Electron and proton acceleration at supernova remnant shocks

Christoph Pfrommer¹

in collaboration with

PhD students: K. Ehlert,¹ L. Jlassi,¹ R. Lemmerz,¹ J. Whittingham,¹ M. Weber,¹ G. Winner¹
T. Berlok,¹ V. Bresci,¹ P. Girichidis,² M. Pais,³ R. Pakmor,⁴ L. Perrone,¹
M. Shalaby,¹ M. Sparre,^{5,1} T. Thomas,¹ M. Werhahn¹

¹AIP Potsdam, ²U of Heidelberg, ³Hebrew U, ⁴MPA Garching, ⁵U of Potsdam *The Variable Multi-Messenger Sky*, Cracow, Nov 2022

Particle acceleration: an extreme multi-scale problem

supernova remnant:

$$d_{
m SNR} \sim 6 \
m pc \sim 2 imes 10^{19} \
m cm,$$

Particle acceleration: an extreme multi-scale problem

supernova remnant:

plasma skin depth:

$$d_{\mathrm{SNR}} \sim 6 \ \mathrm{pc} \sim 2 \times 10^{19} \ \mathrm{cm}, \quad \lambda_{\mathrm{i}} = rac{c}{\omega_{\mathrm{i}}} \sim 2 \times 10^{7} \ \left(rac{n}{1 \ \mathrm{cm}^{-3}}
ight)^{-1/2} \ \mathrm{cm}$$

Particle acceleration: an extreme multi-scale problem

supernova remnant:

plasma skin depth:

$$d_{\text{SNR}} \sim 6 \text{ pc} \sim 2 \times 10^{19} \text{ cm}, \quad \lambda_i = \frac{c}{\omega_i} \sim 2 \times 10^7 \left(\frac{n}{1 \text{ cm}^{-3}}\right)^{-1/2} \text{ cm}$$

 \Rightarrow need to develop a multi-scale approach: PIC and MHD models!

Outline

- Cosmic ray driven instabilities
 - Introduction
 - Intermediate instability
 - Overview and applications
- 2 Electron acceleration at shocks
 - The problem
 - Electron acceleration
 - Intermediate-scale instability at shocks
- Supernova remnant simulations
 - MHD setup
 - Protons and hadronic emission
 - Electrons and leptonic emission

Introduction Intermediate instability

Overview and applications

Interactions of cosmic rays (CRs) and magnetic fields

Cosmic ray

sketch: Jacob & CP

Introduction Intermediate instability Overview and applications

Interactions of cosmic rays (CRs) and magnetic fields

sketch: Jacob & CP

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

< 🗇 🕨

Introduction Intermediate instability Overview and applications

Interactions of cosmic rays (CRs) and magnetic fields

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

• CRs scatter on magnetic fields \rightarrow isotropization of CR momenta

イロト イポト イヨト イヨト

Introduction Intermediate instability Overview and applications

Cosmic ray scattering with background plasma

- extrinsic confinement: scattering off of turbulent plasma modes injected on the driving scale and cascaded to smaller scales
 - \Rightarrow important for confinement of TeV CRs

Introduction Intermediate instability Overview and applications

Cosmic ray scattering with background plasma

- extrinsic confinement: scattering off of turbulent plasma modes injected on the driving scale and cascaded to smaller scales
 important for confinement of TeV CRs
- intrinsic confinement: CRs drive unstable plasma wave modes (e.g., Alfvén waves), and then scatter off of them
 ⇒ most important mechanism for GeV CR confinement

Image: A matrix

Introduction Intermediate instability Overview and applications

Cosmic ray scattering with background plasma

- extrinsic confinement: scattering off of turbulent plasma modes injected on the driving scale and cascaded to smaller scales
 important for confinement of TeV CRs
- intrinsic confinement: CRs drive unstable plasma wave modes (e.g., Alfvén waves), and then scatter off of them
 ⇒ most important mechanism for GeV CR confinement
- dispersion relation (Ω_{e,0} = -m_i/m_e × Ω_{i,0}, α = n_{cr}/n_i): gyrotropic CR ion + electron beam propagates in background plasma

$$\begin{aligned} \frac{\kappa^2 c^2}{\omega^2} - 1 &= \frac{\omega_i^2}{\omega \left(-\omega \pm \Omega_{i,0}\right)} + \frac{\omega_e^2}{\omega \left(-\omega \pm \Omega_{e,0}\right)} &\Leftarrow \text{ background} \\ \text{CRe} \Rightarrow &+ \frac{\alpha \omega_e^2}{\gamma_e \omega^2} \left\{ \frac{\omega - k v_{\text{dr}}}{k v_{\text{dr}} - \omega \mp \Omega_{e,0} / \gamma_e} \right\} \\ \text{CRi} \Rightarrow &+ \frac{\alpha \omega_i^2}{\gamma_i \omega^2} \left\{ \frac{\omega - k v_{\text{dr}}}{k v_{\text{dr}} - \omega \pm \Omega_i} - \frac{v_{\perp}^2 \left(k^2 c^2 - \omega^2\right) / c^2}{2 \left(k v_{\text{dr}} - \omega \pm \Omega_i\right)^2} \right\} \end{aligned}$$

Introduction Intermediate instability Overview and applications

CR driven instabilities – growth rates

Introduction Intermediate instability Overview and applications

CR driven instabilities – growth rates

Introduction Intermediate instability Overview and applications

CR driven instabilities – growth rates

• new intermediate-scale instability of gyrotropic CR population

Christoph Pfrommer Electron and proton acceleration at supernova remnant shocks

Introduction Intermediate instability Overview and applications

CR driven instabilities – growth rates

• new intermediate-scale instability of gyrotropic CR population

Introduction Intermediate instability Overview and applications

CR driven intermediate-scale instability

low CR drift speed: two instability peaks

Introduction Intermediate instability Overview and applications

CR driven intermediate-scale instability

Introduction Intermediate instability Overview and applications

CR driven intermediate-scale instability

Christoph Pfrommer Electron and proton acceleration at supernova remnant shocks

Introduction Intermediate instability Overview and applications

Cosmic ray driven instabilities

Growth of the intermediate-scale and the gyro-resonant instability

CRs: $\log_{10} f(p_{\parallel}, p_{\perp})$

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

Introduction Intermediate instability Overview and applications

CR driven instabilities: magnetic field growth

Shalaby, Thomas, CP (2021)

э

Introduction Intermediate instability Overview and applications

CR driven instabilities: magnetic field growth

Shalaby, Thomas, CP (2021)

 t ~ t_a: fast magnetic field amplification at scales < d_i: growth of ion cyclotron waves that are comoving with CRs

Introduction Intermediate instability Overview and applications

CR driven instabilities: magnetic field growth

Shalaby, Thomas, CP (2021)

- t ~ t_a: fast magnetic field amplification at scales < d_i: growth of ion cyclotron waves that are comoving with CRs
- t ~ t_c: instability starts to grow on larger, gyro-resonant scale d_i: growth of resonant Alfvén waves

Electron acceleration at shocks Supernova remnant simulations Introduction Intermediate instability Overview and applications

CR driven instabilities: momentum distribution

Electron acceleration at shocks Supernova remnant simulations Introduction Intermediate instability Overview and applications

CR driven instabilities: momentum distribution

electromagnetic wave with v_{ph} interacting with particle of velocity (v_x , v_y , v_z):

$$\dot{K}_{\parallel} = \frac{m}{2} \frac{dv_x^2}{dt} = qv_x(v_y B_z - v_z B_y)$$

$$\dot{K}_{\perp} = \frac{m}{2} \frac{dv_{\perp}^2}{dt} = -q[(v_x - v_{ph})v_y B_z - (v_x - v_{ph})v_z B_y]$$

Electron acceleration at shocks Supernova remnant simulations Introduction Intermediate instability Overview and applications

CR driven instabilities: momentum distribution

electromagnetic wave with v_{ph} interacting with particle of velocity (v_x , v_y , v_z):

$$\begin{aligned} \dot{K}_{\parallel} &= \frac{m}{2} \frac{dv_x^2}{dt} = qv_x(v_y B_z - v_z B_y) \\ \dot{K}_{\perp} &= \frac{m}{2} \frac{dv_{\perp}^2}{dt} = -q\left[(v_x - v_{ph})v_y B_z - (v_x - v_{ph})v_z B_y\right] \\ \bullet \ t \sim t_a: \quad v_x \approx v_{ph} \quad \Rightarrow \quad \dot{K}_{\perp} \approx 0: \qquad \text{parallel scattering only} \end{aligned}$$

Electron acceleration at shocks Supernova remnant simulations Introduction Intermediate instability Overview and applications

CR driven instabilities: momentum distribution

electromagnetic wave with v_{ph} interacting with particle of velocity (v_x , v_y , v_z):

$$\begin{aligned} \dot{K}_{\parallel} &= \frac{m}{2} \frac{dv_x^2}{dt} = qv_x(v_y B_z - v_z B_y) \\ \dot{K}_{\perp} &= \frac{m}{2} \frac{dv_{\perp}^2}{dt} = -q\left[(v_x - v_{ph})v_y B_z - (v_x - v_{ph})v_z B_y\right] \\ \bullet \ t \sim t_a: \quad v_x \approx v_{ph} \quad \Rightarrow \quad \dot{K}_{\perp} \approx 0: \quad \text{parallel scattering only} \\ \bullet \ t \sim t_c: \quad v_{ph} \approx 0 \quad \Rightarrow \quad \dot{K}_{\perp} \approx -\dot{K}_{\parallel}: \quad \text{energy-conserving scattering} \quad \overset{\text{AIP}}{\longrightarrow} \end{aligned}$$

Introduction Intermediate instability Overview and applications

Regimes of CR driven instabilities

Shalaby, Thomas, CP (2021)

• where $\alpha = \frac{n_{cr}}{n_i}$ is the CR number fraction, $m_r = \frac{m_i}{m_e}$ is the mass ratio, and γ_i is the Lorentz factor of CR ions

Introduction Intermediate instability Overview and applications

The intermediate-scale instability

Properties of the intermediate-scale instability:

- growth rate $\Gamma_{inter} \gg \Gamma_{gyro}$ and excites broad spectral support
- unstable modes are background ion-cyclotron waves in the comoving CR frame
- condition for growth:

$$rac{v_{
m dr}}{v_{
m A}} < rac{1}{2} \sqrt{rac{m_{
m i}}{m_{
m e}}}$$

イロト 不得 とくほ とくほう

Introduction Intermediate instability Overview and applications

The intermediate-scale instability

Properties of the intermediate-scale instability:

- growth rate $\Gamma_{inter} \gg \Gamma_{gyro}$ and excites broad spectral support
- unstable modes are background ion-cyclotron waves in the comoving CR frame
- condition for growth:

$$rac{v_{
m dr}}{v_{
m A}} < rac{1}{2} \sqrt{rac{m_{
m i}}{m_{
m e}}}$$

Possible implications of this new instability:

- couples CRs more tightly to background plasma and strengthens CR feedback in galaxies and galaxy clusters
- slows down CR escape from the sites of particle acceleration → brighter gamma-ray halos
- enables electron heating at shocks and injection into diffusive shock acceleration

The problem Electron acceleration Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:

• gyro-radii: $r_e = \frac{m_e}{m_i} r_i \Rightarrow$ electrons do *random walk* through the shock transition; no coherent electrostatic shock potential

The problem Electron acceleration Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:

- gyro-radii: $r_e = \frac{m_e}{m_i} r_i \Rightarrow$ electrons do *random walk* through the shock transition; no coherent electrostatic shock potential
- intermediate-scale instability provides large-amplitude magnetic fluctuations at sub ion-gyroscale

The problem Electron acceleration Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:

- gyro-radii: $r_e = \frac{m_e}{m_i} r_i \Rightarrow$ electrons do *random walk* through the shock transition; no coherent electrostatic shock potential
- intermediate-scale instability provides large-amplitude magnetic fluctuations at sub ion-gyroscale ⇒ *a solution? PIC simulations*

Shalaby, Lemmerz, Thomas, CP (2022): quasi-parallel, non-relativistic shock with PIC code SHARP

The problem Electron acceleration Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:

- gyro-radii: $r_e = \frac{m_e}{m_i} r_i \Rightarrow$ electrons do *random walk* through the shock transition; no coherent electrostatic shock potential
- intermediate-scale instability provides large-amplitude magnetic fluctuations at sub ion-gyroscale ⇒ *a solution? PIC simulations*

Shalaby, Lemmerz, Thomas, CP (2022):
quasi-parallel, non-relativistic shock with PIC code SHARI

Table 1 Parameters of our electron-ion parallel shock simulations						
Name	v_u/c^a	$\mathcal{M}_{A}{}^{b}$	\mathcal{M}_{s}^{c}	m_i/m_e	Condition ^d	
Ma5Mr1836	-0.1	5.3	365	1836	1	
Ma5Mr100	-0.1	5.3	365	100	×	
Ma21Mr1836	-0.1	21.3	365	1836	×	

condition in front/downstream:

$$\mathcal{M}_{\mathsf{A}} \lesssim rac{1}{4} \sqrt{rac{m_{\mathsf{i}}}{m_{\mathsf{e}}}}$$

Christoph Pfrommer Electron and proton acceleration at supernova remnant shocks

The problem Electron acceleration Intermediate-scale instability at shock

Particle acceleration at a non-relativistic shock

The intermediate-scale and the gyro-resonant instabilities mediate particle scattering

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

The problem Electron acceleration Intermediate-scale instability at shocks

Shock acceleration: intermediate-scale instability

Shalaby, Lemmerz, Thomas, CP (2022)

- only red simulation, which grows intermediate-scale instability, accelerates electrons
- red simulation amplifies the magnetic field ten times more

The problem

Electron acceleration

ntermediate-scale instability at shocks

Shock acceleration efficiency: K_{ei}

- rest-frame momentum distribution of ions and electrons
- analytical Maxwell-Jüttner distribution normalized to u_m, for which u⁴f(u) is maximum

The problem

Electron acceleration

Intermediate-scale instability at shocks

Shock acceleration efficiency: K_{ei}

- rest-frame momentum distribution of ions and electrons
- analytical Maxwell-Jüttner distribution normalized to u_m, for which u⁴f(u) is maximum
- non-thermal electron-to-ion energy:

$$\mathcal{K}_{ ext{ei}} = rac{E_{ ext{e}}(u > 5u_{ ext{m}}^{ ext{e}})}{E_{ ext{i}}(u > 5u_{ ext{m}}^{ ext{i}})}$$

The problem Electron acceleration Intermediate-scale instability at shocks

Shock acceleration efficiency: K_{ei}

- rest-frame momentum distribution of ions and electrons
- analytical Maxwell-Jüttner distribution normalized to u_m, for which u⁴f(u) is maximum

• non-thermal electron-to-ion energy:

$$\mathcal{K}_{ ext{ei}} = rac{E_{ ext{e}}(u > 5u_{ ext{m}}^{ ext{e}})}{E_{ ext{i}}(u > 5u_{ ext{m}}^{ ext{i}})}$$

Shalaby, Lemmerz, Thomas, CP (2022)

- downstream evolution of K_{ei} (non-thermal ion distribution still growing)
- *M*_s and *v*_{sh} identical for all runs, only *M*_A differs

The problem Electron acceleration Intermediate-scale instability at shocks

Shock acceleration efficiency: K_{ei}

- rest-frame momentum distribution of ions and electrons
- analytical Maxwell-Jüttner distribution normalized to u_m, for which u⁴f(u) is maximum

non-thermal electron-to-ion energy:

$$\mathcal{K}_{ ext{ei}} = rac{E_{ ext{e}}(u > 5u_{ ext{m}}^{ ext{e}})}{E_{ ext{i}}(u > 5u_{ ext{m}}^{ ext{i}})}$$

Shalaby, Lemmerz, Thomas, CP (2022)

- downstream evolution of K_{ei} (non-thermal ion distribution still growing)
- M_s and v_{sh} identical for all runs, only M_A differs
- presence of intermediatescale instability increases K_{ei} by more than 100!

ヘロト ヘヨト ヘヨト

The problem Electron acceleration Intermediate-scale instability at shoc

Shock dissipation: electron and ion temperatures

 time evolution of downstream T_i (dashed) and T_e (solid)

The problem Electron acceleration Intermediate-scale instability at shocks

Shock dissipation: electron and ion temperatures

 runs with m_i/m_e = 1836 have different efficiencies K_{ei} but same temperatures

 time evolution of downstream T_i (dashed) and T_e (solid)

The problem Electron acceleration Intermediate-scale instability at shocks

Shock dissipation: electron and ion temperatures

 runs with m_i/m_e = 1836 have different efficiencies K_{ei} but same temperatures

- *T*_i equilibrates to MHD value (deviations due to CR and magnetic energies)
- T_e ≈ 0.4T_i (1D vs. 3D or missing instabilities?)

 time evolution of downstream T_i (dashed) and T_e (solid)

The problem Electron acceleration Intermediate-scale instability at shocks

Shock dissipation: electron and ion temperatures

Shalaby, Lemmerz, Thomas, CP (2022)

 time evolution of downstream T_i (dashed) and T_e (solid)

- runs with m_i/m_e = 1836 have different efficiencies K_{ei} but same temperatures
- *T*_i equilibrates to MHD value (deviations due to CR and magnetic energies)
- $T_e \approx 0.4 T_i$ (1D vs. 3D or missing instabilities?)
- true m_i/m_e required for correct heating physics

< < >> < </>

- < ⊒ →

The problem Electron acceleration Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

Intermediate-scale instability at shocks:

- provides efficient pre-acceleration that scatters and accelerates electrons on scales much shorter than the ion gyro radius
- instability drives comoving ion-cyclotron waves (with the upstream plasma) at the shock front

• condition for growth:
$$\frac{v_{sh}}{v_{A,0}} < \frac{1}{4}\sqrt{\frac{m_i}{m_e}}$$
, for $n = 4n_0$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The problem Electron acceleration Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

Intermediate-scale instability at shocks:

- provides efficient pre-acceleration that scatters and accelerates electrons on scales much shorter than the ion gyro radius
- instability drives comoving ion-cyclotron waves (with the upstream plasma) at the shock front
- condition for growth: $\frac{v_{\rm sh}}{v_{\rm A,0}} < \frac{1}{4} \sqrt{\frac{m_{\rm i}}{m_{\rm e}}},$ for $n = 4n_0$

Electron shock acceleration and heating:

- intermediate-scale instability increases electron acceleration efficiency (by factor > 100)
- ion thermalization in line with MHD (accounting for E_B and E_{CR}), but $T_e \approx 0.4 T_i$ remains open question
- reduced m_i/m_e suppresses intermediate instability, precludes electron acceleration, results in erroneous electron and ion heating

MHD setup Protons and hadronic emission

Global MHD simulations of SNRs with CR physics

 detect and characterize shocks and jump conditions on the fly

Mach number finder with CRs

CP+ (2017)

MHD setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

detect and characterize shocks and jump conditions on the fly

• measure Mach number \mathcal{M} and magnetic obliquity θ_B

obliquity-dep. acceleration efficiency

Pais, CP+ (2018) based on hybrid PIC sim.'s by Caprioli & Spitkovsky (2015)

MHD setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

simulated TeV gamma-ray map

Pais & CP (2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number \mathcal{M} and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission

MHD setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

simulated gamma-ray spectrum

Winner, CP+ (2019, 2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number M and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission
- inject and transport CR electrons
- calculate non-thermal radio, X-ray, γ-ray emission

MHD setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: SN 1006

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: SN 1006

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: Vela Jr. and RXJ 1713

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

> < ≣

MHD setup Protons and hadronic emission Electrons and leptonic emission

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

 \Rightarrow Correlation structure of patchy TeV γ -rays constrains magnetic coherence scale in ISM:

SN 1006: $\lambda_B > 200^{+80}_{-10}$ pc

Vela Junior: $\lambda_B = 13^{+13}_{-4.3} \text{ pc}$

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

CREST - Cosmic Ray Electron Spectra evolved in Time

CREST code (Winner, CP+ 2019)

- post-processing MHD simulations
- on Lagrangian particles
 - adiabatic processes
 - Coulomb and radiative losses
 - Fermi-I (re-)acceleration
 - Fermi-II reacceleration
 - secondary electrons

Link to observations

- radio synchrotron
- inverse Compton (IC) γ -ray

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

Sedov–Taylor blast wave: spectral evolution

Winner, CP+ (2019)

$$E_0 = 10^{51} \, {
m erg}, \; n_{
m gas} = 1 \, {
m cm}^{-3}, \; T_0 = 10^4 \, {
m K}, \; B = 1 \, {
m \mu G}$$

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: CR electron acceleration models

- different obliquity dependent electron acceleration efficiencies:
 - 1. preferred quasi-perpendicular acceleration (previous PIC)
 - 2. constant acceleration efficiency (a straw man's model)
 - 3. preferred quasi-parallel acceleration (like CR protons)

MHD setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: quasi-perpendicular shocks

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: constant efficiency

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: quasi-parallel shocks

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

quasi-parallel acceleration model fits multi-frequency spectrum

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

- quasi-parallel acceleration model fits multi-frequency spectrum
- GeV regime: leptonic inverse Compton dominates
- TeV regime: hadronic pion decay

MHD setup Protons and hadronic emission Electrons and leptonic emission

Conclusions for CR hydrodynamics at SNRs

CR hydrodynamics with kinetic plasma physics:

- Shock finder enables CR acceleration in MHD simulations
- CR proton transport in MHD enables dynamic backreaction
- CR electron spectral transport (CREST): multi-frequency spectra and emission maps

MHD setup Protons and hadronic emission Electrons and leptonic emission

Conclusions for CR hydrodynamics at SNRs

CR hydrodynamics with kinetic plasma physics:

- Shock finder enables CR acceleration in MHD simulations
- CR proton transport in MHD enables dynamic backreaction
- CR electron spectral transport (CREST): multi-frequency spectra and emission maps

CR acceleration constraints by MHD models:

- TeV shell-type SNRs probe magnetic coherence scale in ISM
- hybrid-PIC simulations of p⁺ acceleration agree with global SNR simulations
- global SNR simulations imply preferred quasi-parallel e⁻ acceleration: new intermediate instability enables e⁻ (pre-)acceleration

ヘロト ヘヨト ヘヨト

MHD setup Protons and hadronic emission Electrons and leptonic emission

PICOGAL: From Plasma KInetics to COsmological GALaxy Formation

Christoph Pfrommer

Electron and proton acceleration at supernova remnant shocks

MHD setup Protons and hadronic emission Electrons and leptonic emission

Literature for the talk – 1

Cosmic ray driven instabilities:

- Shalaby, Thomas, Pfrommer, A new cosmic ray-driven instability, 2021, ApJ, 908, 206.
- Shalaby, Lemmerz, Thomas, Pfrommer, The mechanism of efficient electron acceleration at parallel non-relativistic shocks, 2022, ApJ, 932, 86.

Cosmic ray hydrodynamics and shock acceleration:

• Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh* 2017, MNRAS, 465, 4500.

MHD setup Protons and hadronic emission Electrons and leptonic emission

Literature for the talk -2

Cosmic ray electron spectra in MHD:

- Winner, Pfrommer, Girichidis, Pakmor, *Evolution of cosmic ray electron spectra in magnetohydrodynamical simulations*, 2019, MNRAS, 488, 2235.
- Winner, Pfrommer, Girichidis, Werhahn, Pais, Evolution and observational signatures of the cosmic ray electron spectrum in SN 1006, 2020, MNRAS, 499, 2785.

Cosmic ray proton acceleration at SNRs:

- Pais, Pfrommer, Ehlert, Pakmor, The effect of cosmic-ray acceleration on supernova blast wave dynamics, 2018, MNRAS, 478, 5278.
- Pais, Pfrommer, Ehlert, Werhahn, Winner, Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants, 2020, MNRAS, 496, 2448.
- Pais, Pfrommer, Simulating TeV gamma-ray morphologies of shell-type supernova remnants, 2020, MNRAS, 498, 5557.

イロト イ理ト イヨト イヨト