(c‘:cr + Pcr)] [fcr + Vd(&‘cr + Pcr)]
asaaii + V- [V(eax + Poz) £ ibex] = v- VP
Va A
+ 3rg [fcr + Va(fcr + Pcr)] - Sa,:i:- E
AIP
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Introduction and motivation
Cosmic ray hydrodynamics
Radio synchrotron harps

Non-equilibrium CR streaming and diffusion

Coupling the evolution of CR and Alfvén wave energy densities

Cosmic ray transport
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Thomas & CP (2019)
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

Non-equilibrium CR streaming and diffusion

Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Introduction and motivation
Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

Anisotropic CR streaming and diffusion — AREPO

CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

@ CR streaming and diffusion oo
along magnetic field lines in
the self-confinement picture

—0.50

@ moment expansion similar to
radiation hydrodynamics

—0.25

@ accounts for kinetic physics: o
non-linear Landau damping, 0.25
gyro-resonant instability, . .. 0.50

@ Galilean invariant and causal 0.75
transport 1.00

—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

@ energy and momentum
Conserving Thomas, CP, Pakmor (2021)

Multi-phase gas in and around galaxies
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Introduction and motivation

Cosmic ray transport Cosmic ray hydrodynamics

Radio synchrotron harps

CR flux accelerates a warm, dense cloud
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Thomas, CP, Pakmor (2021), see also Wiener+ (2017, 2019)
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CR flux accelerates a warm, dense cloud

t = 58.6 Myr
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\/7 Thomas, CP, Pakmor (2021), see also Wiener+ (2017, 2019)  AIP
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MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)
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MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)
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Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

Radio synchrotron harps: the model

shock acceleration scenario

CRs
A

termination shock

~
contact layer

CRs
I's bow shock

Thomas, CP, EnBlin (2020)
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Radio synchrotron harps: the model

shock acceleration scenario magnetic reconnection at pulsar wind
T m CRs T s
ISM ~~ A M ~ CRs
-
- 77

\
W1
.
termination shock termination shock
~ | \\ -
contact layer
CRs CRs \ contact layer
I's I's

bow shock bow shock

Thomas, CP, EnBlin (2020) F

AIP
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Cosmic ray transport Cosmic ray hydrodynamics
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Radio synchrotron harps: the model

shock acceleration scenario CR diffusion vs. streaming + diffusion
— B CRs x10~"2
60
IsM T~ A __ 8qdiffusion
— 261 50
S,
- 20 N
224 40 E
B =
Z 8 {streaming + g
< diffusion 30 2
= 01
termination shock 0
. g
contact layer o
CRs 2}
I's bow shock ©

Thomas, CP, EnBlin (2020)
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Cosmic ray transport Cosmic ray hydrodynamics
Radio synchrotron harps

Radio synchrotron harps: testing CR propagation

=

Haywood+ (Nature, 2019) ALP
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Radio synchrotron harps: testing CR propagation

lateral radio profiles

4.0 == background e e
signal

3.5 1

3.0

—0.045 —0.030 —0.015  0.000 0.015 0.030

arc length [°] E
Thi P, EnBlin (202
Haywood+ (Nature, 2019) omas, GP, EnBlin (2020) e—

around galaxies
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Radio synchrotron harps: testing CR propagation

CR diffusion

4.0 == background | pe

simulation

— signal

T T

—0.045 —0.030 —0.015  0.000 0.015 0.030

arc length [°] g
Thi P, EnBlin (202
Haywood+ (Nature, 2019) omas, GP, EnBlin (2020) e—
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Radio synchrotron harps: testing CR propagation

CR streaming and diffusion

4.01 = background T
simulation
3.5 1 .
— signal
3.0

*().‘Ur’ia’) —().‘()30 —(),‘(115 0.000 0.015 0.030
arc length [°] E
Thomas, CP, EnBlin (2020)

Haywood+ (Nature, 2019)
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Impact of magnetic fields on cloud interaction
Cloud growth and destruction
Cold cloud in a hot wind Conclusions

Outline

Q Cold cloud in a hot wind
@ Impact of magnetic fields cloud interaction
@ Cloud growth and destruction
@ Conclusions

Christoph Pfrommer Multi-phase gas in and around galaxies
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Impact of magnetic fields on cloud interaction
Cloud growth and destruction
Cold cloud in a hot wind Conclusions

Interaction of a cold cloud with a hot wind

Interaction of a cold cloud with a hot wind: the regimes of cloud
growth and destruction and the impact of magnetic fields

Martin Sparre!>*, Christoph Pfrommer?! and Kristian Ehlert?

Unstitut fiir Physik und As ie, Universitdt Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Golm, Germany
2Leibniz-Institut fiir Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
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Magnetic field configurations
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Magnetic field alters dynamics of cloud shattering
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Magnetic field alters dynamics of cloud shattering
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Magnetic field alters dynamics of cloud shattering
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A magnetic draping layer protects against instabilities
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A turbulent B field extends cloud’s lifetime

Mcloud(f)/Mclnud(f = 0)
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A uniform B field initially accelerates cloud more
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@ KHI instability shatters a small cloud into small pieces that mix
with and dissolve into the hot wind

@ magnetic field protects against instabilities and increases E
survival time by 30%, but does not halter the cloud’s destruction -

(Sparre, CP, Ehlert 2020)
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The growth regime

x=100,M =15

@ ram-pressure stripped gas from a large
cloud mixes with the hot wind to
intermediate temperatures

@ thermal instability causes further cooling
and net accretion of hot gas to the
3 ; it s cold tail

Maioua(t)/ Metoua(t = 0)

@ momentum transfer from hot wind to cooled accreted
material implies fast outflow of cold/warm phase:
transformational understanding of galactic winds!
(Armillotta+ 2017, Gronke & Oh 2018, 2019, Li+ 2019, Sparre+ 2020, Kanjilal+ 2020)
I
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The growth regime
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@ hot-wind cooling time sets transition radius and not the
mixed-phase cooling time =- cloud growth criterion (sparre+ 2020):
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Tracer analysis reveals physics of transition radius

X = 1000, Rgoud = 1.9 x 10* pc, M = 1.5

3.5+ ‘ ‘ ‘
9 10 11 12
t/tCC

@ rate-limiting step in cooling process is the initial decline from
107 K to 108-3 K (sparre, CP, Enlert 2020)
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Tracer analysis reveals physics of transition radius

X = 1000, Rgoud = 1.9 x 10* pc, M = 1.5
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@ rate-limiting step in cooling process is the initial decline from
107 K to 108-3 K (sparre, CP, Enlert 2020)

. ) . . - - - _\
@ initial decline of Tinq is caused by mixing or compressible E
fluctuations = scatter in t.oo at fixed temperature ALP
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Conclusions

CR transport in multiphase plasmas:

@ novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

@ synchrotron harps:

@ CR bottleneck effect causes acceleration of warm cloud

=

AIP
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Conclusions

CR transport in multiphase plasmas:

@ novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

@ synchrotron harps:
@ CR bottleneck effect causes acceleration of warm cloud

Interaction of a cold cloud with a hot wind:

@ magnetic field protects against instabilities and increases the
survival time

@ destruction regime: transport of dense gas to several kpcs hard
to explain because cloud shatters and dissolves in the wind

@ growth regime: momentum transfer from hot wind to the cooling
and accreting material implies fast outflow of cold/warm phase  —,;p
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