Cosmic ray feedback in galaxies and cool core clusters

Christoph Pfrommer

in collaboration with

S. Jacob, M. Uhlig, M. Sharma, B. Nath, T. Enßlin, V. Springel

¹Heidelberg Institute for Theoretical Studies, Germany

Oct 2, 2015 / Colloquium, Max-Planck Institut für Radioastronomie
Outline

1. Puzzles in galaxy formation

2. Driving galactic winds
 - Galactic winds and cosmic rays
 - Mass loss and star formation
 - Cosmic-ray heating

3. AGN feedback
 - Heating the cooling gas in M87
 - Diversity of cool core clusters
 - Conclusions
Puzzles in galaxy formation

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
Puzzles in galaxy formation

Driving galactic winds
AGN feedback

Puzzles in galaxy formation

log(halo mass)
log(stellar / halo mass)
dwarf galaxy
spiral galaxy
20% of baryons
Moster+ 2010
giant elliptical galaxy

Christoph Pfrommer
Cosmic ray feedback in galaxies and cool core clusters
Puzzles in galaxy formation

Driving galactic winds
AGN feedback

Puzzles in galaxy formation

\[\log(\text{halo mass}) \]

\[\log(\text{stellar / halo mass}) \]

feedback

stellar

20% of baryons

Moster+ 2010
giant elliptical galaxy
dwarf galaxy
spiral galaxy

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
Puzzles in galaxy formation

Driving galactic winds
AGN feedback

Puzzles in galaxy formation

$\log(\text{halo mass})$

$\log(\text{stellar/halo mass})$

black hole feedback

supermassive

20% of baryons

Moster+ 2010

giant elliptical galaxy
dwarf galaxy
spiral galaxy

stellar feedback

supermassive black hole feedback

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
Puzzles in galaxy formation

Bright-end of luminosity function:
- astrophysical solutions: AGN/quasar feedback, ...

Faint-end of luminosity function:
- dark matter (DM) solutions: warm DM, interacting DM, DM from late decays, large annihilation rates, ...
- astrophysical solutions:
 - preventing gas from falling into DM potential wells: increasing entropy by reionization, blazar heating ...
 - preventing gas from forming stars in galaxies: suppress cooling (photoionization, low metallicities), ...
 - pushing gas out of galaxies: supernova/quasar feedback → galactic winds
Puzzles in galaxy formation
Driving galactic winds
AGN feedback
Galactic winds and cosmic rays
Mass loss and star formation
Cosmic-ray heating

Galactic winds

Galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields

supernova Cassiopeia A

Galactic winds

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds
- critical for understanding the physics of galaxy formation → may explain puzzle of low star conversion efficiency in dwarf galaxies

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA
Galactic winds

- Galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- Star formation and supernovae drive gas out of galaxies by galactic super winds
- Critical for understanding the physics of galaxy formation → may explain puzzle of low star conversion efficiency in dwarf galaxies

© Sydney Harris
The role of supernova remnants

- Supernova remnant shocks amplify magnetic fields and accelerate CR electrons up to \(\sim 100 \text{ TeV} \) (narrow X-ray synchrotron filaments observed by *Chandra*).
- Pion bump provides evidence for CR proton acceleration (*Fermi/AGILE* \(\gamma \)-ray spectra).

Fermi observations of W44:

Christoph Pfrommer
The role of supernova remnants

- Supernova remnant shocks amplify magnetic fields and accelerate CR electrons up to ~ 100 TeV (narrow X-ray synchrotron filaments observed by Chandra)
- Pion bump provides evidence for CR proton acceleration (Fermi/AGILE γ-ray spectra)
- Shell-type SNRs show evidence for efficient shock acceleration beyond ~ 100 TeV (HESS TeV γ-ray observations)

Fermi observations of W44:

HESS observations of shell-type SNRs:
Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- “knee” indicates characteristic maximum energy of galactic accelerators
- CRs beyond the “ankle” have extra-galactic origin
- energy density of cosmic rays, magnetic fields, and turbulence in the interstellar gas all similar

Data compiled by Swordy
Galactic wind in the Milky Way?
Diffuse X-ray emission in our galaxy

... as suggested by Everett+ (2008) and Everett, Schiller, Zweibel (2010)
How are galactic winds driven?

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- cosmic-ray (CR) pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

Observed energy equipartition between cosmic rays, thermal gas and magnetic fields → suggests self-regulated feedback loop with CR driven winds
Why are CRs important for wind formation?
Radio halos in disks: CRs and magnetic fields exist at the disk-halo interface

- CR pressure drops less quickly than thermal pressure ($P \propto \rho^\gamma$)
- CRs cool less efficiently than thermal gas
- CR pressure energizes the wind \rightarrow “CR battery”
- Poloidal (“open”) field lines at wind launching site \rightarrow CR-driven Parker instability

Tüllmann+ (2000)
Cosmic-ray driven winds – literature

- **previous theoretical works:**

- **previous 3D simulations:**
Interactions of CRs and magnetic fields

- CRs scatter on magnetic fields → isotropization of CR momenta

- **CR streaming instability:** Kulsrud & Pearce 1969
 - if \(v_{cr} > v_A \), CR current provides steady driving force, which amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs’ bulk speed \(\sim v_A \)
 - wave damping: transfer of CR energy and momentum to the thermal gas

→ CRs exert a pressure on the thermal gas by means of scattering off of Alfvén waves
CR transport

- **total CR velocity** $\mathbf{v}_{cr} = \mathbf{v} + \mathbf{v}_{st} + \mathbf{v}_{di}$ (where $\mathbf{v} \equiv \mathbf{v}_{gas}$)

- **CRs stream** down their own pressure gradient relative to the gas, **CRs diffuse** in the wave frame due to pitch angle scattering by MHD waves (both transports are along the local direction of \mathbf{B}):

 $$\mathbf{v}_{st} = -v_{A} \frac{\nabla P_{cr}}{|\nabla P_{cr}|} \quad \text{with} \quad v_{A} = \sqrt{\frac{B^2}{4\pi \rho}}, \quad \mathbf{v}_{di} = -\kappa_{di} \frac{\nabla P_{cr}}{P_{cr}},$$

- **energy equations** with $\varepsilon = \varepsilon_{th} + \rho \mathbf{v}^2 / 2$ (neglecting CR diffusion):

 $$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \left[(\varepsilon + P_{th} + P_{cr}) \mathbf{v} \right] = P_{cr} \nabla \cdot \mathbf{v} + |\mathbf{v}_{st} \cdot \nabla P_{cr}|$$

 $$\frac{\partial \varepsilon_{cr}}{\partial t} + \nabla \cdot (\varepsilon_{cr} \mathbf{v}) + \nabla \cdot \left[(\varepsilon_{cr} + P_{cr}) \mathbf{v}_{st} \right] = -P_{cr} \nabla \cdot \mathbf{v} - |\mathbf{v}_{st} \cdot \nabla P_{cr}|$$

 $$\iff \frac{\partial \varepsilon_{cr}}{\partial t} + \nabla \cdot [\varepsilon_{cr} (\mathbf{v} + \mathbf{v}_{st})] = -P_{cr} \nabla \cdot (\mathbf{v} + \mathbf{v}_{st})$$
Simulations – flowchart

ISM observables:
- X-ray, Hα, HI, ... emission
- Stellar spectra

Physical processes in the ISM:
- Thermal energy
- Radiative cooling
- Supernovae
- Shocks
- AGN

C.P., Enßlin, Springel (2008)
Simulations with cosmic ray physics

ISM observables:
- X-ray, Hα, HI, ...
- stellar spectra

Physical processes in the ISM:
- thermal energy
- radiative cooling
- shocks
- supernovae
- Coulomb losses
- AGN

C.P., Enßlin, Springel (2008)
ISM observables:

- X-ray, Hα, HI, ... emission
- Stellar spectra

Physical processes in the ISM:

- Radiative cooling
- Supernovae
- Shocks
- AGN
- Coulomb losses
- CR streaming
- Heat conduction
- Cosmic ray energy
- Radiative cooling

C.P., Enßlin, Springel (2008)
Simulations with cosmic ray physics

ISM observables:

- X-ray, Hα, HI, ...
- stellar spectra
- radio synchrotron
- gamma-ray emission

Physical processes in the ISM:

- radiative cooling
- stellar populations
- supernovae
- shocks
- AGN
- Coulomb losses
- heat conduction
- hadronic losses
- cosmic ray energy
- CR streaming

Gain processes:

- bremsstrahlung
- synchrotron
- synchrotron radiation

Loss processes:

- conduction
- inverse bremsstrahlung
- hadronic
- particle losses

C.P., Enßlin, Springel (2008)
Gamma-ray emission of the Milky Way
Simulation setup

Galactic winds driven by cosmic-ray streaming

SPH simulations without magnetic fields → isotropic CR streaming with

\[v_{\text{st}} = c_s \text{ (assuming } \beta \approx 1) \]
CR streaming drives winds

Christoph Pfrommer
Cosmic ray feedback in galaxies and cool core clusters
Cosmic ray driven wind: mechanism

\[\nabla P_{\text{cr}} + \nabla P_{\text{th}} > \rho \nabla \Phi \]

CR streaming: Uhlig, C.P.+ (2012)

Wind velocity profile along the symmetry axis

- $10^9 - 10^{10} M_\odot$: accelerating wind due to a continuous CR momentum and energy deposition during the ascent of the wind in the gravitational potential
 → different from traditional energy- or momentum-driven winds!

- $10^{11} M_\odot$: wind stalls in halo and falls back onto the disk
 → fountain flow
Gas mass loss within the virial radius

- after initial phase ($\sim 2.5 \text{ Gyr}$), only winds driven by CR streaming overcome the ram pressure of infalling gas and expel gas from the halo
- mass loss rate increases with CR injection efficiency ζ_{SN} \textit{(left)} and toward smaller galaxy masses \textit{(right)}
CR feedback suppresses star formation

$10^9 \ M_\odot$: CR advection-only (green, yellow): oscillating SFH
CR streaming (red, blue): suppressed smooth SFH

$10^{10} \ M_\odot$: suppressed smooth SFH
Temperature structure due to CR heating

- Halo temperatures scale as $kT \propto v_{\text{wind}}^2 \sim v_{\text{esc}}^2$

- $10^9 \rightarrow 10^{10} M_\odot$: transition of isotropic to bi-conical wind; in these cones, CR wave heating overcomes radiative cooling

- $10^{10} \rightarrow 10^{11} M_\odot$: broadening of hot temperature structure due to inability of CR streaming to drive a sustained wind; instead, fountain flows drive turbulence, thereby heating larger regions
Gas temperature: observation vs. simulation

M82 observation

CR streaming \((10^{10} \, M_\odot)\)

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
CR-driven winds: analytics versus simulations

Bernoulli theorem along streamlines: wind speeds and mass loading factors

- Wind speeds increase with galaxy mass as $v_{\text{wind}} \propto v_{\text{circ}} \propto M_{200}^{1/3}$ until they cutoff around $10^{11} M_\odot$ due to a fixed wind base height (set by radiative physics).

- Mass loading factor $\eta = \dot{M}/\text{SFR}$ decreases with galaxy mass.
Conclusions on cosmic-ray driven winds in galaxies

- galactic winds are naturally explained by CR streaming (known energy source and plasma physics)
- CR streaming heating can explain observed hot wind regions above disks
- substantial mass losses of low mass galaxies → opportunity for understanding the physics at the faint end of galaxy luminosity function

outlook: improved hydrodynamics (AREPO), including MHD (anisotropic transport), improved modeling of plasma physics, cosmological settings, ...

“Radio-mode” AGN feedback

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
Radio mode feedback by AGN: open questions

- **energy source:**
 - release of non-gravitational accretion energy of a black hole

- **jet-ICM interaction and rising bubbles:**
 1. magnetic draping \rightarrow amplification
 2. CR confinement vs. release
 3. excitation of turbulence

- **heating mechanism:**
 1. self-regulated to avoid overcooling
 2. thermally stable to explain T floor
 3. low energy coupling efficiency

- **cosmic ray heating:**
 1. are CRs efficiently mixed into the ICM?
 2. is the CR heating rate sufficient to balance cooling?
 3. how universal is this heating mechanism in cool cores?
Messier 87 at radio wavelengths

\(\nu = 1.4 \text{ GHz (Owen+ 2000)} \)

\(\nu = 140 \text{ MHz (LOFAR/de Gasperin+ 2012)} \)

- high-\(\nu \): freshly accelerated CR electrons
- low-\(\nu \): fossil CR electrons \(\rightarrow \) time-integrated AGN feedback!

- **LOFAR**: halo confined to same region at all frequencies and no low-\(\nu \) spectral steepening \(\rightarrow \) puzzle of “missing fossil electrons”
solutions:

- special time: M87 turned on \(\sim 40 \) Myr ago after long silence
 \(\iff \) conflicts order unity duty cycle inferred from stat. AGN feedback studies (Birzan+ 2012)

- Coulomb cooling removes fossil electrons
 \(\rightarrow \) efficient mixing of CR electrons and protons with dense cluster gas
 \(\rightarrow \) predicts \(\gamma \) rays from CRp-p interactions:
 \[p + p \rightarrow \pi^0 + \ldots \rightarrow 2\gamma + \ldots \]
high state is time variable
→ jet emission

des state:
(1) steady flux
(2) γ-ray spectral index (2.2)
 = CRp index
 = CRe injection index as probed by LOFAR
(3) spatial extension is under investigation (?)

→ confirming this triad would be smoking gun for first γ-ray signal from a galaxy cluster!
Estimating the CR pressure in M87

Hypothesis: low state of γ-ray emission traces π^0 decay in ICM:

- X-ray data \rightarrow n and T profiles
- Assume $X_{cr} = P_{cr}/P_{th}$ (heating due to streaming CRs in steady state)
- $F_\gamma \propto \int dV P_{cr} n$ enables to estimate $P_{cr}/P_{th} = 0.31$ (allowing for Coulomb cooling with $\tau_{Coul} = 40$ Myr)

\rightarrow in agreement with non-thermal pressure constraints from dynamical potential estimates (Churazov+ 2010)

Rieger & Aharonian (2012)
Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:
(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

\[\mathcal{H}_{cr} = -v_A \cdot \nabla P_{cr} = -v_A \left(X_{cr} \nabla \langle P_{th} \rangle_{\Omega} + \frac{\delta P_{cr}}{\delta l} \right) \]

- Alfvén velocity \(v_A = B / \sqrt{4\pi \rho} \) with \(B \sim B_{eq} \) from LOFAR and \(\rho \) from X-ray data
- \(X_{cr} \) inferred from \(\gamma \) rays
- \(P_{th} \) from X-ray data
- pressure fluctuations \(\delta P_{cr} / \delta l \) (e.g., due to weak shocks of \(\mathcal{M} \sim 1.1 \))

radiative cooling:

\[C_{rad} = n_e n_i \Lambda_{cool}(T, Z) \]

- cooling function \(\Lambda_{cool} \) with \(Z \sim Z_{\odot} \), all quantities determined from X-ray data
Cosmic-ray heating vs. radiative cooling (2)
Global thermal equilibrium on all scales in M87

\[
C_{\text{rad}}, \dot{H}_{\text{CR}} [\text{ergs cm}^{-3} \text{s}^{-1}]
\]

\[\dot{H}_{\text{CR}}, P_{\text{smooth}} + \delta P\]

\[\dot{H}_{\text{CR}}, P_{\text{smooth}}\]

\[C_{\text{rad}}(0.7 Z_\odot \lesssim Z \lesssim 1.3 Z_\odot)\]

radial extent of radio halo:

C. P. (2013)
Local stability analysis (1)

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations
Local stability analysis (1)

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations
Local stability analysis (1)

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations
Local stability analysis (1)

- Isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations
Local stability analysis (2)

Theory predicts observed temperature floor at $kT \sim 1$ keV

![Graph showing the instability criterion as a function of temperature. The graph has two curves, one for $X_{CR} = 0.31$ and the other for $X_{CR} = 0.031$. The plot shows two regions: "islands of stability" and "ocean of instability".]
Virgo cluster cooling flow: temperature profile
X-ray observations confirm temperature floor at $kT \approx 1$ keV

Matsushita+ (2002)
Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles: CRs diffuse and stream outward → CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are injected into the ICM and caught in a turbulent downdraft that is excited by the rising bubbles → CR advection with flux-frozen field → adiabatic CR compression and energizing: $P_{\text{cr}}/P_{\text{cr,0}} = \delta^{4/3} \sim 20$ for compression factor $\delta = 10$

(3) CR escape and outward streaming → CR Alfvén-wave heating
Prediction: flattening of high-ν radio spectrum

- Continuous injection
- Continuous injection, switch off
- Hadronically induced emission

- Radio data

- ν [MHz]
- Flux density [Jy]

C.P. (2013)
How universal is CR heating in cool core clusters?

- no γ rays observed from other clusters $\Rightarrow P_{cr}$ unconstrained

- **strategy**: construct sample of 24 cool cores
 1. assume $H_{cr} = C_{rad}$ at $r = r_{cool}$, 1 Gyr
 2. assume steady-state CR streaming: $P_{cr} \propto P_{th}$
 3. adopt B model from Faraday rotation studies:
 \[B = 40 \mu G \times \left(\frac{n}{0.1 \text{ cm}^{-3}} \right)^{\alpha_B} \]
 where $\alpha_B \in \{2/3, 1\}$
 4. calculate hadronic radio and γ-ray emission and compare to observations

- **consequences**:
 \Rightarrow if $H_{cr} = C_{rad}$ \forall r and hadr. emission below observational limits: successful CR heating model that is locally stabilized at ~ 1 keV
 \Rightarrow otherwise CR heating ruled out as dominant heating source
Cosmic-ray heating in cool core clusters (1)

HydraA

Virgo

A133

A262

A383

A07

A1795

A1991

A2199

A20335

A478

A1991

A133

A478

A1835

HydraA

Virgo

A133

A262

A383

A07

A1795

A1991

A2199

A20335

A478

A1835

Jacob & C.P. (in prep.)

Heating the cooling gas in M87

Diversity of cool core clusters

Conclusions

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
Cosmic-ray heating in cool core clusters (2)

Jacob & C.P. (in prep.)
Cosmic-ray heating in Hydra A vs. Perseus

2 populations of cool cores emerging:

- pop 1 (Hydra A, Virgo, . . .): $\mathcal{H}_{\text{cr}} = C_{\text{rad}} \rightarrow \text{CR heated?}$
- pop 2 (Perseus, Ophiuchus, . . .): $\mathcal{H}_{\text{cr}} \neq C_{\text{rad}}$: host radio-mini halos!

Jacob & C.P. (in prep.)
Non-thermal pressure balance

\[X_{cr,\text{min}} \quad X_{cr,\text{st}} \quad \text{Hydra A} \]

\[\begin{array}{c}
0.00 & 0.05 & 0.10 & 0.15 & 0.20 & 0.25 & 0.30 \\
X_{cr} \\
X_{cr,\text{min}} \\
X_{cr,\text{st}} \\
\text{Hydra A} \\
\end{array} \]

Define \(X_{cr} = \frac{P_{cr}}{P_{th}} \) and \(X_B = \frac{P_B}{P_{th}} \).

CR heating rate:
\[\mathcal{H}_{cr} = -v_A \cdot \nabla P_{cr} \propto X_B^{0.5} X_{cr} \]

Non-thermal pressure at fixed heating rate:
\[X_{nt} \equiv (X_B + X_{cr}) \mathcal{H}_{cr} = AX_{cr}^{-2} + X_{cr} \quad \Rightarrow \quad X_{cr,\text{min}} = (2A)^{1/3} \]
Hadronic emission: radio and γ rays

Jacob & C.P. (in prep.)

$C_{\text{rad}} = \mathcal{H}_{\text{cr}}$
Hadronic emission: radio and γ rays

$C_{\text{rad}} = C_{\text{cr}}$

γ-ray obs., $r_{\text{max}} = r_{\text{cool}}, 1\text{Gyr}$

Jacob & C.P. (in prep.)
Hadronic emission: radio and γ rays

Hadronic emission: radio and γ rays

X_{cr} vs. $C_{\text{rad}} = X_{\text{cr}}$

- γ-ray obs., $r_{\text{max}} = r_{\text{cool,1Gyr}}$
- NVSS data, $r_{\text{max}} = r_{\text{cool,1Gyr}}$

Jacob & C.P. (in prep.)
Hadronic emission: radio and γ rays

CR heating solution ruled out in radio mini-halos ($H_{cr} \neq C_{rad}$)!

Christoph Pfrommer
Cosmic ray feedback in galaxies and cool core clusters
Correlations in cool cores

possibly cosmic ray-heated cool cores vs. radio mini halo clusters:

- $F_{\nu,\text{obs}} > F_{\nu,\text{pred}}$: strong radio source = abundant injection of CRs
- peaked CC profile ($r_{\text{cool}} \lesssim 20 \text{ kpc}$) and simmering star formation: cosmic-ray heating may effectively balance cooling
- large star formation rates: cooling wins over heating

Jacob & C.P. (in prep.)
Conclusions on AGN feedback by cosmic-ray heating

Cosmic-ray heating in M87:

- LOFAR puzzle of “missing fossil electrons” in M87 solved by mixing with dense cluster gas and Coulomb cooling
- Predicted γ rays identified with low state of M87 → estimate CR-to-thermal pressure of $X_{cr} = 0.31$
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo ($r < 35$ kpc)
- Local thermal stability analysis predicts observed temperature floor at $kT \simeq 1$ keV

Diversity of cool cores:

- *Peaked cool cores*: possibly stably heated by cosmic rays
- *Radio mini halo clusters*: cosmic-ray heating ruled out systems are strongly cooling and form stars at large rates
CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtion
Cosmic ray-driven winds in galaxies:

AGN feedback by cosmic rays:
- Jacob & Pfrommer, *Diversity in cool core clusters: implications for cosmic-ray heating*, in prep.
Self-consistent CR pressure in steady state

- CR streaming transfers energy per unit volume to the gas as

\[\Delta \varepsilon_{\text{th}} = -\tau_A \mathbf{v}_A \cdot \nabla P_{\text{cr}} \approx P_{\text{cr}} = X_{\text{cr}} P_{\text{th}}, \]

where \(\tau_A = \delta l/v_A \) is the Alfvén crossing time and \(\delta l \) the CR pressure gradient length.

- Comparing the first and last term suggests that a constant CR-to-thermal pressure ratio \(X_{\text{cr}} \) is a necessary condition if CR streaming is the dominant heating process.

→ thermal pressure profile adjusts to that of the streaming CRs!
Critical length scale of the instability (\sim Fields length)

- CR streaming transfers energy to a gas parcel with the rate

$$\mathcal{H}_{cr} = -v_A \cdot \nabla P_{cr} \sim f_s v_A |\nabla P_{cr}|,$$

where f_s is the magnetic suppression factor

- line and bremsstrahlung emission radiate energy with a rate C_{rad}

- limiting size of unstable gas parcel since CR Alfvén-wave heating smoothes out temperature inhomogeneities on small scales:

$$\lambda_{crit} = \frac{f_s v_A P_{cr}}{C_{rad}}$$

- however: unstable wavelength must be supported by the system
 \rightarrow constraint on magnetic suppression factor f_s
Critical length scale of the instability (\sim Fields length)

- $f_{\text{sup}} = 1.0, Z = 0.7 \, Z_{\odot}$
- $f_{\text{sup}} = 1.0, Z = 1.3 \, Z_{\odot}$
- $f_{\text{sup}} = 0.3, Z = 0.7 \, Z_{\odot}$
- $f_{\text{sup}} = 0.3, Z = 1.3 \, Z_{\odot}$

Critical instability length λ_{crit} [kpc]

- $\lambda_{\text{crit}} = r$
- Thermally unstable
- Unstable wavelength larger than system
- Stabilized by CR streaming

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
CR heating dominates over thermal conduction

\[\frac{H_{\text{CR}}}{H_{\text{cond}}} = \frac{H_{\text{CR}, \, P_{\text{smooth}} + \delta P}}{H_{\text{CR}, \, P_{\text{smooth}}}} \]

C.P. (2013)

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters
global thermal equilibrium:

radial extent of radio halo:

local stability criterion:

"islands of stability"

"ocean of instability"

parametrize $B \propto \rho^{\alpha_B}$, which implies $v_A = B/\sqrt{4\pi\rho} \propto \rho^{\alpha_B - 1/2}$:

- $\alpha_B = 0.5$ is the geometric mean, implying $v_A = \text{const.}$
- $\alpha_B = 0$ for collapse along B, implying $v_{A,\parallel} \propto \rho^{-1/2}$
- $\alpha_B = 1$ for collapse perpendicular to B, implying $v_{A,\perp} \propto \rho^{1/2}$
is this global thermal equilibrium a coincidence in Virgo?

- CCs typically show a steep central density profile: \(n \propto r^{-1} \)
- central temperature profile rises slowly: \(T \propto r^\alpha \), with \(\alpha \lesssim 0.3 \)
- assume \(v_A = \text{const.} \) and steady-state CR streaming
 \(\Rightarrow X_{cr} = P_{cr}/P_{th} \) (also required for self-consistency):

\[
\begin{align*}
\mathcal{H}_{cr} & \propto \frac{\partial}{\partial r} P_{th} \propto \frac{\partial}{\partial r} r^{\alpha-1} \propto r^{\alpha-2} \\
C_{\text{rad}} & \propto n^2 \propto r^{-2}
\end{align*}
\]

(1) identical radial profiles expected for \(T \simeq \text{const.} \) (\(\alpha \simeq 0 \))
(2) for a smoothly rising temperature profile, heating is slightly favored over cooling at larger radii \(\rightarrow \) onset of cooling is smoothly modulated from the outside in
CR streaming: Gadget-2 versus 1-d grid solver
Evolution of the specific CR energy due to streaming in a medium at rest

Uhlig+ (2012)
CR-driven wind simulations: resolution study

- Our results: winds driven by CR streaming are converged with respect to particle resolution (left) and time step of the explicit streaming solver (right).

Christoph Pfrommer

Cosmic ray feedback in galaxies and cool core clusters