The physics of propagating TeV gamma-rays: From plasma instabilities to cosmological structure formation

Christoph Pfrommer

with

Avery E. Broderick, Phil Chang, Mohamad Shalaby, Astrid Lamberts, Ewald Puchwein, Volker Springel

¹Heidelberg Institute for Theoretical Studies, Germany

Dynamical processes in space plasmas, Dead Sea, Israel – 2016
Motivation

A new link between high-energy astrophysics and cosmological structure formation

Introduction to Blazars
- active galactic nuclei (AGN)
- propagating gamma rays
- plasma physics

Cosmological Consequences
- unifying blazars with AGN
- gamma-ray background
- thermal history of the Universe
- Lyman-α forest
- formation of dwarf galaxies
Active galactic nucleus (AGN)

- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum.
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets.

Centaurus A

The physics of propagating TeV gamma-rays
Active galactic nucleus at a cosmological distance

- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets
- AGNs are among the most luminous sources in the universe → discovery of distant objects

Quasar 3C175 at $z \sim 0.8$: jet extends 10^6 light years across
Unified model of active galactic nuclei

accretion disk

dusty torus

relativistic jet

super-massive black hole

The physics of propagating TeV gamma-rays
Unified model of active galactic nuclei

Blazar: jet aligned with line-of-sight

The physics of propagating TeV gamma-rays
TeV gamma-ray observations

The physics of propagating TeV gamma-rays
The TeV gamma-ray sky

There are several classes of TeV sources:

- Galactic - pulsars, BH binaries, supernova remnants
- Extragalactic - mostly blazars, two starburst galaxies
The physics of propagating TeV gamma-rays
Annihilation and pair production

\[\sqrt{s} = \sqrt{2EE_{\text{EBL}}(1 - \cos \theta)} > 2m_e c^2 \]

\[\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \]
Blazars
Gamma-ray sky
Structure formation
Active galactic nuclei
Propagating γ rays
Plasma instabilities

Inverse Compton cascades

The physics of propagating TeV gamma-rays

\[\lambda_{IC} \sim \lambda_{\gamma\gamma}/1000 \]

\[\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \]
Inverse Compton cascades

\[\lambda_{\text{IC}} \sim \lambda_{\gamma\gamma}/1000 \]
\[\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \]

→ each TeV point source should also be a GeV point source!
What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo.
What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**

- **expected cascade emission**
- **Fermi exclusion region**
- **TeV detections**
- **intrinsic spectra**

Neronov & Vovk (2010)
Inverse Compton cascades

\[\lambda_{IC} \sim \lambda_{\gamma \gamma}/1000 \]

\[\lambda_{\gamma \gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \]
Extragalactic magnetic fields?

The physics of propagating TeV gamma-rays
Extragalactic magnetic fields?

- GeV point source diluted \rightarrow weak "pair halo"
- stronger B–field implies more deflection and dilution, gamma–ray non–detection $\rightarrow B \gtrsim 10^{-16}$ G – primordial fields?
Extragalactic magnetic fields?

- problem for unified AGN model: no increase in comoving blazar density with redshift allowed (as seen in other AGNs) since otherwise, extragalactic GeV background would be overproduced!
What else could happen?

The physics of propagating TeV gamma-rays
Plasma instabilities

Pair plasma beam propagating through the intergalactic medium

The physics of propagating TeV gamma-rays
Plasma instabilities

- pair beam

This configuration is unstable to plasma instabilities

Characteristic frequency and length scale of the problem:

\[\omega_p = \sqrt{\frac{4\pi e^2 n_e}{m_e}}, \quad \lambda_p = \frac{c}{\omega_p} \left| \bar{\rho}(z=0) \right| \sim 10^8 \text{ cm} \]
Oblique instability

- k oblique to \mathbf{v}_{beam}: real word perturbations don’t choose “easy” alignment = \sum all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities

(Nakar, Bret & Milosavljevic 2011)

Bret (2009), Bret+ (2010)

Bret (2009), Bret+ (2010)
Beam physics – growth rates

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

\[\Gamma \simeq 0.4 \gamma \frac{n_{\text{beam}}}{n_{\text{IGM}}} \omega_p \]

- oblique instability beats inverse Compton cooling by factor 10-100
- assume that instability grows at \textit{linear} rate up to saturation

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)
Challenges to the Challenge

Challenge #1: quenching of linear growth & non-linear saturation

- quenching of linear growth at small level \((10^{-3} - 10^{-2}) \epsilon_e\)
- cold beam: slow secular growth with non-linear saturation
 only \(\sim 10\%\) of the beam energy transferred to the IGM

PIC simulations: \(\alpha = n_{\text{beam}}/n_{\text{IGM}},\)
1D: black – two-stream & green – oblique,
2D: red – oblique (Sironi & Giannios 2013)
Plasma simulations: resolution

Shalaby+ (2016)

- **Spatial resolution:**
 -
 -

- **Momentum resolution:**
 -
 -

- **Spectral resolution:**
 -
 -
 -

The physics of propagating TeV gamma-rays
The physics of propagating TeV gamma-rays

The graph shows the growth rate \(\Gamma/\omega_p \) as a function of wave number \(kc/\omega_p \), where \(c \) is the speed of light and \(\omega_p \) is the plasma frequency. The growth rate is plotted on a log-log scale, with the wave number on a linear scale.

Key points from the graph:
- The growth rate increases significantly as the wave number approaches 1.0.
- The graph starts from a growth rate of \(10^{-5} \) at a wave number of 0.2 and rises sharply.

The data is based on plasma simulations from Shalaby+ (2016).
Plasma simulations: resolution

Shalaby+ (2016)

The physics of propagating TeV gamma-rays
The physics of propagating TeV gamma-rays
Challenge #2: inhomogeneous universe

- Universe is inhomogeneous
 - Electron density changes as a function of position
- Could lead to loss of resonance over length scale \ll length scale for instability growth

Condition for linear growth to occur is claimed (Miniati & Elyiv 2013)

\[
\frac{\text{few}}{\Gamma_m} < \frac{\Delta k_{||}}{|dk/dt|} \quad \text{electrostatic modes (1D)} \quad \frac{\gamma_b}{\alpha} \frac{c\lambda_{||}}{\omega_p} < 1,
\]

Where $\lambda_{||} \equiv |n/\nabla n|$.

The physics of propagating TeV gamma-rays
Background inhomogeneity effects

Condition \[\left(\frac{\gamma_b}{\alpha} \right) \left(\frac{c \lambda_{||}}{\omega_p} \right) < 1 \]

Simulation \[\left(\frac{\gamma_b}{\alpha} \right) \left(\frac{c \lambda_{||}}{\omega_p} \right) \sim 10^7 \]

Shalaby+ (2016): 1D PIC simulation shows linear wave growth at lower growth rate, more energy lost by the beam than for uniform case.
Challenges to the Challenge

Challenge #3: induced scattering (non-linear Landau damping)

- we assume that the non-linear damping rate = linear growth rate
- wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is \(\ll \) linear growth rate
- accounting for much faster collisionless scattering (kinetic regime) \(\rightarrow \) powerful instability, faster than IC cooling

(Schlickeiser+ 2013, Chang+ 2014)
TeV emission from blazars – a new paradigm

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \{ \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \}
\]

plasma instabilities

Absence of \(\gamma_{\text{GeV}} \)'s has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars
TeV blazar luminosity density: today

- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ($\eta_B \sim 0.2\%$) of that of quasars!

Broderick, Chang, C.P. (2012)
Unified TeV blazar-quasar model

Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity

→ assume that they trace each other for all redshifts!
How many TeV blazars are there?

→ use all-sky survey of the GeV gamma-ray sky: *Fermi* gamma-ray space telescope

The physics of propagating TeV gamma-rays
How many TeV blazars are there?

Hopkins+ (2007)
How many TeV blazars are there?

Fermi hard gamma-ray blazar counts

Hopkins+ (2007)
How many TeV blazars are there?

Hopkins+ (2007)

Fermi extragalactic gamma-ray background

Fermi hard gamma-ray blazar counts

log[\Phi(z, M_B > -27)] [Mpc^{-3}]
Redshift distribution of *Fermi* hard γ-ray blazars

\rightarrow evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!
log N – log S distribution of *Fermi* hard γ-ray blazars

→ predicted and observed flux distributions of hard *Fermi* blazars between 10 GeV and 500 GeV are indistinguishable!
How many TeV blazars are there?

Hopkins+ (2007)
Extragalactic gamma-ray background

→ evolving population of hard blazars provides excellent match to latest EGRB by *Fermi* for $E \gtrsim 3$ GeV
Extragalactic gamma-ray background

→ the signal at 10 (100) GeV is dominated by redshifts $z \sim 1.2$ ($z \sim 0.6$)
TeV emission from blazars – a new paradigm

\[
\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} & \rightarrow \gamma_{\text{GeV}} \\ \text{plasma instabilities} & \rightarrow \text{IGM heating} \end{cases}
\]

Absence of \(\gamma_{\text{GeV}}\)'s has significant implications for . . .

- Intergalactic magnetic field estimates
- Unified picture of TeV blazars and quasars: explains *Fermi*'s \(\gamma\)-ray background and blazar number counts

Additional IGM heating has significant implications for . . .

- Thermal history of the IGM: Lyman-\(\alpha\) forest
- Late-time formation of dwarf galaxies
Thermal history of the IGM

C.P., Chang, Broderick (2012)

→ increased temperature at mean density!
Cosmological hydrodynamical simulations

- include predicted volumetric heating rate in cosmological hydrodynamical simulations

- study:
 - thermal properties of intergalactic medium
 - Lyman-α forest
Temperature-density relation

Puchwein, C.P., Springel, Broderick, Chang (2012)
The Lyman-α forest
The observed Lyman-α forest

![Graph showing Lyman-\(\alpha\) forest and Lyman Alpha Emission]

TOTAL COUNTS

VACUUM HELIOCENTRIC WAVELENGTH (ANGSTROM)

Q1159+123
The simulated Ly-\(\alpha\) forest

Puchwein, C.P.+ (2012)

The physics of propagating TeV gamma-rays
Ly-α flux PDFs and power spectra

Puchwein, C.P.+ (2012)
improvement in modelling the Lyman-α forest is a direct consequence of the peculiar properties of blazar heating:

- **heating rate independent of IGM density** → naturally produces the inverted $T-\rho$ relation that Lyman-α forest data demand

- **recent and continuous nature of the heating** is needed to match the redshift evolutions of all Lyman-α forest statistics

- **magnitude of the heating rate required by Lyman-α forest data** ∼ the total energy output of TeV blazars (or equivalently ∼ 0.2% of that of quasars)
“Missing satellite” problem in the Milky Way

Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!
Dwarf galaxy formation

- Thermal pressure opposes gravitational collapse on small scales
- Characteristic length/mass scale below which objects do not form
- Hotter intergalactic medium \rightarrow higher thermal pressure \rightarrow higher Jeans mass:

$$M_J \propto \frac{c_s^3}{\rho^{1/2}} \propto \left(\frac{T_{\text{IGM}}^3}{\rho} \right)^{1/2} \rightarrow \frac{M_{J,\text{blazar}}}{M_{J,\text{photo}}} \approx \left(\frac{T_{\text{blazar}}}{T_{\text{photo}}} \right)^{3/2} \gtrsim 30$$

\rightarrow blazar heating increases M_J by 30 over pure photoheating!

- Complications:
 - Non-linear collapse,
 - Delayed pressure response in expanding universe \rightarrow concept of “filtering mass”

C.P., Chang, Broderick (2012)
Dwarf galaxy formation suppressed

- blazar heating suppresses the formation of late-forming dwarfs within existing dark matter halos of masses $< 10^{11} \, M_\odot$

 → introduces new time and mass scale to galaxy formation!
Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM *B*-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background

- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - quantitative self-consistent picture of high-z Lyman-α forest

- significantly modifies late-time structure formation:
 - suppresses late dwarf formation
 - void phenomenon, “missing satellites” (?)
CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtion

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No CRAGSMAN−646955).

The physics of propagating TeV gamma-rays
Literature for the talk

