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Cosmic ray transport Introduction
CR hydrodynamics

Cosmic ray feedback: an extreme multi-scale problem

| @~
- O e

Milky Way-like galaxy: gyro-orbit of GeV cosmic ray:

Fea ~ 10° po o= P 1070 pe ~ | A

P
e BuG
= need to develop a fluid theory for a collisionless,
non-Maxwellian component! _E

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2018)
AIP
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Cosmic ray transport Introduction
CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob
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Cosmic ray transport Introduction
CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

B
sketch: Jacob
@ gyro resonance: w— kv = nf
Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency —
AIP

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



Cosmic ray transport Introduction
CR hydrodynamics

Interactions of CRs and magnetic fields

M 1c I3
Cosmic ray

B
sketch: Jacob
@ gyro resonance: w— kv = nf
Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency —
@ CRs scatter on magnetic fields — isotropization of CR momenta
AIP
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Cosmic ray transport Introduction
CR hydrodynamics

CR streaming and diffusion

@ CR Streaming InStablllty' Kulsrud & Pearce 1969

o if vor > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ va

e wave damping: transfer of CR energy
and momentum to the thermal gas
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Cosmic ray transport Introduction
CR hydrodynamics

CR streaming and diffusion

@ CR Streaming InStablllty' Kulsrud & Pearce 1969

o if vor > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ va

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves
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Cosmic ray transport Introduction
CR hydrodynamics

CR streaming and diffusion

@ CR Streaming InStablllty' Kulsrud & Pearce 1969

o if vor > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ va

e wave damping: transfer of CR energy
and momentum to the thermal gas
— CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling — CR stream with waves —
strong wave damping: less waves to scatter — CR diffusion prevails
AIP
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Cosmic ray transport Introduction
CR hydrodynamics

Modeling CR streaming

A challenging hyperbolic/parabolic problem

@ streaming equation (no heating):

Occr
ot

Vst = —sgn(B - VP )Va

+ V- [(eer + Per)vst] =0

@ CR streaming ~ CR advection with
the Alfvén speed

@ at local extrema, CR energy can
1 overshoot and develop unphysical

N B ] oscillations
0.8 1

o
T
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o
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~
o
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Sharma-+ (2010)
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Cosmic ray transport Introduction
CR hydrodynamics

Modeling CR streaming

A challenging hyperbolic/parabolic problem

@ streaming equation (no heating):

Occr
ot

Vst = —sgn(B - VP )Va

+ V- [(eer + Per)vst] =0

@ CR streaming ~ CR advection with
the Alfvén speed

@ at local extrema, CR energy can
1 overshoot and develop unphysical

N B ] oscillations
0.2 0.4 0.6 0.8 1

o
T
|

o

Sharma-+ (2010)

@ idea: regularize equations, similar to adding artificial viscosity
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Cosmic ray transport Introduction
CR hydrodynamics

Modeling CR streaming — regularization

@ 1D streaming equation (no heating):

Oeer ad
5; + a [(5cr + Pcr)Vst] =0

0 - 10
Vst = —VaSgn (%) — Vg = —Vvatanh (5 (,;;r)
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Cosmic ray transport Introduction
CR hydrodynamics

Modeling CR streaming — regularization

@ 1D streaming equation (no heating):

Oeer ad
ce + a [(5cr + Pcr)Vst] =0

ot
0 - 10
Vst = —VaSgn (%) — Vg = —Vvatanh (5 (,;;r)

@ regularized 1D streaming equation (no heating):

o 4 0 fouear + P ~0
8§;r + ‘Zl%(&:r + Pcr) - = O,
where  fireg = vaycrscrlsech2 (1 86”) (Sharma+ 2010)
0 d Ox
@ regularized equation is advective at gradients and E

AIP
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Cosmic ray transport Introduction
CR hydrodynamics

Modeling CR streaming — regularization

@ 1D streaming equation (no heating):
Ocer
ot
o Oecr o 1 Oegr
Vst = —VaSQN (a—x) — Vgt = —Vatanh (6 ox )

@ regularized 1D streaming equation (no heating):

ad
+ a [(5cr + Pcr)Vst] =0

0 9 .-
g;r + a [Vst(é'cr + Pcr)] =0
7] . 0
g;r + V\la(&:r + Pcr) - =0,
where ey = Vararce~sech? 1 2% (Sharma+ 2010)
reg = Va7er cr(S 5 Ox
SN
@ regularized equation is advective at gradients and E
@ but: numerical diffusion dominates for CR sources on a background AIP

Cosmic rays in galaxy clusters: transport and feedback
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Cosmic ray transport Introduction
CR hydrodynamics

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
e tangled B, CR diffusion diffusive transport
strong scattering in clumpy medium
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Cosmic ray transport Introduction
CR hydrodynamics

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy

e tangled B, CR diffusion diffusive transport
strong scattering in clumpy medium

e resolved B, CR streaming Thomson scattering (7 > 1)
strong scattering | with v, — advection with v
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Cosmic ray transport Introduction
CR hydrodynamics

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
e tangled B, CR diffusion diffusive transport
strong scattering in clumpy medium
e resolved B, CR streaming Thomson scattering (7 > 1)
strong scattering | with v, — advection with v
e weak scattering | CR streaming flux-limited diffusion
and diffusion with 7 ~ 1
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Cosmic ray transport Introduction
CR hydrodynamics

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
e tangled B, CR diffusion diffusive transport
strong scattering in clumpy medium
e resolved B, CR streaming Thomson scattering (7 > 1)
strong scattering | with v, — advection with v
e weak scattering | CR streaming flux-limited diffusion
and diffusion with 7 ~ 1
e no scattering CR propagation | vacuum propagation
with ¢

=

AIP

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



Cosmic ray transport Introduction
CR hydrodynamics

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
e tangled B, CR diffusion diffusive transport
strong scattering in clumpy medium
e resolved B, CR streaming Thomson scattering (7 > 1)
strong scattering | with v, — advection with v
e weak scattering | CR streaming flux-limited diffusion
and diffusion with 7 ~ 1
e no scattering CR propagation | vacuum propagation
with ¢
but: CR hydrodynamics is charged RHD =
— take gyrotropic average and account for anisotropic transport E

AIP
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Cosmic ray transport Introduction

CR hydrodynamics

CR vs. radiation hydrodynamics

@ Alfvén wave velocity in lab frame: wy = v + v,,
CR scattering frequency 7+ /c® = 1/(3k+)

@ lab-frame equ’s for CR energy and momentum density, ¢ and f/c?
(Thomas & CP 2018):

d bb
cor +Vify =—wy- @ ' [fCr - W:i:(‘SCr + PC’)] -V gLorentz'i_Ss

bb
- +V Py =— 3  [for — Wx(eer + Per)l — Gigrene +S¢

=

AIP
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Cosmic ray transport Introduction
CR hydrodynamics

CR vs. radiation hydrodynamics

@ Alfvén wave velocity in lab frame: wy = v + v,,
CR scattering frequency 7+ /c® = 1/(3k+)

@ lab-frame equ’s for CR energy and momentum density, ¢ and f/c?

(Thomas & CP 2018):
d bb
Eor + V. fcr =Wy —" [fcr - W:i:(‘SCr + PC’)] -V gLorentz'i_Ss
ot 3ri+
1 of. bb
? a;r +V. Pcr = - @ : [fcr - W:i:(acr + PCY)] - gLorentz +Sf

@ lab-frame equ’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas, 1984, Lowrie+ 1999):

2—?4—V-f:—asv-[f—v-(e1+P)]+Sa
1 of
?§+V-P:—US [f-=v-(e1+P)]+ Sav

=

AIP

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



Cosmic ray transport Introduction
CR hydrodynamics

CR vs. radiation hydrodynamics

@ Alfvén wave velocity in lab frame: wy = v + v,,
CR scattering frequency 7+ /c® = 1/(3k+)

@ lab-frame equ’s for CR energy and momentum density, ¢ and f/c?

(Thomas & CP 2018):
d bb
Eor + V. fcr =Wy —" [fcr - W:i:(‘SCr + PC’)] -V gLorentz+85
ot 3ri+
1 of. bb
? a;r +V. Pcr = - @ : [fcr - W:i:(acr + PCY)] - gLorentz +Sf

@ lab-frame equ’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas, 1984, Lowrie+ 1999):

2—?4—V-f:—asv-[f—v-(e1+P)]+Sa
1 of
?§+V-P:—US [f-=v-(e1+P)]+ Sav

L}

@ problem: CR lab-frame equation requires resolving rapid gyrokinetics!  A1P
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Cosmic ray transport Introduction
CR hydrodynamics

Alfvén-wave regulated CR transport

@ comoving equ’s for CR energy and momentum density, e and f;/c?
and Alfvén-wave energy density ¢, + (Thomas & CP 2018)

0
5p TV - V(e + Po) + ble] = v VPy (1)
a Va
- 3:+ [fcr - Va(5cr + Pcr)] + 3 [fcr + Va(5cr + Pcr)],
e/ C?
WelC o . (Via/&*) +b- VP = —(b- V) (blu/®)  (2)
1 1
- m [fcr - Va(gcr + Pcr)] T 3. [fcr + Va(€cr + Pcr)],
653 +
ai +V. [V(aa,i + Pa,i) + Vabga,i] =V- VPa,i (3)
V. SN
+ = [fer F va(eer + Per)] — Sax- E

3k
+ AIP

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



Cosmic ray transport Introduction
CR hydrodynamics

Alfvén-wave regulated CR transport

@ comoving equ’s for CR energy and momentum density, e and f;/c?
and Alfvén-wave energy density ¢, + (Thomas & CP 2018)
— pseudoforces (e.g., adiabatic changes)

0
5p TV - V(e + Po) + ble] = v VPy (1)
- 3\;: [fcr - Va(5cr + Pcr)] + 3:{7 [fcr + Va(5cr + Pcr)],
e/ C?
WelC o . (Via/&*) +b- VP = —(b- V) (blu/®)  (2)
1 1
- m [fcr - Va(gcr + Pcr)] T 3. [fcr + Va(€cr + Pcr)],
aea,i
ot +V. [V(aa,i + Pa,i) + Vabga,i] =V- VPa,i (3)
V. SN
+ = [fer F va(eer + Per)] — Sax- E

3k
+ AIP
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Cosmic ray transport Introduction
CR hydrodynamics

Non-equilibrium CR streaming and diffusion

Coupling the evolution of CR and Alfvén wave energy densities
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tp_2018_fig_2.mov
Media File (video/quicktime)


Introduction
CR hydrodynamics

Cosmic ray transport

Non-equilibrium CR streaming and diffusion

Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Cosmic ray transport Introduction
CR hydrodynamics

Steady CR source: CR Alfvén wave heating

LOOF g0 ]
105}
0.75
10—6 L
50501 g
107}
0.25¢
10—8 L
0.00
20
100 L
1t
10-1}
0 g
B = 1072
—1F )
10—3 L
-2
L N
_9 0 2 -2 0 2




heating_rate.mov
Media File (video/quicktime)


Cosmic ray transport Introduction
CR hydrodynamics

Anisotropic CR streaming and diffusion — AREPO

CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

@ CR streaming and diffusion 100

along magnetic field lines in
the self-confinement picture o
. . . —0.50 3.00
@ moment expansion similar to
radiation hydrodynamics —025
@ accounts for kinetic physics: 0.00 200
non-linear Landau damping, 025 150
gyro-resonant instability, . .. o5 Lo
@ Galilean invariant and causal ., °
transport
1.00 0.
) energy and momentum —1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75
Conservmg Thomas, Pakmor, CP (in prep.) ﬁ
AIP
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Steady-state models
AGN feedback Cosmic rays in jets

Feedback by active galactic nuclei

Paradigm: accreting super-massive black holes at galaxy cluster
centers launch relativistic jets, which provide energetic feedback to
balance cooling = but how?

@ Jacob & CP (2017a,b): study large
sample of

@ spherically symmetric steady-state
solutions where cosmic ray heating
balances radiative cooling

CHANDRA X-RAY

Perseus cluster (NRAO/VLA/G. Taylor) VLA Ridlo

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



AGN feedback

Steady-state models
Cosmic rays in jets

Case study A1795: heating and cooling

Heating, Cooling (ergcm™ s7!)

1075 |

10727 3

10-28 3

102

102 [

A 1795

b F=0.42
E

T
— Her

Heona
— Crad

100
r (kpc)

@ CR heating dominates in the center

@ Her +

Christoph Pfrommer

Jacob & CP (2016a)

, k = 0.42Kgp
~ Crag: Modest mass deposition rate of 1 M, yr—!

Cosmic rays in galaxy cluste




Steady-state models
AGN feedback Cosmic rays in jets

Gallery of solutions: density profiles
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Steady-state models
AGN feedback Cosmic rays in jets

Gallery of solutions: temperature profiles
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Steady-state models
AGN feedback Cosmic rays in jets

Hadronically induced radio emission: NVSS limits
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. . Jacob & CP (2017b)
@ continuous sequence in F, pred/Fu Nvss
@ CR heating viable solution for non-RMH clusters g
@ CR heating solution ruled out in radio mini halos (RMHSs) AIP

Cosmic rays in galaxy clusters feedback



Steady-state models
AGN feedback Cosmic rays in jets

How can we explain these results?

@ self-regulated feedback cycle driven by CRs

=

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

How can we explain these results?

@ self-regulated feedback cycle driven by CRs

AGN injects CRs

=

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

How can we explain these results?

@ self-regulated feedback cycle driven by CRs

AGN injects CRs - CR heating balances
cooling

=

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

How can we explain these results?

@ self-regulated feedback cycle driven by CRs

AGN injects CRs - CR heating balances
cooling

L

CRs stream outwards
and become too dilute
to heat the cluster

a

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

How can we explain these results?

@ self-regulated

AGN injects CRs

feedback cycle driven by CRs

- CR heating balances
cooling

L

CRs stream outwards
and become too dilute
to heat the cluster

p

radio mini halo E

Christoph Pfrommer Cosmic rays in galaxy clusters: transport and feedback



Steady-state models
AGN feedback Cosmic rays in jets

How can we explain these results?

@ self-regulated feedback cycle driven by CRs

AGN injects CRs - CR heating balances
cooling
{
cluster cools and - CRs stream outwards

and become too dilute
to heat the cluster

p

radio mini halo E

triggers AGN activity
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Steady-state models
AGN feedback Cosmic rays in jets

How can we explain these results?

@ self-regulated feedback cycle driven by CRs

AGN injects CRs - CR heating balances
cooling
t !
cluster cools and - CRs stream outwards

and become too dilute
to heat the cluster

p

radio mini halo E

triggers AGN activity
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Steady-state models
AGN feedback Cosmic rays in jets

Self-regulated heating/cooling cycle in cool cores

o0 g do
10 b o®0 N 10 b ‘ 4 .
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& 107! * 1 w0 b SR .
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* 3 * * @ 3 ® e e®
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® RMH
104 | ‘ ~Virgo‘ ‘ ¢ NoRMH 1074k * ‘Virgo e
1072 107! 10 10! 102 103 10 100
SFRig (Mo yr™") eool (kpe)

. . o Jacob & CP (2017b)
possibly CR-heated cool cores vs. radio mini halo clusters:

@ simmering SF: CR heating is effectively balancing cooling
@ abundant SF: heating/cooling out of balance

=

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

Jet simulation: gas density, CR energy density, B field

60 Myr

120+

[kpc]

404

10728 10726 1072 107" 10710 1077 1072
p [g cm™ Cer Jerg cm™3) B [G]

L
Ehlert, Weinberger, CP+ (2018) AIP
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Steady-state models
AGN feedback Cosmic rays in jets

Perseus cluster — heating vs. cooling: theory

Perseus — JPIT: Hq
JP17: Heona
—— JPIT: Crae
. 102° 7 Crad
A
:?,—1
0 107%
g
o
= 1027
10728
! 10 100

r [kpc]
Ehlert, Weinberger, CP+ (2018)
@ CR and conductive heating balance radiative cooling:
Her + Hin = Craq: modest mass deposition rate of 1 Mg yr~! F

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

Perseus cluster — heating vs. cooling: simulations

10~
Perseus — JPIT: Hq
JP17: Heona
10-2° —— JP17: Craq
T —— simulation
i
T
ol
i ------
o
R
=== 30 Myr
50 My1
107
! 10 100

Ehlert, Weinberger, CP+ (2018)
@ CR and conductive heating balance radiative cooling:
Her + Hin & Craq: modest mass deposition rate of 1 Mg yr~! F

@ simulated CR heating rate matches 1D steady state model N

Cosmic rays in galaxy cluste feedback



Steady-state models
AGN feedback Cosmic rays in jets

Conclusions on cosmic rays in clusters

CR hydrodynamics:

@ novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

@ Galilean invariant, energy and momentum conserving

=

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

Conclusions on cosmic rays in clusters

CR hydrodynamics:

@ novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

@ Galilean invariant, energy and momentum conserving

AGN feedback and CRs:
@ steady-state CR heating: self-regulated cooling-heating loop

@ MHD simulations of AGN jets: CR heating can solve the “cooling
flow problem” in galaxy clusters

a

AIP
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Steady-state models
AGN feedback Cosmic rays in jets

CRAGSMAN: The Impact of - osmic " ys on Calaxy and Clu-ter For!\/ /tio

' A
This.project has reeeived funding from the European Research Counsil (ERC) under the European AIP

Union’s Horizon 2020 research and innovatiori program (grant agreement No CRAGSMAN-646955)
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Steady-state models
AGN feedback Cosmic rays in jets

Literature for the talk

Cosmic ray transport:
@ Thomas, Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated
transport of cosmic rays, 2019, MNRAS.
Cosmic ray feedback in galaxy clusters:

@ Jacob & Pfrommer, Cosmic ray heating in cool core clusters I: diversity of steady
state solutions, 2017a, MNRAS.

@ Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation
cycle and non-thermal emission, 2017b, MNRAS.

@ Ehlert, Weinberger, Pfrommer, Pakmor, Springel, Simulations of the dynamics of
magnetised jets and cosmic rays in galaxy clusters, 2018, MNRAS.
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