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Observations of M87
Cosmic ray heating

Radio mode feedback by AGN

Paradigm: super-massive black holes with M ∼ (109 . . . 1010)M�

co-evolve with their hosting cD galaxies at the centers of galaxy
clusters; they launch relativistic jets that blow bubbles and provide
energetic feedback to balance cooling

energy source: release of
non-gravitational energy due to
accretion on a black hole and its spin

jet interaction with magnetized cluster
medium→ turbulence

jet accelerates relativistic particles
(cosmic rays, CRs)→ release from
bubbles provides source of heat

self-regulated heating mechanism to
avoid overcooling

Perseus cluster (NRAO/VLA/G. Taylor)
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Observations of M87
Cosmic ray heating

Messier 87 at radio wavelengths

ν = 1.4 GHz (Owen+ 2000)

ν = 140 MHz (LOFAR/de Gasperin+ 2012)

high-ν: freshly accelerated CR electrons
low-ν: fossil CR electrons→ time-integrated AGN feedback!

LOFAR: halo confined to same region at all frequencies and no
low-ν spectral steepening→ puzzle of “missing fossil electrons”
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Cosmic ray heating

Solution to the “missing fossil electrons” problem

solution:

Coulomb cooling removes
fossil electrons
→ efficient mixing of CR
electrons and protons with
dense cluster gas
→ predicts γ rays from
CRp-p interactions:
p + p → π0 + . . .→ 2γ + . . .
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Cosmic ray heating

The gamma-ray picture of M87

high state is time variable
→ jet emission

low state:
(1) steady flux

(2) γ-ray spectral index (2.2)
= CRp index
= CRe injection index as

probed by LOFAR

(3) spatial extension is under
investigation Rieger & Aharonian (2012)

→ confirming this triad would be smoking gun for first γ-ray
signal from a galaxy cluster!
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Observations of M87
Cosmic ray heating

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ-ray emission traces π0 decay within cluster

cosmic rays excite Alfvén
waves that dissipate the
energy→ heating rate

Hcr = |vA ·∇Pcr|
(Loewenstein+ 1991, Guo & Oh 2008,
Enßlin+ 2011, Wiener+ 2013, CP 2013)

calibrate Pcr to γ-ray
emission and vA to
radio/X-ray emission
→ spatial heating profile
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→ cosmic-ray heating matches radiative cooling (observed in X-rays)
and may solve the famous “cooling flow problem” in galaxy clusters!
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Steady state solutions
Cosmic rays in jets

How universal is CR heating in cool core clusters?

no γ rays observed from other clusters→ Pcr unconstrained

strategy:
(1) construct large sample of 39 cool cores
(2) search for spherically symmetric, steady-state solutions:

CR heating (Hcr) + conductive heating (Hth) ≈ cooling (Crad)
(3) calculate hadronic radio and γ-ray flux Fhad and

compare to observed fluxes Fobs

consequences:
⇒ if Hcr +Hth ≈ Crad ∀ r and Fhad ≤ Fobs:

successful CR heating model that is locally stable at 1 keV

⇒ otherwise CR heating ruled out as dominant heating source

Cosmic rays in galaxy clusters
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Steady state solutions
Cosmic rays in jets

Sample selection

select 39 cool cores (CCs):
brightest 23 CCs from X-ray
flux-limited sample (HIFLUGCS)
that are also in ACCEPT

10 high-resolution Chandra data
(Vikhlinin+ 2006)

15 clusters with radio-mini halos
(RMHs) (Giacintucci+ 2014)

add Virgo + A2597
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Jacob & Pfrommer (2017a)

⇒ RMH clusters show selection bias towards high-z and being more
massive (fixed surface brightness limit)

⇒ study sub-sample that is unbiased in M200 and entire sample
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Steady state solutions
Cosmic rays in jets

Governing equations

conservation of mass, momentum, thermal and CR energy:

dρ
dt

+ ρ∇ · v = 0

ρ
dv
dt

= −∇ (Pth + Pcr)− ρ∇φ
deth

dt
+ γtheth∇ · v = −∇ · F th +Hcr − ρL

decr

dt
+ γcrecr∇ · v = −∇ · F cr −Hcr + Scr

Lagrangian derivative d/dt = ∂/∂t + v · ∇

equations of state:
Pth = (γth − 1)eth

Pcr = (γcr − 1)ecr
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Governing equations

conservation of mass, momentum, thermal and CR energy:

dρ
dt
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dt
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Governing equations

conservation of mass, momentum, thermal and CR energy:

dρ
dt

+ ρ∇ · v = 0

ρ
dv
dt

= −∇ (Pth + Pcr)− ρ∇φ
deth

dt
+ γtheth∇ · v = −∇ · F th +Hcr − ρL

decr

dt
+ γcrecr∇ · v = −∇ · F cr −Hcr + Scr

thermal heat flux F th = −κ∇T

CR streaming flux F cr = (ecr + Pcr)vst with vst = −vA
∇Pcr
|∇Pcr|

CR heating rate Hcr = −vst ·∇ Pcr
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Case study A1795: density and temperature

Jacob & Pfrommer (2017a)

beautiful match of steady-state solutions to observed profiles

pure NFW mass profile in A1795
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Case study A1795: heating and cooling
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CR heating dominates in the center

conductive heating takes over at larger radii, κ = 0.42κSp

Hcr +Hth ≈ Crad: modest mass deposition rate of 1 M� yr−1
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Case study A1795: CR and B pressure ratios
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define Xcr = Pcr/Pth, XB = PB/Pth, Xnt = Pnt/Pth

Xcr ≈ const. in center: ∆εth = −τAvst · ∇ Pcr ≈ Pcr = XcrPth

adopt B model from Faraday rotation studies:

B = 10µG×
(
n/0.01 cm−3)0.5
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Gallery of solutions: density profiles
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Gallery of solutions: temperature profiles
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Hadronic gamma-ray emission
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predictions close to observational limits

sensitivity not sufficient to be constraining
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Hadronic gamma-ray emission: observational limits
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Hadronically induced radio emission
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continuous sequence in Fν,pred/Fν,NVSS

CR heating solution ruled out in radio mini halos

CR heating viable solution for non-RMH clusters
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Hadronically induced radio emission: NVSS limits
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How can we explain these results?

self-regulated feedback cycle driven by CRs

Cosmic rays in galaxy clusters

AGN injects CRs l CR heating balances
cooling

l
CRs stream outwards
and become too dilute
to heat the cluster

lcluster cools and
triggers AGN activity

l

radio mini halo
l
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Self-regulated heating/cooling cycle in cool cores
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Jacob & Pfrommer (2017b)
possibly CR-heated cool cores vs. radio mini halo clusters:

simmering SF: CR heating is effectively balancing cooling

abundant SF: heating/cooling out of balance

Fν,obs > Fν,pred: strong radio source = abundant injection of CRs
⇒ predicting existence of radio micro halos in CR heated clusters
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Radio mini halos
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Jacob & Pfrommer (2017a)

radio mini halos may be of hadronic origin: CR protons from AGN that
have streamed outwards and cooled via Alfvén-wave excitation

RXJ1532: dying radio mini halo

Perseus: transitional object, was CR heated until recently
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Predicting radio micro halos
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Jacob & Pfrommer (2017a)

radio mini halos may be of hadronic origin: CR protons from AGN that
have streamed outwards and cooled via Alfvén-wave excitation

predicting radio micro halos of primary origin in CR-heated CCs: CR
electrons that escaped from AGN; subdominant hadronic emission
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MHD jet simulations

AREPO: unstructured-mesh

MHD moving-mesh code AREPO

NFW cluster potential

external turbulent magnetic field
(Kolmogorov)

jet module

prepare low-density state in
pressure equilibrium
inject kinetic energy, B, and
CRs
refine to sustain density
contrast
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MHD jet simulations

initial magnetic field

MHD moving-mesh code AREPO
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external turbulent magnetic field
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jet module
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MHD jet simulations

AREPO: jet injection region
(Weinberger+ 2017)

MHD moving-mesh code AREPO

NFW cluster potential

external turbulent magnetic field
(Kolmogorov)

jet module

prepare low-density state in
pressure equilibrium
inject kinetic energy, B, and
CRs
refine to sustain density
contrast
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Cosmic ray modelling

AREPO: jet injection region
(Weinberger+ 2017)

subgrid CR acceleration:

reality: internal shocks
code: Ecr/Eth ≥ 0.5

CR transport:

CRs are advected
emulate CR streaming ≈
anisotropic CR diffusion &
Alfvén cooling
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Jet simulation: gas density, CR energy density, B field

Ehlert, Weinberger, Pfrommer+ (2018)
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Perseus cluster – heating vs. cooling: theory

1 10 100
r [kpc]

10−28

10−27

10−26

10−25

10−24

H
,
C

[e
rg

cm
−

3
s−

1
]

Perseus JP17: Hcr

JP17: Hcond

JP17: Crad

Ehlert, Weinberger, Pfrommer+ (2018)

CR and conductive heating balance radiative cooling:
Hcr +Hth ≈ Crad: modest mass deposition rate of 1 M� yr−1
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Perseus cluster – heating vs. cooling: simulations
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Ehlert, Weinberger, Pfrommer+ (2018)

CR and conductive heating balance radiative cooling:
Hcr +Hth ≈ Crad: modest mass deposition rate of 1 M� yr−1

simulated CR heating rate matches 1D steady state model
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Modelling the major outburst in MS 0735
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SZ effect of bubbles – profiles
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analytical model vs. simulation
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SZ effect of bubbles: inclination-distance degeneracy
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Kinetic vs. thermal SZ effect
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Conclusions on AGN feedback by cosmic-ray heating
cosmic-ray heating in M87:

radio and γ-ray data of M87 imply CR mixing with dense cluster
gas with a CR-to-thermal pressure ratio of Xcr = 0.3

CR Alfvén wave heating balances radiative cooling on all scales
within the central radio halo (r < 35 kpc)

large sample of cool cores⇒ self-regulation cycle

low-density cool cores: possibly stably heated by cosmic rays

radio mini halo clusters: cosmic-ray heating ruled out
systems are strongly cooling and form stars at large rates

AGN jet simulations:

MHD simulations of AGN jets: CR heating can solve the “cooling
flow problem” in galaxy clusters

simulating Sunyaev-Zel’dovich effect of bubbles:
determine relativistic filling
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CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN
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