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Galactic winds
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Introduction Puzzles in galaxy formation
Galactic winds
Cosmic rays

Feedback by galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

supernova Cassiopeia A

X-ray: NASA/CXC/SAQ; Optical: NASA/STScl;
Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.
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Introduction Puzzles in galaxy formation
Galactic winds
Cosmic rays

Feedback by galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA
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Introduction Puzzles in galaxy formation
Galactic winds
Cosmic rays

Feedback by galactic winds

@ galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

@ critical for understanding the
physics of galaxy formation
— may explain puzzle of low
star conversion efficiency in
dwarf galaxies

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA

a
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Introduction Puzzles in galaxy formation
Galactic winds
Cosmic rays

How are galactic winds driven?

@ thermal pressure provided by
supernovae or active galactic
nuclei?

by massive
stars and quasars?

@ pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA
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Introduction Puzzles in galaxy formation
Galactic winds
Cosmic rays

How are galactic winds driven?

@ thermal pressure provided by
supernovae or active galactic
nuclei?

by massive
stars and quasars?

@ pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

super wind in M82 @ energy density of CRs,
NASA/JPL-Caltech/STScl/CXC/UofA magnetic fie|ds, and |SM
turbulence all similar —
= important feedback agent E

AIP
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Introduction Puzzles in galaxy formation
Galactic winds
Cosmic rays

Galactic cosmic ray spectrum
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Introduction

Puzzles in galaxy formation
Galactic winds
Cosmic rays

Galactic cosmic ray spectrum

Cosmic Ray
energy spectrum

10° | m2s!
10° 89% protons

10% “He (alphas)
0% 1% mostly e (betas)

F (m?srs Gev)'
=)
%

I m2yr!
y

| km?yr!

10 10’ 10 10 107 10" e
E (eV)
data compiled by Swordy

spans more than 33 decades in
flux and 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin

energy density of cosmic rays is
dominated by GeV energies

= grey approach sufficient for
feedback studies (Girichidis+ 2024) F

AIP
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Introduction

Cosmic rays

Review on cosmic ray feedback

Astron Astrophys Rev (2023)31:4
https://doi.org/10.1007/500159-023-00149-2

REVIEW ARTICLE

‘)

Check for
Updates

Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration,
transport, observables, and dynamical impact of cosmic rays

Mateusz Ruszkowski' - Christoph Pfrommer?

- GLOBAL

COSMO

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy: gyro-orbit of GeV CR:
rya ~ 10% pc _ P 40-8pc .t

a

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy: gyro-orbit of GeV CR:

rya ~ 10% pc _ P 40-8pc .t

gal p Ior eB.o 107° pc 2 AU
= link kinetic plasma physics to macroscopic MHD models on
galactic scales! E
Zweibel (2017), Thomas & CP (2019) TAIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

What is gyro resonance?

plane wave: exp(—ik(X — wavel))

=

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

What is gyro resonance?

plane wave: exp(—ik(X — wavel))

cosmic ray: v movement along By
Qq gyration frequency

=

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

What is gyro resonance?

plane wave: exp(—lk(X _ VWaVe t)) Comoving, corotating frame

cosmic ray: v movement along By
Qq gyration frequency

resonance condition:

gyration  Doppler shift ~ wave frequency
~~ = — v
Qo + KV = KVwave /

=)

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

What is gyro resonance?

plane wave: exp(—lk(X _ VWaVe t)) Comoving, corotating frame

cosmic ray: v movement along By
Qq gyration frequency

resonance condition:

gyration  Doppler shift  wave frequency
— el

~=~ ~= p
Qor + kv = Kvvave /
. SN
Resonant wave appears static to CR! test particle without interactions! E

AIP
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Media File (video/mp4)


Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

=
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Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

=
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

=
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F. = q&CB

=

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F. = q&CB

@ Lorentz force depends on relative phase of CR gyro orbit and wave: —=
@ sketch: decelerating Lorentz force along CR orbit — p; decreases E
@ phase shift by 180°: accelerating Lorentz force — p; increases AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy

=

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase

a
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase

BN
@ this increases the CR pitch angle cosine = cos6 = % . % E
AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

=

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

pic
L — -
I rg qB
N
@ gyro resonance: w — kv = Qe = ”quBic E

Doppler-shifted MHD frequency is a multiple n of the CR gyro frequency AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

pic
L — -
I rg qB
N
@ gyro resonance: w =KV = nQer = ”quBic E

Doppler-shifted MHD frequency is a multiple n of the CR gyro frequency AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

The mechanism of CR-driven instabilities

@ goal: understand collective
behaviour of many CRs

=

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

The mechanism of CR-driven instabilities

@ goal: understand collective
behaviour of many CRs

@ parallel Lorentz force accelerates
CRs towards closest wave field

=

AIP

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

The mechanism of CR-driven instabilities

@ goal: understand collective
behaviour of many CRs

@ parallel Lorentz force accelerates
CRs towards closest wave field

@ CRs align rotational phase with
plasma wave

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

The mechanism of CR-driven instabilities

@ goal: understand collective
behaviour of many CRs

@ parallel Lorentz force accelerates
CRs towards closest wave field

@ CRs align rotational phase with
plasma wave

@ CR current wave interacts with
electro-magnetic wave

fluid-PIC simulation (Lemmerz+ 2025) AIP
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magnetic_field_particles_many_1.mp4
Media File (video/mp4)


Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

The mechanism of CR-driven instabilities

@ goal: understand collective
behaviour of many CRs

@ parallel Lorentz force accelerates
CRs towards closest wave field

@ CRs align rotational phase with
plasma wave

@ CR current wave interacts with
electro-magnetic wave

@ CR trapping in Lorentz force
potential saturates instability

fluid-PIC simulation (Lemmerz+ 2025) AIP
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magnetic_field_particles_many_2.mp4
Media File (video/mp4)


Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Growth of forward and backward moving waves

t=0.85% wration t=0.85t . uration

7N o
7 \ 7 t‘\
L, ':\ ‘ o
) ; SN
forward Alfven, backward Alfvén E
Whistler Lemmerz+ (2025) AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Growth of forward and backward moving waves

t=0.85% wration t=0.85t . uration

7N o
7 \ 7 t‘\
L, ':\ ‘ o
) ; SN
forward Alfven, backward Alfvén E
Whistler Lemmerz+ (2025) AIP
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magnetic_field_particles_many_1_B_reencode.mp4
Media File (video/mp4)


Wave-particle interactions

Cosmic ray transport CR-driven instabilities
Radio harps

Growth of forward and backward moving waves

bunching theory:
@ bunchingin CR
gyro phase

@ biased CR
scattering, favors
wave growth

t=0.85% wration t=0.85t . uration

forward Alfvén, backward Alfvén
Whistler Lemmerz+ (2025) AIP

Christoph Pfrommer Cosmic ray feedback in galaxy formation
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Wave-particle interactions

Cosmic ray transport CR-driven instabilities
Radio harps

Growth of forward and backward moving waves

bunching theory:
@ bunchingin CR
gyro phase
@ biased CR

scattering, favors
wave growth

t=0.85% wration t=0.85t . uration

traditional,
quasilinear theory:

@ assumes uniform ¢

@ diffusive scattering,
no backward wave
growth

, S
forward Alfvén, backward Alfvén -]
Whistler Lemmerz+ (2025) AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Cosmic ray streaming and diffusion

@ CR streaming instability:
Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

a

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Cosmic ray streaming and diffusion

@ CR streaming instability:
Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves

a

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Cosmic ray streaming and diffusion

@ CR streaming instability:
Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling — CR stream with waves E

strong wave damping: less waves to scatter — CR diffusion prevails
AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Modes of CR propagation

advection
AONC 1.0

0.8
0.6
043

0.2

2fchaur

—_——— 0.0

Uadvt —
Thomas, CP, EnBlin (2020) E

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Modes of CR propagation

advection diffusion
T

1.0
0.8
0.6
043

0.2

2fchaur

—_——— — 0.0

Uadvt V 2kt >

Thomas, CP, EnBlin (2020) E
AIP
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Cosmic ray transport

Modes of CR propagation

Wave-particle interactions
CR-driven instabilities
Radio harps

advection diffusion streaming 0
g T - N .
0.8
0.6 2
0.4
s —— — — 0.0
Vadvl 2kt Vat

Christoph Pfrommer

Thomas, CP, EnBlin (2020)

Cosmic ray feedback in galaxy formation
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MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)
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MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Radio synchrotron harps: the model

shock acceleration scenario

B
CRs
ISM T~
~
>
termination shock
N -
con?act layer
CRs
bow shock
Thomas, CP, EnBlin (2020) E

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Radio synchrotron harps: the model

shock acceleration scenario magnetic reconnection at pulsar wind

CRs

AN

St ok \\ S
ermination shocl & inati

.~ N termination shock

~
contact layer nt
oRe \ R \ contact layer
I's I's

bow shock bow shock

Thomas, CP, EnBlin (2020)

=
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Radio synchrotron harps: the model

shock acceleration scenario CR diffusion vs. streaming + diffusion
— »
B CRs x10~12 o0
8 {diffusion
59 50
=2 0
7 - =
£ 8 {streaming + o 2
S 6 _dif‘fnsi()nh 30 .2
termination shock ED'
\_.\ 0:1
contact layer <
CRs a1
O

bow shock

Thomas, CP, EnBlin (2020)

AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Radio synchrotron harps: testing CR propagation

=

Haywood+ (Nature, 2019) AIP
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Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Radio synchrotron harps: testing CR propagation

lateral radio profiles

4.0 == background | pe

— signal

1.5 ,/_“' j ‘:
1.0 1
0.5 1

0.0 M

—0.045 —0.030 —0.015  0.000 0.015 0.030
arc length [°]

Thomas, CP, EnBlin (2020)

—=
Haywood+ (Nature, 2019) -AIP_

Cosmic ray feedback in galaxy formation



Wave-particle interactions
Cosmic ray transport CR-driven instabilities
Radio harps

Radio synchrotron harps: testing CR propagation

CR diffusion

4.01 == background | pe

simulation
— signal

1.5 ,/_"' j ‘:
1.0 1
0.5 1

0.0 MW\

—0.045 —0.030 —0.015  0.000 0.015 0.030
arc length [°]

Thomas, CP, EnBlin (2020)

—=
Haywood+ (Nature, 2019) -AIP_
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Cosmic ray transport

Wave-particle interactions
CR-driven instabilities
Radio harps

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

0.0
—0.045 —0.030 —0.015  0.000 0.01¢

CR streaming and diffusion

1 —— background
simulation

— signal

1 pe

T

arc length [°]

Thomas, CP, EnBlin (2020)
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Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Cosmic ray transport in galaxies

@ CR transport in galaxies
demands modeling
non-linear Landau damping
(in warm/hot phase) and
ion-neutral damping (in disk)

this requires resolving the
multi-phase structure of the
ISM

development of CRISP
framework (

Thomas+ 2025)

=
HST mock image of CRISPy Milky Way Thomas+ (in prep.) E

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling
CRISP framework

Cosmic Rays and InterStellar Physics

A CR « 3(oJ: Feedback

~

Thomas, CP, Pakmor (2025)
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Multi-phase ISM
Cosmic ray driven winds

Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

CRISP framework o) Feedback
Cosmic Rays and InterStellar Physics i, T (%
A o

Full H — H, — He chemistry

sets ionization degree

K Chemistry

First ionization stages of C — O — Si

low temperature cooling

Photoelectric heating by dust

Thomas, CP, Pakmor (2025)

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

CRISP framework A CR

Cosmic Rays and InterStellar Physics

Improved SNe treatment (manifestly isotropic)

and stellar winds

Feedback

~

FUV NUV OPT radiation fields (reverse ray tracing)

absorbed by dust — impacting A Chemistry

Metal enrichment

Thomas, CP, Pakmor (2025)

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

CRISP framework @ Feedback

Cosmic Rays and InterStellar Physics

g

- S

Novel CR hydrodynamics Follow Ecr

coarse graining plasma physics and Ucr

CR ionization Self-consistently
impacting £l Chemistry evolve Kcr

CR microphysics

Thomas, CP, Pakmor (2025)

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Introduction Multi-phase ISM
Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

| E— ]
0% 102 10%

i .“‘/';)" oy ,,‘):'.“ ) i ) N w".\',‘j/- 3,,4( A
Thomas, CP, Pakmor (2025) .~ = . " (. 7577 bk ‘
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Introduction Multi-phase ISM
Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves
CRMHD - 5" J77 ooy ™% ] DR T al” S * 4 MHD
i P it . 10210 10% /

Y [Hem™?

Thomas, GP, Pakmor (2025) N a7 o
Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Simulated Milky Way: surface density

Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Ilem=2
10 10%° 10*' 10%

CRMHD MHD

Christoph Pfrommer Cosmic ray feedback in galaxy formation



comparision_beauty.mov
Media File (video/quicktime)


Introduction Multi-phase ISM
Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter

" T [K]
CRMHD 10 10° 10 MHD

<
£ a

Christoph Pfrom i feedback in galaxy formation
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Introduction Multi-phase ISM
Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

Cosmic rays make galactic winds much denser

CRMHD [— ] MHD
101 102 10*! 10%
3 [Hem™?)

5 kpe

Thomas, CP, Pakmor (2025)
Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Cosmic ray driven wind: mechanism

CRMHD MHD
= Pram R < 5 kpe R < 5 kpe
galactic centre galactic centre
Tnag
10t 104
T
g
o
m
2103 103
e
2
g
5102 1 10?
10! 10t
-75 -5 =25 0 25 50 75 -75 -5 =25 0 25 50 75

Thomas, CP, Pakmor (2025)

@ CR pressure gradient dominates over thermal and ram pressure
gradient and drives outflow: F
AIP

|V Pe + VPp| > p|VO|

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Mass and energy loading factors

hY
= CRHD
==+ MHD

vl
N
)
7/

SFR Mg yr

0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]

Thomas, CP, Pakmor (2025) AIP
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Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Mass and energy loading factors

hY
= CRHD

$20%

0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]

Ly

SFR M

Thomas, CP, Pakmor (2025) AIP
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Vulti-phase ISM

Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Mass and energy loading factors

= CRHD
==+ MHD

Ly

Py -
-
%
¥20%
0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]

SFR M

= outflow

inflow

0.0 0.2 0.4 0.6 0.8 1.0
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Conclusions

Plasma instabilities and CR transport:

@ Mechanism of CR-driven plasma-instabilities understood:
important for setting CR transport speed and feedback strength

o
developed and coupled to magneto-hydrodynamics

@ self-generated diffusion coefficient emerges from CR-wave
interactions: validated at radio harps

a
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Conclusions

Plasma instabilities and CR transport:

@ Mechanism of CR-driven plasma-instabilities understood:
important for setting CR transport speed and feedback strength

o
developed and coupled to magneto-hydrodynamics

@ self-generated diffusion coefficient emerges from CR-wave
interactions: validated at radio harps

CR feedback in galaxy formation:

@ CR feedback mildly suppresses star formation because of strong
ion-neutral damping in disk, which weakens CR coupling

@ CR feedback drives powerful galactic winds

I
@ CR feedback increases mass and energy loading factors =
AIP

Christoph Pfrommer Cosmic ray feedback in galaxy formation
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Literature for the talk — 2
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Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

a

AIP
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Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase . ’

- stretch
transition in the early universe or 2. by
the Biermann battery

@ Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which Tmerge
the kinetic (turbulent) energy is

converted into magnetic energy: the

mechanism relies on magnetic fields to D<‘ )
become stronger when the field lines are fold

stretched N

a

AIP

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase m
transition in the early universe or 2. by
the Biermann battery
@ Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which Tmerge twistl
the kinetic (turbulent) energy is

become stronger when the field lines are
stretched

@ Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and S
folding motions E

converted into magnetic energy: the
mechanism relies on magnetic fields to D<‘ )
fold

AIP
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Galaxy simulations with cosmic rays

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared—radio correlation

MHD + cosmic ray advection + diffusion: {10'®,10"",3 x 10"",10"?} Mg AIP

=)
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Time evolution of SFR and energy densities

T T T T

10? CR adv — My =10"M, |
— CRdiff — Mo =10"M,

— My = 10"M,

M, Mo yr']

1
0.0 0.5 1.0 15 2.0 2.5 3.0

time [Gyr]
CP+ (2022)

@ cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

a
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Time evolution of SFR and energy densities

T T T T
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CP+ (2022)

@ cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

o A
@ magnetic growth faster in Milky Way galaxies than in dwarfs i
AIP
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|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)
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|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)
@ 2" phase: with small
dynamical times tyyn ~ (Gp)~'/2 _E
AIP
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|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)

@ 2" phase: with small
dynamical times tyyn ~ (Gp)~'/2 _E
AIP

ristoph Pfrommer Cosmic ray feedback in galaxy formation
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108

@ 1% phase: adiabatic growth (independent of resolution)

a
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108
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Kinetic and magnetic power spectra

Fluctuating small-scale dynamo in different analysis regions
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@ Ep(k) superposition of form factor and turbulent spectrum E
@ pure turbulent spectrum outside steep central B profile AIP
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Galactic radio emission

Irwin+ (2024)
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Steady-state cosmic ray spectra

@ solve the steady-state equation in every cell for each CR population:
N(E d
ME) ¢ iveyee) = aeE)

TCSC
(] Coulomb, hadronic and escape losses (re-normalized to e¢r)
@ electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
@ primaries (re-normalized using Kep = 0.02)
@ secondaries

a

AIP
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Steady-state cosmic ray spectra

@ solve the steady-state equation in every cell for each CR population:
N(E d
MEY < nEp(E) = aE)
() Coulomb, hadronic and escape losses (re-normalized to ecr)
@ electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
@ primaries (re-normalized using Kep = 0.02)
@ secondaries

@ steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows

1.0 7 T T
B weighted with ecr

08|

10— 1O
weighted with weighted with
By, emission By emission

06|

=

AIP

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
log(rcr/Tan) log(rcr/Tan) log(tcr/Tan) Werhahn+ (2021a)
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Simulated radio emission: 10'2 M, halo

fe(10 GeV) Icm" GeV~™ I \/}F [ 1.4 GHz Im]y rcmin’zl

10714 10713 10712 1072 107! 10° 10! 107 102 107" 100 10" 102 10}
Moo = 1012 M, anisotropic CR diffusion
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x [kpe] x [kpe]

CP+ (2022)
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Simulated radio emission: 10" M., halo

f(10 GeV) Icm" GeV"I VB (1G] 114 GHz Il“ y
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CP+ (2022)
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Far infra-red — radio correlation

Universal conversion: star formation — cosmic rays — radio
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Radio-ray spectra of starburst galaxies

NGC 253 M82
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Werhahn, CP+ (2021c)
@ synchrotron spectra too steep (cooling + diffusion losses) —

AIP
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Radio-ray spectra of starburst galaxies

NGC 253 M2
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@ synchrotron spectra too steep (cooling + diffusion losses)

SN
@ synchrotron absorption (low-v) and thermal free-free emission E
(high-v) AIP
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Radio-ray spectra of starburst galaxies

NGC 253 M82
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@ synchrotron spectra too steep (cooling + diffusion losses)

S
@ synchrotron absorption (low-v) and thermal free-free emission E
(high-v) required to match (total and central) spectra ATP
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