Magnetic dynamo in galaxies and the origin of the far-infrared-radio correlation

Christoph Pfrommer

in collaboration with

M. Werhahn¹, R. Pakmor², P. Girichidis³, C. Simpson⁴

AIP Potsdam, ²MPA Garching, ³U of Heidelberg, ⁴U of Chicago

Cosmic Interacting Matters Workshop: cosmic ray transport and magnetic fields in the ISM and the CGM, Bochum, Oct 2022

(□▶ ◀♬▶ ◀臺▶ ★ 를 ∽ ♡< ♡

Outline

- Galactic magnetic dynamos
 - Magnetic growth and saturation
 - Identifying main growth phases
 - Evidence for small-scale dynamo
- Far-infrared-radio correlation
 - Introduction and setup
 - Global relation
 - Local relation

Origin and growth of magnetic fields

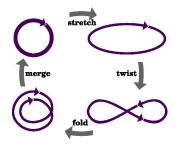
The general picture:

 Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery

Origin and growth of magnetic fields

The general picture:

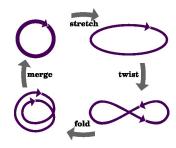
- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating)
 dynamo is an MHD process, in which
 the kinetic (turbulent) energy is
 converted into magnetic energy: the
 mechanism relies on magnetic fields to
 become stronger when the field lines are
 stretched



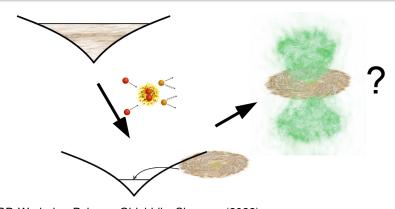
Origin and growth of magnetic fields

The general picture:

- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating) dynamo is an MHD process, in which the kinetic (turbulent) energy is converted into magnetic energy: the mechanism relies on magnetic fields to become stronger when the field lines are stretched
- Saturation. Field growth stops at a sizeable fraction of the turbulent energy when magnetic forces become strong enough to resist the stretching and folding motions

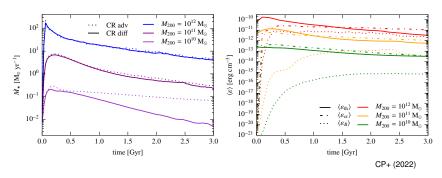


MHD-CR galaxy simulations



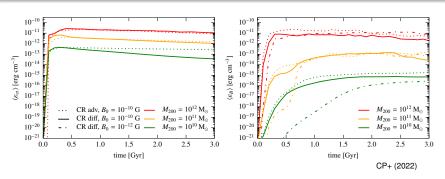
CP, Werhahn, Pakmor, Girichidis, Simpson (2022) Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far-infrared-radio correlation

Time evolution of SFR and energy densities



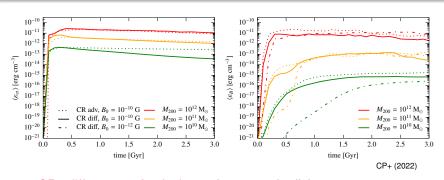
- cosmic ray (CR) pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic growth faster in Milky Way galaxies than in dwarfs

Time evolution of CR and magnetic energy densities



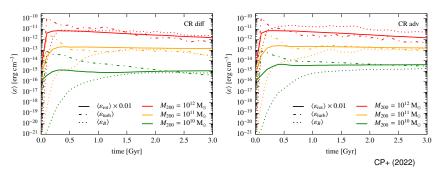
- CRs diffuse out of galaxies \Rightarrow lowers ε_{cr} in disk
- CR diffusion slows magnetic field growth \Rightarrow lowers ε_B
- both effects decrease synchrotron emissivity
- magnetic field reaches saturation after initial growth phase

Time evolution of CR and magnetic energy densities

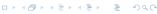


- CRs diffuse out of galaxies \Rightarrow lowers ε_{cr} in disk
- CR diffusion slows magnetic field growth \Rightarrow lowers ε_B
- both effects decrease synchrotron emissivity
- magnetic field reaches saturation after initial growth phase
 study saturation stage!

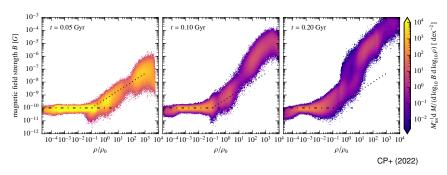
Comparing turbulent and magnetic energy densities



- magnetic energy saturates at the turbulent energy, $\varepsilon_B \sim \varepsilon_{\text{turb}} = \rho \delta v^2 / 2$ (averaged over the disk)
- saturation level similar for CR models with diffusion (left) and without (right)

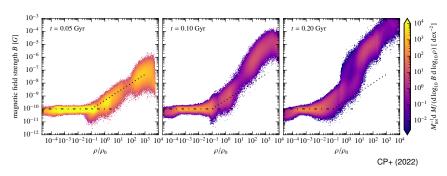


Identifying different growth phases



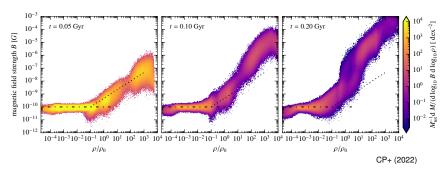
• 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)

Identifying different growth phases



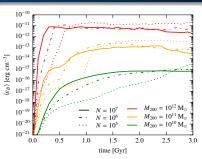
- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$

Identifying different growth phases



- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$
- 3rd phase: growth migrates to lower ρ on larger scales $\propto \rho^{-1/3}$

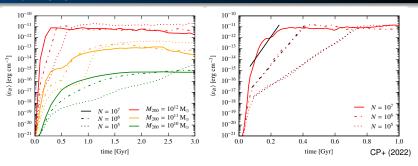
Studying growth rate with numerical resolution



CP+ (2022)

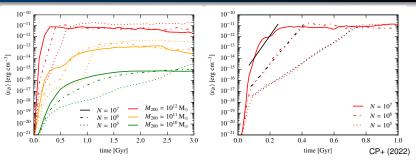
• faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$

Studying growth rate with numerical resolution



- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$
- 1st phase: adiabatic growth (independent of resolution)

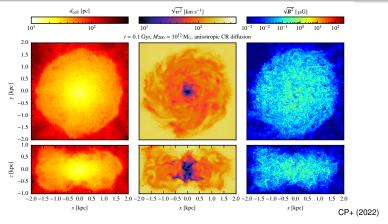
Studying growth rate with numerical resolution



- faster magnetic growth in higher resolution simulations and *larger halos*, numerical convergence for $N \ge 10^6$
- 1st phase: adiabatic growth (independent of resolution)
- 2nd phase: small-scale dynamo with resolution-dep. growth rate

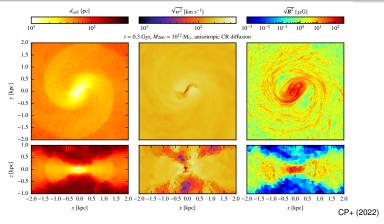
$$\Gamma = \frac{\mathcal{V}}{\mathcal{L}} \, \mathsf{Re}_{\mathsf{num}}^{1/2}, \quad \mathsf{Re}_{\mathsf{num}} = \frac{\mathcal{L}\mathcal{V}}{\nu_{\mathsf{num}}} = \frac{3\mathcal{L}\mathcal{V}}{d_{\mathsf{cell}} \nu_{\mathsf{tr}}}$$

Exponential field growth in kinematic regime



 corrugated accretion shock dissipates kinetic energy from gravitational infall, injects vorticity that decays into turbulence, and drives a small-scale dynamo

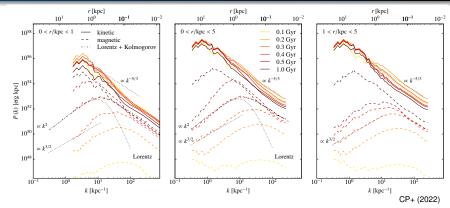
Dynamo saturation on small scales while λ_B increases



 supersonic velocity shear between the rotationally supported cool disk and hotter CGM: excitation of Kelvin-Helmholtz body modes that interact and drive a small-scale dynamo

Kinetic and magnetic power spectra

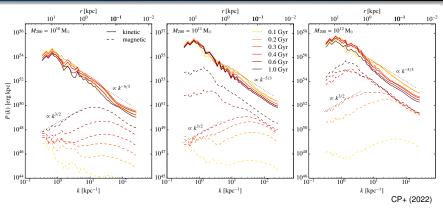
Fluctuating small-scale dynamo in different analysis regions



- $E_B(k)$ superposition of form factor and turbulent spectrum
- pure turbulent spectrum outside steep central *B* profile

Kinetic and magnetic power spectra: different halos

Saturation mechanisms of fluctuating small-scale dynamo

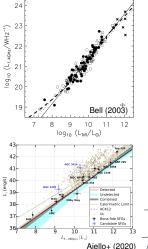


- ullet λ_B growth saturates close to equipartition in Milky Way
- λ_B growth stalls in dwarf galaxies: no equipartition with $\varepsilon_{\mathrm{th}}$

Non-thermal emission in star-forming galaxies

previous theoretical modeling:

- one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
- 1D transport models (Heesen+ 2016)
- static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)



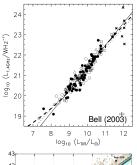
Non-thermal emission in star-forming galaxies

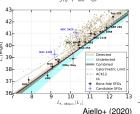
previous theoretical modeling:

- one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
- 1D transport models (Heesen+ 2016)
- static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

- run MHD-CR simulations of galaxies at different halos masses and SFRs
- model steady-state CRs: protons, primary and secondary electrons
- model all radiative processes from radio to gamma rays
- gamma rays: understand pion decay and leptonic inverse Compton emission
- radio: understand magnetic dynamo, primary and secondary electrons





Steady-state cosmic ray spectra

solve the steady-state equation in every cell for each CR population:

$$\frac{N(E)}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}E} \left[N(E)b(E) \right] = Q(E)$$

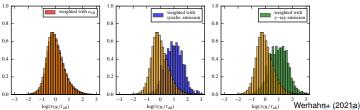
- ullet protons: Coulomb, hadronic and escape losses (re-normalized to $arepsilon_{
 m cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries

Steady-state cosmic ray spectra

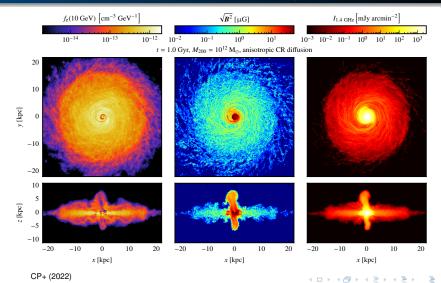
solve the steady-state equation in every cell for each CR population:

$$\frac{N(E)}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}E} \left[N(E)b(E) \right] = Q(E)$$

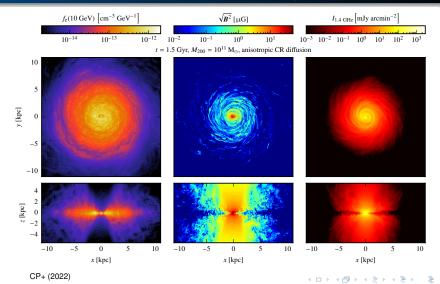
- lacktriangle protons: Coulomb, hadronic and escape losses (re-normalized to $\varepsilon_{\rm cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries
- steady state assumption is fulfilled in disk and in regions dominating the non-thermal emission but not at low densities, at SNRs and in outflows



Simulated radio emission: 10¹² M_☉ halo

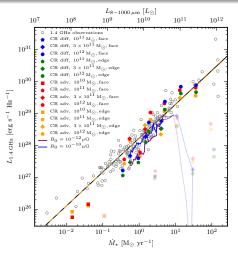


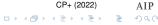
Simulated radio emission: 10¹¹ M_☉ halo



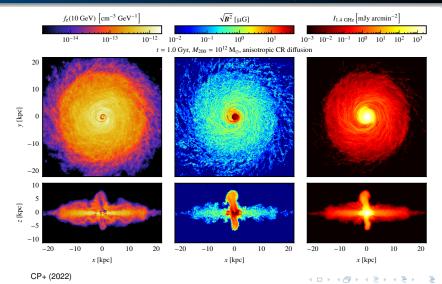
Far infra-red – radio correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

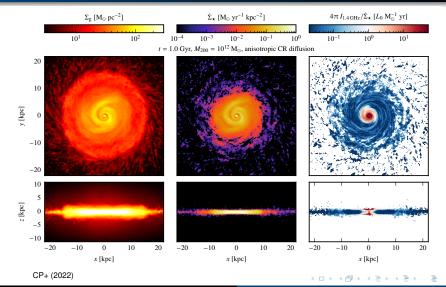




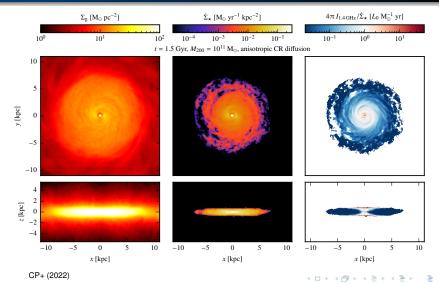
Simulated radio emission: 10¹² M_☉ halo



Local FIR-to-radio correlation, 10¹² M_☉ halo



Local FIR-to-radio correlation, 10¹¹ M_☉ halo



Conclusions

- energy budget in large galaxies is dominated by CR pressure
 star formation suppressed
- fluctuating small-scale dynamo grows magnetic fields in isolated galaxies: driven by (i) corrugated accretion shock and (ii) Kelvin-Helmholtz body modes excited by disk-halo velocity shear
- small-scale dynamo clearly identified via growth rates, saturation at $\varepsilon_B \sim \varepsilon_{\rm turb}$, power spectra, magnetic curvature statistics

Conclusions

- energy budget in large galaxies is dominated by CR pressure
 star formation suppressed
- fluctuating small-scale dynamo grows magnetic fields in isolated galaxies: driven by (i) corrugated accretion shock and (ii) Kelvin-Helmholtz body modes excited by disk-halo velocity shear
- small-scale dynamo clearly identified via growth rates, saturation at $\varepsilon_B \sim \varepsilon_{\rm turb}$, power spectra, magnetic curvature statistics
- magnetic fields saturate close to equipartition in Milky Way centers and sub-equipartition at larger radii and in dwarfs
 ⇒ issue with ISM modeling and missing large-scale dynamo?
- global L_{FIR} L_{radio} reproduced for galaxies with saturated magnetic fields, scatter due to viewing angle and CR transport
- local L_{FIR} L_{radio} reproduced at larger radii, but not in centers

PICOGAL: From Flasma KInetics to COsmological GALaxy Formation

Additional slides

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{\textit{f}}_{L} = \frac{1}{c}\,\mathbf{\textit{j}}\times\mathbf{\textit{B}} = \frac{1}{4\pi}\,(\boldsymbol{\nabla}\times\mathbf{\textit{B}})\times\mathbf{\textit{B}} = \frac{1}{4\pi}\,(\mathbf{\textit{B}}\cdot\boldsymbol{\nabla})\,\mathbf{\textit{B}} - \frac{1}{8\pi}\boldsymbol{\nabla}\mathbf{\textit{B}}^{2},$$

two terms on RHS are *not* magnetic curvature and pressure forces!

Lorentz force density, expressed in terms of **B** in the MHD approximation:

$$\mathbf{\textit{f}}_{L} = \frac{1}{c}\,\mathbf{\textit{j}}\times\mathbf{\textit{B}} = \frac{1}{4\pi}\,(\boldsymbol{\nabla}\times\mathbf{\textit{B}})\times\mathbf{\textit{B}} = \frac{1}{4\pi}\,(\mathbf{\textit{B}}\cdot\boldsymbol{\nabla})\,\mathbf{\textit{B}} - \frac{1}{8\pi}\boldsymbol{\nabla}\mathbf{\textit{B}}^{2},$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{\mathsf{L}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot
abla
ight) B^2 - rac{1}{8\pi}
abla B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} - rac{1}{8\pi}
abla_{\perp} B^2 \equiv oldsymbol{f}_{\mathsf{c}} + oldsymbol{f}_{\mathsf{p}}, \end{aligned}$$

where $oldsymbol{
abla}_{\perp} = (\mathbf{1} - oldsymbol{b}oldsymbol{b}) \cdot oldsymbol{
abla}$ is the perpendicular gradient

 Lorentz force density, expressed in terms of **B** in the MHD approximation:

$$\mathbf{\textit{f}}_{L} = \frac{1}{c}\,\mathbf{\textit{j}}\times\mathbf{\textit{B}} = \frac{1}{4\pi}\left(\mathbf{\nabla}\times\mathbf{\textit{B}}\right)\times\mathbf{\textit{B}} = \frac{1}{4\pi}\left(\mathbf{\textit{B}}\cdot\mathbf{\nabla}\right)\mathbf{\textit{B}} - \frac{1}{8\pi}\mathbf{\nabla}\mathbf{\textit{B}}^{2},$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{\mathsf{L}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot
abla
ight) B^2 - rac{1}{8\pi}
abla B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} - rac{1}{8\pi}
abla_{\perp} B^2 \equiv oldsymbol{f}_{\mathsf{c}} + oldsymbol{f}_{\mathsf{p}}, \end{aligned}$$

where $abla_{\perp} = (\mathbf{1} - \boldsymbol{b}\boldsymbol{b}) \cdot
abla$ is the perpendicular gradient

 \Rightarrow f_c is the magnetic curvature force and f_p is \perp mag. pressure force

 Lorentz force density, expressed in terms of **B** in the MHD approximation:

$$\mathbf{\textit{f}}_{L} = \frac{1}{c}\,\mathbf{\textit{j}}\times\mathbf{\textit{B}} = \frac{1}{4\pi}\left(\mathbf{\nabla}\times\mathbf{\textit{B}}\right)\times\mathbf{\textit{B}} = \frac{1}{4\pi}\left(\mathbf{\textit{B}}\cdot\mathbf{\nabla}\right)\mathbf{\textit{B}} - \frac{1}{8\pi}\mathbf{\nabla}\mathbf{\textit{B}}^{2},$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{oldsymbol{eta}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot
abla
ight) B^2 - rac{1}{8\pi}
abla B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} - rac{1}{8\pi}
abla_{oldsymbol{eta}} B^2 \equiv oldsymbol{f}_{oldsymbol{c}} + oldsymbol{f}_{oldsymbol{p}}, \end{aligned}$$

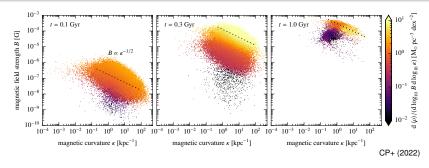
where $\nabla_{\perp} = (\mathbf{1} - \boldsymbol{b}\boldsymbol{b}) \cdot \nabla$ is the perpendicular gradient

 \Rightarrow f_c is the magnetic curvature force and f_p is \perp mag. pressure force

define a magnetic curvature:

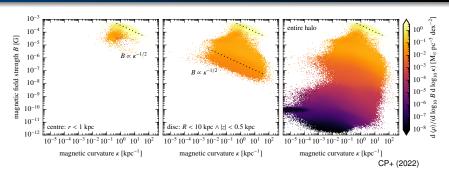
$$m{\kappa} \equiv (m{b} \cdot m{
abla}) m{b} = rac{(\mathbf{1} - m{b}m{b}) \cdot (m{B} \cdot m{
abla}) \, m{B}}{B^2} = rac{4\pi \, m{f}_{ extsf{c}}}{B^2},$$

Correlating magnetic curvature to field strength – 1



- emergence of magnetic field and curvature in the galaxy centre
- panels show from left to right:
 - (i) exponential growth phase in the kinematic regime
 - (ii) growth of the magnetic coherence scale
 - (iii) saturation phase of the magnetic dynamo

Correlating magnetic curvature to field strength – 2



- separating different dynamo processes by spatial cuts during saturated phase
- superposition of different small-scale dynamos
- each dynamo grows at a different characteristic density or eddy turnover time

