Cosmic rays and magnetic fields in galaxies

Christoph Pfrommer¹

in collaboration with

T. Thomas¹, M. Pais¹, M. Werhahn¹, K. Ehlert¹, S. Jacob, T. Buck¹, R. Pakmor², C. Simpson³, V. Springel²

< D >

¹AIP Potsdam, ²MPA Garching, ³U of Chicago Cosmic turbulence and magnetic fields, Corsica 2019

Introduction Sedov explosion Proton acceleration

Do cosmic rays matter in galaxy formation?

Introduction Sedov explosion Proton acceleration

Puzzles in galaxy formation

Introduction Sedov explosion Proton acceleration

Puzzles in galaxy formation

Introduction Sedov explosion Proton acceleration

Puzzles in galaxy formation

Introduction Sedov explosion Proton acceleration

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- cosmic-ray pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

Cosmic ray acceleration

Cosmic ray transport Cosmic ray feedback Introduction Sedov explosion Proton acceleration

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin

Cosmic ray acceleration

Cosmic ray transport Cosmic ray feedback Introduction Sedov explosion Proton acceleratio

Galactic cosmic ray spectrum

data compiled by Swordy

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin
- energy density of cosmic rays, magnetic fields, and turbulence in the interstellar gas all similar

Introduction Sedov explosion Proton acceleration

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- cosmic-ray pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

< 🗇 🕨

E >

observed energy equipartition between cosmic rays, thermal gas and magnetic fields not a coincidence

 \rightarrow suggests self-regulated feedback loop with CR driven winds

Cosmic ray acceleration

Cosmic ray transport Cosmic ray feedback Introduction Sedov explosion Proton acceleration

Outline

- Cosmic ray acceleration
 - Introduction
 - Sedov explosion
 - Proton acceleration
- 2 Cosmic ray transport
 - The picture
 - CR hydrodynamics
 - Numerical solutions
- 3 Cosmic ray feedback
 - Modeling physics
 - Galaxy simulations
 - Cosmological simulations

Cosmic ray acceleration

Cosmic ray transport Cosmic ray feedback Introduction Sedov explosion Proton acceleration

Cosmological moving-mesh code AREPO (Springel 2010)

Introduction Sedov explosion Proton acceleration

Sedov explosion

density

1.0 4.0 3.5 0.8 3.0 0.6 2.5 2.0 ~ 0.4 1.5 1.0 0.2 0.5 0.0 0.2 0.4 0.6 0.8 1.0 CP+ (2017a)

specific thermal energy

Introduction Sedov explosion Proton acceleration

Sedov explosion with CR acceleration

density

Introduction Sedov explosion Proton acceleration

Sedov explosion with CR acceleration

adiabatic index

shock evolution

Introduction Sedov explosion Proton acceleration

Ion spectrum Non-relativistic *parallel shock* in long-term hybrid simulation

Caprioli & Spitkovsky (2014)

- quasi-parallel shocks ($\boldsymbol{B} \parallel \boldsymbol{n}_{s}$) accelerate ions
- quasi-perpendicular shocks ($\textbf{B} \perp \textbf{n}_{s}$) cannot
- model magnetic obliquity in AREPO simulations

Introduction Sedov explosion Proton acceleration

TeV γ rays from shell-type SNRs: SN 1006

AREPO simulation

イロト イポト イヨト イヨト

Pais, CP (in prep.)

Christoph Pfrommer

Cosmic rays and magnetic fields in galaxies

Introduction Sedov explosion Proton acceleration

Vela Jr. (obs.)

TeV γ rays from shell-type SNRs: Vela Junior

AREPO simulation

・ロット (四) ・ (日) ・ (日)

Pais, CP (in prep.)

Introduction Sedov explosion Proton acceleration

TeV γ rays from shell-type supernova remnants Varying magnetic coherence scale in simulations of SN1006 and Vela Junior

Cosmic rays and magnetic fields in galaxies

The picture CR hydrodynamics Numerical solutions

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

gyro-orbit of GeV cosmic ray:

$$r_{
m gal} \sim 10^4 \
m pc$$
 $r_{
m cr} = rac{p_\perp}{e \, B_{
m uC}} \sim 10^{-6} \
m pc \sim rac{1}{4} \
m AL$

\Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)

The picture CR hydrodynamics Numerical solutions

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob

▶ < ∃ >

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

The picture CR hydrodynamics Numerical solutions

Interactions of CRs and magnetic fields

sketch: Jacob

ヘロト ヘアト ヘヨト ヘ

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

The picture CR hydrodynamics Numerical solutions

Interactions of CRs and magnetic fields

sketch: Jacob

イロト イポト イヨト イヨト

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

• CRs scatter on magnetic fields \rightarrow isotropization of CR momenta

The picture CR hydrodynamics Numerical solutions

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

The picture CR hydrodynamics Numerical solutions

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

The picture CR hydrodynamics Numerical solutions

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

イロト イポト イヨト イヨ

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling \rightarrow CR stream with waves strong wave damping: less waves to scatter \rightarrow CR diffusion prevails

The picture CR hydrodynamics Numerical solutions

Analogies of CR and radiation hydrodynamics CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
• tangled B , strong scattering	CR diffusion	diffusive transport in clumpy medium
 resolved <i>B</i>, strong scattering 	CR streaming with v a	Thomson scattering ($ au \gg$ 1) $ ightarrow$ advection with $m{v}$
 weak scattering 	CR streaming and diffusion	flux-limited diffusion/ M1 closure ($ au\gtrsim$ 1)
 no scattering 	CR propagation with <i>c</i>	vacuum propagation

Jiang & Oh (2018), Thomas & CP (2019)

< < > < < > <

→ E → < E →</p>

The picture CR hydrodynamics Numerical solutions

Analogies of CR and radiation hydrodynamics CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
 tangled B, strong scattering 	CR diffusion	diffusive transport in clumpy medium
• resolved B , strong scattering	CR streaming with v a	Thomson scattering ($ au \gg$ 1) $ ightarrow$ advection with $m{ u}$
 weak scattering 	CR streaming and diffusion	flux-limited diffusion/ M1 closure ($ au\gtrsim$ 1)
 no scattering 	CR propagation with <i>c</i>	vacuum propagation

Jiang & Oh (2018), Thomas & CP (2019)

イロト イポト イヨト イヨト

but: CR hydrodynamics is charged RHD

ightarrow take gyrotropic average and account for anisotropic transport

The picture CR hydrodynamics Numerical solutions

CR vs. radiation hydrodynamics

- Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2 (Thomas & CP 2019):

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2} \frac{\partial \boldsymbol{f}_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{P}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

イロト イ理ト イヨト イヨト

The picture CR hydrodynamics Numerical solutions

CR vs. radiation hydrodynamics

- Alfvén wave velocity in lab frame: $\boldsymbol{w}_{\pm} = \boldsymbol{v} \pm \boldsymbol{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2 (Thomas & CP 2019):

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2} \frac{\partial \boldsymbol{f}_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{P}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \mathbf{f} = -\sigma_{s} \mathbf{v} \cdot [\mathbf{f} - \mathbf{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \mathbf{f}}{\partial t} + \nabla \cdot \mathbf{P} = -\sigma_{s} \quad [\mathbf{f} - \mathbf{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \mathbf{v}$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The picture CR hydrodynamics Numerical solutions

CR vs. radiation hydrodynamics

- Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2 (Thomas & CP 2019):

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2} \frac{\partial \boldsymbol{f}_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{P}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \mathbf{f} = -\sigma_{s} \mathbf{v} \cdot [\mathbf{f} - \mathbf{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \mathbf{f}}{\partial t} + \nabla \cdot \mathbf{P} = -\sigma_{s} \quad [\mathbf{f} - \mathbf{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \mathbf{v}$$

• problem: CR lab-frame equation requires resolving rapid gyrokinetics!

The picture CR hydrodynamics Numerical solutions

Alfvén-wave regulated CR transport

 comoving equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c² and Alfvén-wave energy densities ε_{a,±} (Thomas & CP 2019)

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot [\boldsymbol{\nu}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) + \boldsymbol{b}f_{\rm cr}] = \boldsymbol{\nu} \cdot \boldsymbol{\nabla}\boldsymbol{P}_{\rm cr} - \frac{\boldsymbol{v}_{\rm a}}{3\kappa_{+}} \left[f_{\rm cr} - \boldsymbol{v}_{\rm a}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] + \frac{\boldsymbol{v}_{\rm a}}{3\kappa_{-}} \left[f_{\rm cr} + \boldsymbol{v}_{\rm a}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right],$$

$$\frac{\partial f_{\rm cr}/c^2}{\partial t} + \boldsymbol{\nabla} \cdot \left(\boldsymbol{\nu} f_{\rm cr}/c^2 \right) + \boldsymbol{b} \cdot \boldsymbol{\nabla} P_{\rm cr} = -(\boldsymbol{b} \cdot \boldsymbol{\nabla} \boldsymbol{\nu}) \cdot (\boldsymbol{b} f_{\rm cr}/c^2) \\ - \frac{1}{3\kappa_+} \left[f_{\rm cr} - v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right] - \frac{1}{3\kappa_-} \left[f_{\rm cr} + v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right],$$

$$\begin{split} \frac{\partial \varepsilon_{\mathrm{a},\pm}}{\partial t} + \boldsymbol{\nabla} \cdot \left[\boldsymbol{\nu} (\varepsilon_{\mathrm{a},\pm} + \boldsymbol{P}_{\mathrm{a},\pm}) \pm \boldsymbol{\nu}_{\mathrm{a}} \boldsymbol{b} \varepsilon_{\mathrm{a},\pm} \right] &= \boldsymbol{\nu} \cdot \boldsymbol{\nabla} \boldsymbol{P}_{\mathrm{a},\pm} \\ &\pm \frac{\boldsymbol{\nu}_{\mathrm{a}}}{3\kappa_{\pm}} \left[f_{\mathrm{cr}} \mp \boldsymbol{\nu}_{\mathrm{a}} (\varepsilon_{\mathrm{cr}} + \boldsymbol{P}_{\mathrm{cr}}) \right] - \boldsymbol{S}_{\mathrm{a},\pm}. \end{split}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Image: A 1 = 1

The picture CR hydrodynamics Numerical solutions

Non-equilibrium CR streaming and diffusion Coupling the evolution of CR and Alfvén wave energy densities

The picture CR hydrodynamics Numerical solutions

Non-equilibrium CR streaming and diffusion Varying damping rate of Alfvén waves modulates the diffusivity of solution

Christoph Pfrommer

Cosmic rays and magnetic fields in galaxies

The picture CR hydrodynamics Numerical solutions

Anisotropic CR streaming and diffusion – AREPO CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

- CR streaming and diffusion along magnetic field lines in the self-confinement picture
- moment expansion similar to radiation hydrodynamics
- accounts for kinetic physics: non-linear Landau damping, gyro-resonant instability, ...
- Galilean invariant and causal transport
- energy and momentum conserving

Modeling physics Galaxy simulations Cosmological simulations

Simulations – flowchart

observables:

physical processes:

э

CP+ (2017a)

Modeling physics Galaxy simulations Cosmological simulations

Simulations with cosmic ray physics

observables:

physical processes:

Modeling physics Galaxy simulations Cosmological simulations

Simulations with cosmic ray physics

observables:

physical processes:

Modeling physics Galaxy simulations Cosmological simulations

Simulations with cosmic ray physics

observables:

physical processes:

Modeling physics Galaxy simulations Cosmological simulations

Gamma-ray emission of the Milky Way

Christoph Pfrommer

Cosmic rays and magnetic fields in galaxies

Modeling physics Galaxy simulations Cosmological simulations

Galactic wind in the Milky Way? Fermi gamma-ray bubbles

Modeling physics Galaxy simulations Cosmological simulations

Galaxy simulation setup: 1. cosmic ray advection

CP, Pakmor, Schaal, Simpson, Springel (2017a) Simulating cosmic ray physics on a moving mesh MHD + cosmic ray advection: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

Modeling physics Galaxy simulations Cosmological simulations

Time evolution of SFR and energy densities

CP+ (2017a)

- CR pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic dynamo faster in Milky Way galaxies than in dwarfs

Modeling physics Galaxy simulations Cosmological simulations

MHD galaxy simulation without CRs

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

Modeling physics Galaxy simulations Cosmological simulations

MHD galaxy simulation with CRs

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

Modeling physics Galaxy simulations Cosmological simulations

Galaxy simulation setup: 2. cosmic ray diffusion

Pakmor, CP, Simpson, Springel (2016) Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies

MHD + CR advection + diffusion: 10¹¹ M_☉

Modeling physics Galaxy simulations Cosmological simulations

MHD galaxy simulation with CR diffusion

Pakmor, CP, Simpson, Springel (2016)

- CR diffusion launches powerful winds
- simulation without CR diffusion exhibits only weak fountain flows

Modeling physics Galaxy simulations Cosmological simulations

Cosmic ray driven wind: mechanism

CR streaming in 3D simulations: Uhlig, CP+ (2012), Ruszkowski+ (2017) CR diffusion in 3D simulations: Jubelgas+ (2008), Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014), Pakmor, CP+ (2016), Simpson+ (2016), Girichidis+ (2016), Dubois+ (2016), CP+ (2017b), Jacob+ (2018)

Modeling physics Galaxy simulations Cosmological simulations

CR-driven winds: dependence on halo mass

Modeling physics Galaxy simulations Cosmological simulations

CR-driven winds: suppression of star formation

Modeling physics Galaxy simulations Cosmological simulations

Galaxy simulation setup: 3. non-thermal emission

CP, Pakmor, Simpson, Springel (2017b, in prep.) Simulating radio synchrotron and gamma-ray emission in galaxies MHD + CR advection + diffusion: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

Modeling physics Galaxy simulations Cosmological simulations

Simulation of Milky Way-like galaxy, t = 0.5 Gyr

Modeling physics Galaxy simulations Cosmological simulations

Simulation of Milky Way-like galaxy, t = 1.0 Gyr

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies

Modeling physics Galaxy simulations Cosmological simulations

γ -ray and radio emission of Milky Way-like galaxy

Modeling physics Galaxy simulations Cosmological simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Modeling physics Galaxy simulations Cosmological simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Modeling physics Galaxy simulations Cosmological simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Modeling physics Galaxy simulations Cosmological simulations

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Modeling physics Galaxy simulations Cosmological simulations

Cosmic rays in cosmological galaxy simulations

The galaxy formation model

- primordial and metal line cooling
- sub-resolution model for star formation (Springel+ 03)
- mass and metal return from stars to ISM
- cold dense gas stabilised by pressurised ISM
- thermal and kinetic energy from supernovae modelled by isotropic wind – launched outside of SF region
- black hole seeding and accretion model (Springel+ 05)
- thermal feedback from AGN in radio and quasar mode
- uniform magnetic field of 10^{-10} G seeded at z = 128

Simulation suite (Buck, CP+ 2019)

- 2 galaxies, baryons with $5 \times 10^4 \, M_\odot \sim 5 \times 10^6$ resolution elements in halo, 2×10^6 star particles
- 4 models with different CR physics for each galaxy:
 - no CRs
 - CR advection
 - + CR anisotropic diffusion
 - + CR Alfvén wave cooling

Christoph Pfrommer

Cosmic rays and magnetic fields in galaxies

Modeling physics Galaxy simulations Cosmological simulations

Cosmic rays in cosmological galaxy simulations Auriga MHD models: CR transport changes disk sizes

Modeling physics Galaxy simulations Cosmological simulations

Cosmic rays in cosmological galaxy simulations Auriga MHD models: CR transport modifies CGM flow structure

- noCR and CRdiffalfven simulations: gas is accreted outside the wind cones from large distances (blue streamlines)
- CRadv and CRdiff simulations: more spherically symmetric outflows (red streamlines) and CR pressurised gaseous haloes held up the gas

< 🗇 🕨

Modeling physics Galaxy simulations Cosmological simulations

Cosmic rays in cosmological galaxy simulations Auriga MHD models: CR transport modifies the circum-galactic medium

Christoph Pfrommer

Cosmic rays and magnetic fields in galaxies

Modeling physics Galaxy simulations Cosmological simulations

Conclusions for cosmic ray physics in galaxies

CR acceleration:

- TeV shell-type SNRs probe magnetic coherence scale in ISM
- global SNR sim's explain observed TeV gamma-ray maps with prescriptions from plasma sim's of p⁺ acceleration

Modeling physics Galaxy simulations Cosmological simulations

Conclusions for cosmic ray physics in galaxies

CR acceleration:

- TeV shell-type SNRs probe magnetic coherence scale in ISM
- global SNR sim's explain observed TeV gamma-ray maps with prescriptions from plasma sim's of p⁺ acceleration

CR hydrodynamics:

- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Modeling physics Galaxy simulations Cosmological simulations

Conclusions for cosmic ray physics in galaxies

CR acceleration:

- TeV shell-type SNRs probe magnetic coherence scale in ISM
- global SNR sim's explain observed TeV gamma-ray maps with prescriptions from plasma sim's of p⁺ acceleration

CR hydrodynamics:

- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

CR feedback in galaxy formation:

- CR feedback drives galactic winds & slows down star formation
- CRs modify disk sizes and the circumgalactic medium

イロト イポト イヨト イヨ

Modeling physics Galaxy simulations Cosmological simulations

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Christoph Pfrommer

Cosmic rays and magnetic fields in galaxies

Modeling physics Galaxy simulations Cosmological simulations

Literature for the talk – 1

Cosmic ray transport:

 Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS.

Cosmic ray acceleration:

- Pais, Pfrommer, Ehlert, Pakmor, The effect of cosmic-ray acceleration on supernova blast wave dynamics, 2018, MNRAS.
- Pais, Pfrommer, Ehlert, Werhahn, Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants, 2019, subm.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Modeling physics Galaxy simulations Cosmological simulations

Literature for the talk – 2

Cosmic ray feedback in galaxies:

- Pakmor, Pfrommer, Simpson, Springel, Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies, 2016, ApJL.
- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017a, MNRAS.
- Pfrommer, Pakmor, Simpson, Springel, Simulating gamma-ray emission in star-forming galaxies, 2017b, ApJL.
- Jacob, Pakmor, Simpson, Springel, Pfrommer, The dependence of cosmic ray driven galactic winds on halo mass, 2018, MNRAS.
- Buck, Pfrommer, Pakmor, Grand, Springel, *The effects of cosmic rays on the formation of Milky Way-like galaxies in a cosmological context,* submitted

イロト イ理ト イヨト イヨト