Cosmic rays in galaxy clusters

Christoph Pfrommer

in collaboration with

S. Jacob, K. Ehlert, R. Weinberger, R. Pakmor, V. Springel Leibniz Institute for Astrophysics Potsdam, Germany

M87 in gamma rays, AIP-DESY meeting, 2020

Outline

- Observations of M87
- Cosmic ray heating

2 Diversity of cool cores

- Steady state solutions
- Cosmic rays in jets

Observations of M87 Cosmic ray heating

Radio mode feedback by AGN

Paradigm: super-massive black holes with $M \sim (10^9 \dots 10^{10}) M_{\odot}$ co-evolve with their hosting cD galaxies at the centers of galaxy clusters; they launch relativistic jets that blow bubbles and provide energetic feedback to balance cooling

Observations of M87 Cosmic ray heating

Radio mode feedback by AGN

Paradigm: super-massive black holes with $M \sim (10^9 \dots 10^{10}) M_{\odot}$ co-evolve with their hosting cD galaxies at the centers of galaxy clusters; they launch relativistic jets that blow bubbles and provide energetic feedback to balance cooling

- energy source: release of non-gravitational energy due to accretion on a black hole and its spin
- jet interaction with magnetized cluster medium → turbulence
- jet accelerates relativistic particles (cosmic rays, CRs) → release from bubbles provides source of heat
- self-regulated heating mechanism to avoid overcooling

Observations of M87 Cosmic ray heating

Messier 87 at radio wavelengths

- $\nu =$ 1.4 GHz (Owen+ 2000)
- high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!

Observations of M87 Cosmic ray heating

Messier 87 at radio wavelengths

 $\nu =$ 1.4 GHz (Owen+ 2000)

 $\nu =$ 140 MHz (LOFAR/de Gasperin+ 2012)

- high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: halo confined to same region at all frequencies and no low-ν spectral steepening → puzzle of "missing fossil electrons"

Observations of M87 Cosmic ray heating

Solution to the "missing fossil electrons" problem

solution:

• Coulomb cooling removes fossil electrons \rightarrow efficient mixing of CR electrons and protons with dense cluster gas \rightarrow predicts γ rays from CRp-p interactions: $p + p \rightarrow \pi^0 + ... \rightarrow 2\gamma + ...$

Pfrommer (2013)

Observations of M87 Cosmic ray heating

The gamma-ray picture of M87

- high state is time variable
 → jet emission
- low state:
 (1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation

Rieger & Aharonian (2012)

 \rightarrow confirming this triad would be smoking gun for first $\gamma\text{-ray}$ signal from a galaxy cluster!

Observations of M87 Cosmic ray heating

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

 $\mathcal{H}_{cr} = | \boldsymbol{v}_{\mathsf{A}} \cdot \boldsymbol{\nabla} \boldsymbol{P}_{cr} |$

(Loewenstein+ 1991, Guo & Oh 2008, Enßlin+ 2011, Wiener+ 2013, CP 2013)

 calibrate P_{cr} to γ-ray emission and v_A to radio/X-ray emission
 → spatial heating profile

Cosmic ray feedback Observations of M8 Diversity of cool cores Cosmic ray heating

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

 $\mathcal{H}_{cr} = |\textbf{\textit{v}}_{A} \boldsymbol{\cdot} \boldsymbol{\nabla} \textbf{\textit{P}}_{cr}|$

(Loewenstein+ 1991, Guo & Oh 2008, Enßlin+ 2011, Wiener+ 2013, CP 2013)

 calibrate P_{cr} to γ-ray emission and v_A to radio/X-ray emission
 → spatial heating profile 10⁻²⁴ Tradial extent of radio halo: 10⁻²⁵ 10⁻²⁶ 10⁻²⁶ 10⁻²⁷ 10⁻²⁸ heating rate, H cooling rate, C 1 radius [kpc] Pfrommer (2013)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 \rightarrow cosmic-ray heating matches radiative cooling (observed in X-rays) and may solve the famous "cooling flow problem" in galaxy clusters!

How universal is CR heating in cool core clusters?

• no γ rays observed from other clusters $\rightarrow P_{cr}$ unconstrained

strategy:

- (1) construct large sample of 39 cool cores
- (2) search for spherically symmetric, steady-state solutions: CR heating (\mathcal{H}_{cr}) + conductive heating $(\mathcal{H}_{th}) \approx$ cooling (\mathcal{C}_{rad})
- (3) calculate hadronic radio and $\gamma\text{-ray flux }\mathcal{F}_{\text{had}}$ and

compare to observed fluxes \mathcal{F}_{obs}

How universal is CR heating in cool core clusters?

• no γ rays observed from other clusters $\rightarrow P_{cr}$ unconstrained

strategy:

- (1) construct large sample of 39 cool cores
- (2) search for spherically symmetric, steady-state solutions: CR heating (\mathcal{H}_{cr}) + conductive heating $(\mathcal{H}_{th}) \approx$ cooling (\mathcal{C}_{rad})
- (3) calculate hadronic radio and $\gamma\text{-ray flux }\mathcal{F}_{\text{had}}$ and

compare to observed fluxes \mathcal{F}_{obs}

consequences:

 $\Rightarrow \text{if } \mathcal{H}_{cr} + \mathcal{H}_{th} \approx \mathcal{C}_{rad} \ \forall \ r \text{ and } \mathcal{F}_{had} \leq \mathcal{F}_{obs}:$

successful CR heating model that is locally stable at 1 keV

 \Rightarrow otherwise *CR heating ruled out* as dominant heating source

ヘロト ヘアト ヘヨト ヘ

Steady state solutions Cosmic rays in jets

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597

Jacob & Pfrommer (2017a)

Steady state solutions Cosmic rays in jets

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597
- ⇒ RMH clusters show selection bias towards high-z and being more massive (fixed surface brightness limit)

 $M_{200} (10^{14} \, {\rm M_{\odot}})$

Jacob & Pfrommer (2017a)

Steady state solutions Cosmic rays in jets

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597

(°MH) (°MH) 0.01 0.01 0.1 0.1

Jacob & Pfrommer (2017a)

- ⇒ RMH clusters show selection bias towards high-z and being more massive (fixed surface brightness limit)
- \Rightarrow study sub-sample that is unbiased in M_{200} and entire sample

Steady state solutions Cosmic rays in jets

Governing equations

• conservation of mass, momentum, thermal and CR energy:

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} &= 0\\ \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}e_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \mathbf{e}_{\mathrm{th}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}e_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \mathbf{e}_{\mathrm{cr}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}} \end{aligned}$$

- Lagrangian derivative $d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$
- equations of state:

$$egin{aligned} \mathcal{P}_{ ext{th}} &= (\gamma_{ ext{th}} - 1) oldsymbol{e}_{ ext{th}} \ \mathcal{P}_{ ext{cr}} &= (\gamma_{ ext{cr}} - 1) oldsymbol{e}_{ ext{cr}} \end{aligned}$$

∃ ► < ∃ ►</p>

Steady state solutions Cosmic rays in jets

Governing equations

• conservation of mass, momentum, thermal and CR energy:

$$\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{v} = 0$$

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla \left(P_{\text{th}} + P_{\text{cr}}\right) - \rho \nabla \phi$$

$$\frac{d\mathbf{e}_{\text{th}}}{dt} + \gamma_{\text{th}} \mathbf{e}_{\text{th}} \nabla \cdot \mathbf{v} = -\nabla \cdot \mathbf{F}_{\text{th}} + \mathcal{H}_{\text{cr}} - \rho \mathcal{L}$$

$$\frac{d\mathbf{e}_{\text{cr}}}{dt} + \gamma_{\text{cr}} \mathbf{e}_{\text{cr}} \nabla \cdot \mathbf{v} = -\nabla \cdot \mathbf{F}_{\text{cr}} - \mathcal{H}_{\text{cr}} + S_{\text{cr}}$$

- gravitational potential $\phi = -\frac{GM_s}{r} \ln \left(1 + \frac{r}{r_s}\right) + v_c^2 \ln \left(\frac{r}{r_0}\right)$
- radiative cooling $\rho \mathcal{L} = n_e^2 \left(\Lambda_l + \Lambda_b T^{1/2} \right)$
- CR source $S_{\rm cr} = -\frac{\nu \varepsilon_{\rm cr} \dot{M} c^2}{4\pi r_{\rm cr}^3} \left(\frac{r}{r_{\rm cr}}\right)^{-3-\nu} \left(1 e^{-(r/r_{\rm cr})^2}\right)$

Steady state solutions Cosmic rays in jets

Governing equations

• conservation of mass, momentum, thermal and CR energy:

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} &= 0\\ \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}e_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \mathbf{e}_{\mathrm{th}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}e_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \mathbf{e}_{\mathrm{cr}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}}\end{aligned}$$

- thermal heat flux $F_{\text{th}} = -\kappa \nabla T$
- CR streaming flux $F_{cr} = (e_{cr} + P_{cr}) v_{st}$ with $v_{st} = -v_A \frac{\nabla P_{cr}}{|\nabla P_{cr}|}$
- CR heating rate $\mathcal{H}_{cr} = -\mathbf{v}_{st} \cdot \nabla P_{cr}$

イロト イポト イヨト イヨト

Steady state solutions Cosmic rays in jets

Case study A1795: density and temperature

- beautiful match of steady-state solutions to observed profiles
- pure NFW mass profile in A1795

AIP

Steady state solutions Cosmic rays in jets

Case study A1795: heating and cooling

Jacob & Pfrommer (2017a)

• CR heating dominates in the center

• conductive heating takes over at larger radii, $\kappa = 0.42\kappa_{Sp}$

• ${\cal H}_{cr} + {\cal H}_{th} pprox {\cal C}_{rad}$: modest mass deposition rate of 1 M_{\odot} yr^-1

Cosmic rays in galaxy clusters

Steady state solutions Cosmic rays in jets

Case study A1795: CR and *B* pressure ratios

• define $X_{cr} = P_{cr}/P_{th}$, $X_B = P_B/P_{th}$, $X_{nt} = P_{nt}/P_{th}$

Steady state solutions Cosmic rays in jets

Case study A1795: CR and *B* pressure ratios

- define $X_{cr} = P_{cr}/P_{th}$, $X_B = P_B/P_{th}$, $X_{nt} = P_{nt}/P_{th}$
- $X_{cr} \approx \text{const.}$ in center: $\Delta \varepsilon_{th} = -\tau_A \mathbf{v}_{st} \cdot \nabla \mathbf{P}_{cr} \approx \mathbf{P}_{cr} = X_{cr} \mathbf{P}_{th}$

Steady state solutions Cosmic rays in jets

Case study A1795: CR and *B* pressure ratios

- define $X_{cr} = P_{cr}/P_{th}$, $X_B = P_B/P_{th}$, $X_{nt} = P_{nt}/P_{th}$
- $X_{cr} \approx \text{const.}$ in center: $\Delta \varepsilon_{th} = -\tau_A \mathbf{v}_{st} \cdot \nabla \mathbf{P}_{cr} \approx \mathbf{P}_{cr} = X_{cr} \mathbf{P}_{th}$
- adopt B model from Faraday rotation studies:

$$B = 10 \, \mu {
m G} imes ig(n/0.01 \, {
m cm}^{-3} ig)^{0.5}$$

Steady state solutions Cosmic rays in jets

Gallery of solutions: density profiles

Steady state solutions Cosmic rays in jets

Gallery of solutions: temperature profiles

Steady state solutions Cosmic rays in jets

Hadronic gamma-ray emission

Jacob & Pfrommer (2017b)

AIP

Cosmic ray feedback Steady state solutions Diversity of cool cores Cosmic rays in jets

Hadronic gamma-ray emission: observational limits

Jacob & Pfrommer (2017b)

- predictions close to observational limits
- sensitivity not sufficient to be constraining

Steady state solutions Cosmic rays in jets

Hadronically induced radio emission

Jacob & Pfrommer (2017b)

AIP

Cosmic ray feedbackSteady state solutionsDiversity of cool coresCosmic rays in jets

Hadronically induced radio emission: NVSS limits

• continuous sequence in $F_{\nu,\text{pred}}/F_{\nu,\text{NVSS}}$

Jacob & Pfrommer (2017b)

- CR heating solution ruled out in radio mini halos
- CR heating viable solution for non-RMH clusters

Steady state solutions Cosmic rays in jets

How can we explain these results?

• self-regulated feedback cycle driven by CRs

Steady state solutions Cosmic rays in jets

How can we explain these results?

• self-regulated feedback cycle driven by CRs

AGN injects CRs

Steady state solutions Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

→

CR heating balances cooling

Steady state solutions Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

t

CRs stream outwards and become too dilute to heat the cluster

Steady state solutions Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

t

CRs stream outwards and become too dilute to heat the cluster

< 🗇 🕨

Steady state solutions Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

Steady state solutions Cosmic rays in jets

How can we explain these results?

self-regulated feedback cycle driven by CRs

Steady state solutions Cosmic rays in jets

Self-regulated heating/cooling cycle in cool cores

Jacob & Pfrommer (2017b)

possibly CR-heated cool cores vs. radio mini halo clusters:

- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance

Steady state solutions Cosmic rays in jets

Self-regulated heating/cooling cycle in cool cores

Jacob & Pfrommer (2017b)

possibly CR-heated cool cores vs. radio mini halo clusters.

- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance

• $F_{\nu,\text{obs}} > F_{\nu,\text{pred}}$: strong radio source = abundant injection of CRs

 \Rightarrow predicting existence of radio micro halos in CR heated clusters

Steady state solutions Cosmic rays in jets

Radio mini halos

- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- RXJ1532: dying radio mini halo

Steady state solutions Cosmic rays in jets

Radio mini halos

Jacob & Pfrommer (2017a)

- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- RXJ1532: dying radio mini halo Perseus: transitional object, was CR heated until recently

Steady state solutions Cosmic rays in jets

Predicting radio micro halos

Jacob & Pfrommer (2017a)

- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- predicting radio micro halos of primary origin in CR-heated CCs: CR electrons that escaped from AGN; subdominant hadronic emission

Steady state solutions Cosmic rays in jets

MHD jet simulations

AREPO: unstructured-mesh

- MHD moving-mesh code AREPO
- NFW cluster potential

Steady state solutions Cosmic rays in jets

MHD jet simulations

initial magnetic field

- MHD moving-mesh code AREPO
- NFW cluster potential
- external turbulent magnetic field (Kolmogorov)

Steady state solutions Cosmic rays in jets

MHD jet simulations

AREPO: jet injection region

(Weinberger+ 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential
- external turbulent magnetic field (Kolmogorov)
- jet module
 - prepare low-density state in pressure equilibrium
 - inject kinetic energy, **B**, and CRs
 - refine to sustain density contrast

Steady state solutions Cosmic rays in jets

Cosmic ray modelling

AREPO: jet injection region

(Weinberger+ 2017)

- subgrid CR acceleration:
 - reality: internal shocks
 - code: $E_{cr}/E_{th} \ge 0.5$

Steady state solutions Cosmic rays in jets

Cosmic ray modelling

AREPO: jet injection region

(Weinberger+ 2017)

- subgrid CR acceleration:
 - reality: internal shocks
 - code: $E_{cr}/E_{th} \ge 0.5$
- OR transport:
 - CRs are advected

 emulate CR streaming ≈ anisotropic CR diffusion & Alfvén cooling

Steady state solutions Cosmic rays in jets

Jet simulation: gas density, CR energy density, B field

60 Myr

Cosmic rays in galaxy clusters

Ehlert, Weinberger, Pfrommer+ (2018)

ъ

イロト イヨト イヨト イ

AIP ৩৭০

Steady state solutions Cosmic rays in jets

Perseus cluster – heating vs. cooling: theory

• CR and conductive heating balance radiative cooling: $H_{cr} + H_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_{\odot} yr⁻¹

Cosmic ray feedback Stead Diversity of cool cores Cosm

Steady state solutions Cosmic rays in jets

Perseus cluster – heating vs. cooling: simulations

Ehlert, Weinberger, Pfrommer+ (2018)

- CR and conductive heating balance radiative cooling: $H_{cr} + H_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_{\odot} yr⁻¹
- simulated CR heating rate matches 1D steady state model

Steady state solutions Cosmic rays in jets

Modelling the major outburst in MS 0735

Cosmic rays in galaxy clusters

AIP

500

Steady state solutions Cosmic rays in jets

SZ effect of bubbles – profiles

different bubble fillings: thermal vs. relativistic content

analytical model vs. simulation

Ehlert, Pfrommer+ (2019)

ъ

Steady state solutions Cosmic rays in jets

SZ effect of bubbles: inclination-distance degeneracy

Cosmic rays in jets

Kinetic vs. thermal SZ effect

Ehlert, Pfrommer+ (2019)

Steady state solutions Cosmic rays in jets

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

- radio and γ -ray data of M87 imply CR mixing with dense cluster gas with a CR-to-thermal pressure ratio of $X_{cr} = 0.3$
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo (r < 35 kpc)

Steady state solutions Cosmic rays in jets

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

- radio and γ -ray data of M87 imply CR mixing with dense cluster gas with a CR-to-thermal pressure ratio of $X_{cr} = 0.3$
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo (r < 35 kpc)

large sample of cool cores \Rightarrow self-regulation cycle

- low-density cool cores: possibly stably heated by cosmic rays
- radio mini halo clusters: cosmic-ray heating ruled out systems are strongly cooling and form stars at large rates

Steady state solution Cosmic rays in jets

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

- radio and γ -ray data of M87 imply CR mixing with dense cluster gas with a CR-to-thermal pressure ratio of $X_{cr} = 0.3$
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo (r < 35 kpc)

large sample of cool cores \Rightarrow self-regulation cycle

- low-density cool cores: possibly stably heated by cosmic rays
- radio mini halo clusters: cosmic-ray heating ruled out systems are strongly cooling and form stars at large rates

AGN jet simulations:

- MHD simulations of AGN jets: CR heating can solve the "cooling flow problem" in galaxy clusters
- simulating Sunyaev-Zel'dovich effect of bubbles: determine relativistic filling

Cosmic ray feedback Steady Diversity of cool cores Cosmic

Steady state solution: Cosmic rays in jets

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

AIP

Literature for the talk

AGN feedback by cosmic rays:

- Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ, 779, 10.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters I: diversity of steady state solutions, 2017a, MNRAS, 467, 1449.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission, 2017b, MNRAS, 467, 1478.

Cosmic ray simulations with AREPO:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017, MNRAS, 465, 4500.
- Weinberger, Ehlert, Pfrommer, Pakmor, Springel, Simulating the interaction of jets with the intra-cluster medium, 2017, MNRAS, 470, 4530.
- Ehlert, Weinberger, Pfrommer, Pakmor, Springel, *Simulations of the dynamics of magnetised jets and cosmic rays in galaxy clusters*, 2018, MNRAS, 481, 2878.
- Ehlert, Pfrommer, Weinberger, Pakmor, Springel, *The Sunyaev-Zel'dovich effect* of simulated jet-inflated bubbles in clusters, 2019, ApJL, 872, L8.

イロト イポト イヨト イヨト