Cosmic ray transport and galaxy simulations

Christoph Pfrommer¹

in collaboration with

PhD students: Dusch, ¹ Jlassi, ¹ Tevlin, ¹ Weber, ¹ Chiu, ² Sike²
Postdocs: Berlok, ³ Girichidis, ⁴ Lemmerz, ⁵ Meenakshi, ¹
Perrone, ¹ Shalaby, ⁶ Thomas, ¹ Werhahn, ⁷ Whittingham ¹
Faculty: Pakmor, ⁷ Puchwein, ¹ Weinberger, ¹ Ruszkowski, ² Springel, ⁷ Enßlin ⁷
¹ AIP, ² Michigan, ³ NBI, ⁴ Heidelberg, ⁵ Wisconsin, ⁶ Perimeter Institute, ⁷ MPA

Milky Way Atlas Meeting, Crete 2025

Puzzles in galaxy formation

Puzzles in galaxy formation

Puzzles in galaxy formation

Feedback by galactic winds

supernova Cassiopeia A

X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.

 galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields

Feedback by galactic winds

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds

Feedback by galactic winds

super wind in M82
NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds
- ◆ critical for understanding the physics of galaxy formation
 → may explain puzzle of low star conversion efficiency in dwarf galaxies

How are galactic winds driven?

NASA/JPL-Caltech/STScI/CXC/UofA

- thermal pressure provided by supernovae or active galactic nuclei?
- radiation pressure and photoionization by massive stars and quasars?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?

How are galactic winds driven?

NASA/JPL-Caltech/STScI/CXC/UofA

- thermal pressure provided by supernovae or active galactic nuclei?
- radiation pressure and photoionization by massive stars and quasars?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?
- energy density of CRs, magnetic fields, and ISM turbulence all similar
 ⇒ important feedback agent

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin
- energy density of cosmic rays is dominated by GeV energies
 ⇒ grey approach sufficient for feedback studies (Girichidis+ 2024)

Review on cosmic ray feedback

Astron Astrophys Rev (2023) 31:4 https://doi.org/10.1007/s00159-023-00149-2

REVIEW ARTICLE

Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration, transport, observables, and dynamical impact of cosmic rays

GLOBAL

Mateusz Ruszkowski^{1,3} · Christoph Pfrommer²

COSMO

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

$$r_{\rm gal}\sim 10^4~{\rm pc}$$

gyro-orbit of GeV CR:

$$r_{
m cr} = rac{p_\perp}{e\,B_{
m \mu G}} \sim 10^{-6}~{
m pc} \sim rac{1}{4}~{
m AU}$$

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

$$r_{\rm gal} \sim 10^4~{\rm pc}$$

gyro-orbit of GeV CR:

$$r_{
m cr} = rac{p_{\perp}}{e\,B_{
m \mu G}} \sim 10^{-6}~{
m pc} \sim rac{1}{4}~{
m AU}$$

 \Rightarrow link kinetic plasma physics to macroscopic MHD models on galactic scales!

Zweibel (2017), Thomas & CP (2019)

plane wave: $\exp(-ik(x - v_{wave}t))$

 $\exp(-ik(x-v_{\text{wave}}t))$ plane wave:

cosmic ray: movement along B_0

gyration frequency

plane wave: $\exp(-ik(x - v_{wave}t))$

cosmic ray: v_{\parallel} movement along B_0

2_{cr} gyration frequency

resonance condition:

$$\widehat{\Omega_{\mathsf{cr}}} + \widehat{k v_{\parallel}} = \widehat{k v_{\mathsf{wave}}}$$

Comoving, corotating frame

Lemmerz+ (2025)

plane wave: $\exp(-ik(x - v_{\text{wave}}t))$

cosmic ray: v_{\parallel} movement along B_0

Ω_{cr} gyration frequency

resonance condition:

Resonant wave appears static to CR!

Comoving, corotating frame

test particle without interactions! Lemmerz+ (2025)

sketch: Jacob & CP

sketch: Jacob & CP

sketch: Jacob & CP

• electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c} rac{\partial {m B}}{\partial t}$

sketch: Jacob & CP

- ullet electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c}rac{\partial {m B}}{\partial t}$
- ullet work out **Lorentz forces on CRs** in wave frame: ${m F_L} = q {{m v} imes {m B} \over {m C}}$

sketch: Jacob & CP

- ullet electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c}rac{\partial {m B}}{\partial t}$
- work out **Lorentz forces on CRs** in wave frame: $F_L = q \frac{v \times B}{C}$
- Lorentz force depends on relative phase of CR gyro orbit and wave:
 - ullet sketch: decelerating Lorentz force along CR orbit $o p_{\parallel}$ decreases
 - ullet phase shift by 180°: accelerating Lorentz force ullet p_{\parallel} increases

sketch: Jacob & CP

 only electric fields can provide work on charged particles and change their energy

sketch: Jacob & CP

- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E=0, CR energy is conserved: $p^2=p_{\parallel}^2+p_{\perp}^2={\rm const.}$ so that decreasing p_{\parallel} causes p_{\perp} to increase

sketch: Jacob & CP

- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E=0, CR energy is conserved: $p^2=p_{\parallel}^2+p_{\perp}^2={\rm const.}$ so that decreasing p_{\parallel} causes p_{\perp} to increase
- ullet this increases the CR pitch angle cosine $\mu = \cos heta = rac{m{B}}{|m{B}|} \cdot rac{m{p}}{|m{p}|}$

sketch: Jacob & CP

• CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=r_{\rm g}=rac{p_{\perp}c}{qB}$$

sketch: Jacob & CP

 CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=r_{\mathrm{g}}=rac{p_{\perp}c}{qB}$$

gyro resonance:

$$\omega - k_{\parallel} v_{\parallel} = n\Omega_{\rm cr} = n \frac{qB}{\gamma m_{\rm i} c}$$

Doppler-shifted MHD frequency is a multiple *n* of the CR gyro frequency

 CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=\mathit{r}_{g}=rac{\mathit{p}_{\perp}\mathit{c}}{\mathit{q}\mathit{B}}$$

9 gyro resonance: $\omega - k_\parallel v_\parallel = n\Omega_{
m cr} = n rac{qB}{\gamma m_\parallel c}$

ne CR gyro frequency AIP

Doppler-shifted MHD frequency is a multiple n of the CR gyro frequency

 goal: understand collective behaviour of many CRs

- goal: understand collective behaviour of many CRs
- parallel Lorentz force accelerates
 CRs towards closest wave field

- goal: understand collective behaviour of many CRs
- parallel Lorentz force accelerates
 CRs towards closest wave field
- CRs align rotational phase with plasma wave

- goal: understand collective behaviour of many CRs
- parallel Lorentz force accelerates
 CRs towards closest wave field
- CRs align rotational phase with plasma wave
- CR current wave interacts with electro-magnetic wave

- goal: understand collective behaviour of many CRs
- parallel Lorentz force accelerates
 CRs towards closest wave field
- CRs align rotational phase with plasma wave
- CR current wave interacts with electro-magnetic wave
- CR trapping in Lorentz force potential saturates instability

Growth of forward and backward moving waves

forward Alfvén, Whistler

 $t = 0.85t_{\text{saturation}}$

backward Alfvén Lemmerz+ (2025)

Growth of forward and backward moving waves

forward Alfvén, Whistler

 $t = 0.85t_{\text{saturation}}$

backward Alfvén Lemmerz+ (2025)

Growth of forward and backward moving waves

Whistler

bunching theory:

- bunching in CR gyro phase
- biased CR scattering, favors wave growth

Growth of forward and backward moving waves

forward Alfvén, Whistler

backward Alfvén Lemmerz+ (2025)

bunching theory:

- bunching in CR gyro phase
- biased CR scattering, favors wave growth

traditional, quasilinear theory:

- lacksquare assumes uniform arphi
- diffusive scattering, no backward wave growth

Cosmic ray streaming and diffusion

CR streaming instability:

Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

- if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
- scattering off of this wave field limits the (GeV) CRs' bulk speed $\sim v_{\rm a}$
- wave damping: transfer of CR energy and momentum to the thermal gas

Cosmic ray streaming and diffusion

CR streaming instability:

Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

- if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
- scattering off of this wave field limits the (GeV) CRs' bulk speed $\sim v_{\rm a}$
- wave damping: transfer of CR energy and momentum to the thermal gas
- ightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

Cosmic ray streaming and diffusion

CR streaming instability:

Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

- if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
- scattering off of this wave field limits the (GeV) CRs' bulk speed ∼ v_a
- wave damping: transfer of CR energy and momentum to the thermal gas

weak wave damping: strong coupling \to CR stream with waves strong wave damping: less waves to scatter \to CR diffusion prevails

Modes of CR propagation

Modes of CR propagation

Thomas, CP, Enßlin (2020)

Modes of CR propagation

Thomas, CP, Enßlin (2020)

Haywood+ (Nature, 2019)

Radio synchrotron harps: the model

shock acceleration scenario

Thomas, CP, Enßlin (2020)

Radio synchrotron harps: the model

shock acceleration scenario

Thomas, CP, Enßlin (2020)

magnetic reconnection at pulsar wind

Radio synchrotron harps: the model

shock acceleration scenario

CR diffusion vs. streaming + diffusion

Thomas, CP, Enßlin (2020)

Haywood+ (Nature, 2019)

lateral radio profiles

Thomas, CP, Enßlin (2020)

Haywood+ (Nature, 2019)

CR diffusion

Thomas, CP, Enßlin (2020)

Haywood+ (Nature, 2019)

CR streaming and diffusion

Thomas, CP, Enßlin (2020)

Cosmic ray transport in galaxies

- CR transport in galaxies demands modeling non-linear Landau damping (in warm/hot phase) and ion-neutral damping (in disk)
- this requires resolving the multi-phase structure of the ISM
- development of CRISP framework (Cosmic Rays and InterStellar Physics, Thomas+ 2025)

CRISP framework

Cosmic Rays and InterStellar Physics

CRISP framework

Cosmic Rays and InterStellar Physics

Full H – H₂ – He chemistry sets ionization degree

First ionization stages of C – O – Si low temperature cooling

Photoelectric heating by dust

CRISP framework

Cosmic Rays and InterStellar Physics

Improved SNe treatment (manifestly isotropic) and stellar winds

FUV NUV OPT radiation fields (reverse ray tracing)

absorbed by dust ─ impacting ☐ Chemistry

Metal enrichment

Introduction Cosmic ray transport Cosmic rays in galaxy formation Cosmic ray driven winds Galactic magnetic dynamo Cosmic rays and non-thermal emission

Multi-phase ISM modeling

Introduction Cosmic ray transport Cosmic rays in galaxy formation Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emissic

Multi-phase ISM modeling

Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission

Simulated Milky Way: surface density

Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter

Introduction Cosmic ray transport Cosmic rays in galaxy formation Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emissic

Multi-phase ISM modeling

Cosmic rays make galactic winds much denser

Cosmic ray driven wind: mechanism

 CR pressure gradient dominates over thermal and ram pressure gradient and drives outflow:

$$|\mathbf{\nabla} P_{\mathsf{cr}} + \mathbf{\nabla} P_{\mathsf{th}}| >
ho |\mathbf{\nabla} \Phi|$$

AIP

Origin and growth of magnetic fields

The general picture:

 Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery

Origin and growth of magnetic fields

The general picture:

- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating)
 dynamo is an MHD process, in which
 the kinetic (turbulent) energy is
 converted into magnetic energy: the
 mechanism relies on magnetic fields to
 become stronger when the field lines are
 stretched

Origin and growth of magnetic fields

The general picture:

- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating)
 dynamo is an MHD process, in which
 the kinetic (turbulent) energy is
 converted into magnetic energy: the
 mechanism relies on magnetic fields to
 become stronger when the field lines are
 stretched
- Saturation. Field growth stops at a sizeable fraction of the turbulent energy when magnetic forces become strong enough to resist the stretching and folding motions

Galactic magnetic dynamo

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)

Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far-infrared-radio correlation

MHD + cosmic ray advection + diffusion: $\left\{10^{10},10^{11},3\times10^{11},10^{12}\right\}\,M_{\odot}$

Time evolution of SFR and energy densities

CP+ (2022)

 cosmic ray (CR) pressure feedback suppresses SFR more in smaller galaxies

Time evolution of SFR and energy densities

- cosmic ray (CR) pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic growth faster in Milky Way galaxies than in dwarfs

Identifying different growth phases

• 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)

Identifying different growth phases

- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$

Identifying different growth phases

- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$
- 3rd phase: growth migrates to lower ρ on larger scales $\propto \rho^{-1/3}$

Studying growth rate with numerical resolution

CP+ (2022)

• faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$

Studying growth rate with numerical resolution

- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$
- 1st phase: adiabatic growth (independent of resolution)

Studying growth rate with numerical resolution

- faster magnetic growth in higher resolution simulations and **larger halos**, numerical convergence for $N \gtrsim 10^6$
- 1st phase: adiabatic growth (independent of resolution)
- 2nd phase: small-scale dynamo with resolution-dep. growth rate

$$\Gamma = \frac{\mathscr{Y}}{\mathscr{L}} \, \text{Re}_{\text{num}}^{1/2}, \quad \text{Re}_{\text{num}} = \frac{\mathscr{L}\mathscr{V}}{\nu_{\text{num}}} = \frac{3\mathscr{L}\mathscr{V}}{\textit{d}_{\text{cell}} \, \textit{v}_{\text{th}}}$$

Kinetic and magnetic power spectra

Fluctuating small-scale dynamo in different analysis regions

- $E_B(k)$ superposition of form factor and turbulent spectrum
- pure turbulent spectrum outside steep central *B* profile

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission

Cosmic rays and non-thermal emission

Werhahn, CP, Girichidis+ (2021a,b,c) Cosmic rays and non-thermal emission in simulated galaxies MHD + CR advection + anisotropic diffusion: $\left\{10^{10},10^{11},10^{12}\right\} \, \mathrm{M}_{\odot}$ steady-state spectra of CR protons, primary & secondary electrons

Steady-state cosmic ray spectra

solve the steady-state equation in every cell for each CR population:

$$\frac{N(E)}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}E} \left[N(E)b(E) \right] = Q(E)$$

- lacktriangle protons: Coulomb, hadronic and escape losses (re-normalized to $arepsilon_{
 m cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries

Steady-state cosmic ray spectra

solve the steady-state equation in every cell for each CR population:

$$\frac{N(E)}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}E} \left[N(E)b(E) \right] = Q(E)$$

- lacktriangle protons: Coulomb, hadronic and escape losses (re-normalized to $\varepsilon_{\rm cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries
- steady state assumption is fulfilled in disk and in regions dominating the non-thermal emission but not at low densities, at SNRs and in outflows

From a starburst galaxy to a Milky Way analogy

From a starburst galaxy to a Milky Way analogy

Werhahn, CP+ (2021a,b)

Comparing CR spectra to Voyager and AMS-02 data

Comparing the positron fraction to AMS-02 data

Comparing the positron fraction to AMS-02 data

AIP

Galaxy simulation with cosmic ray-driven wind

Simulated radio emission: 10¹² M_☉ halo

Simulated radio emission: 10¹¹ M_☉ halo

Far infra-red – radio correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Radio-ray spectra of starburst galaxies

synchrotron spectra too steep (cooling + diffusion losses)

Radio-ray spectra of starburst galaxies

- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low- ν) and thermal free-free emission (high- ν)

Radio-ray spectra of starburst galaxies

- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low- ν) and thermal free-free emission (high- ν) required to match (total and central) spectra

Conclusions

Plasma instabilities and CR transport:

- Mechanism of CR-driven plasma-instabilities understood: important for setting CR transport speed and feedback strength
- novel theory of CR transport mediated by Alfvén waves developed and coupled to magneto-hydrodynamics
- self-generated diffusion coefficient emerges from CR-wave interactions: validated at radio harps

Conclusions

Plasma instabilities and CR transport:

- Mechanism of CR-driven plasma-instabilities understood: important for setting CR transport speed and feedback strength
- novel theory of CR transport mediated by Alfvén waves developed and coupled to magneto-hydrodynamics
- self-generated diffusion coefficient emerges from CR-wave interactions: validated at radio harps

CR feedback in galaxy formation:

- CR feedback mildly suppresses star formation because of strong ion-neutral damping in disk, which weakens CR coupling
- CR feedback drives powerful galactic winds
- global L_{FIR} L_{radio} reproduced for galaxies with saturated magnetic fields, scatter due to viewing angle and CR transport

UC SANTA BARBARA Kavli Institute for Theoretical Physics

program dates: Jan 4 to Mar 11, 2027 application deadline: Nov 28, 2025

Cosmic Rays in Astrophysical Systems: From the Sun to Galaxies and Beyond

Coordinators: Greg Bryan, Christoph Pfrommer, Mateusz Ruszkowski, and Ellen Zweibel

Scientific Advisors: Eve Ostriker, Eliot Quataert, and Volker Springel

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission

PICOGAL: From Flasma KInetics to COsmological GALaxy Formation

Literature for the talk – 1

CR-driven plasma instabilities:

- Shalaby, Thomas, Pfrommer, A new cosmic ray-driven instability, 2021, ApJ, 908, 206.
- Shalaby, Lemmerz, Thomas, C. Pfrommer, The mechanism of efficient electron acceleration at parallel non-relativistic shocks, 2022, ApJ, 932, 86.
- Shalaby, Thomas, Pfrommer, Lemmerz, Bresci, Deciphering the physical basis of the intermediate-scale instability, 2023, JPP Letters, 89, 175890603.
- Lemmerz, Shalaby, Pfrommer, Thomas, The theory of resonant cosmic ray-driven instabilities – Growth and saturation of single modes, 2025, ApJ, 979, 34.

Literature for the talk – 2

CR hydrodynamics and CR transport:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on a moving mesh, 2017, MNRAS, 465, 4500.
- Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS, 485, 2977.
- Thomas, Pfrommer, Pakmor, A finite volume method for two-moment cosmic-ray hydrodynamics on a moving mesh, 2021, MNRAS, 503, 2242.
- Thomas, Pfrommer, Enßlin, Probing Cosmic Ray Transport with Radio Synchrotron Harps in the Galactic Center, 2020, ApJL, 890, L18.

CR feedback in galaxy formation:

- Ruszkowski, Pfrommer, Cosmic ray feedback in galaxies and galaxy clusters, 2023, Astron Astrophys Rev, 31, 4.
- Thomas, Pfrommer, Pakmor, Cosmic ray-driven galactic winds: transport modes of cosmic rays and Alfvén-wave dark regions, 2023, MNRAS, 521, 3023.
- Thomas, Pfrommer, Pakmor, Why are thermally- and cosmic ray-driven galactic winds fundamentally different? 2025, A&A, 698, A104.

Literature for the talk – 3

Cosmic rays and non-thermal emission in galaxies:

- Pfrommer, Werhahn, Pakmor, Girichidis, Simpson, Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far infrared-radio correlation, 2022, MNRAS, 515, 4229.
- Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and non-thermal emission in simulated galaxies. I. Electron and proton spectra explain Voyager-1 data, 2021a, MNRAS 505, 3273.
- Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation, 2021b, MNRAS, 505, 3295.
- Werhahn, Pfrommer, Girichidis, Cosmic rays and non-thermal emission in simulated galaxies. III. probing cosmic ray calorimetry with radio spectra and the FIR-radio correlation, 2021c, MNRAS, 508, 4072.

