Cosmic rays in galaxy formation

Christoph Pfrommer¹

in collaboration with

PhD students: K. Ehlert¹, M. Pais¹, T. Thomas¹, M. Werhahn¹, G. Winner¹ Postdocs: T. Berlok¹, T. Buck¹, P. Girichidis¹, M. Shalaby¹ E. Puchwein¹, R. Pakmor², V. Springel², T. Enßlin², C. Simpson³

¹AIP Potsdam, ²MPA Garching, ³U of Chicago Virgo Consortium meeting, Durham, Jan 2020

Introduction CR hydrodynamics Observational tests

Do cosmic rays matter in galaxy formation?

Christoph Pfrommer Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Puzzles in galaxy formation

Introduction CR hydrodynamics Observational tests

Puzzles in galaxy formation

Introduction CR hydrodynamics Observational tests

Puzzles in galaxy formation

Introduction CR hydrodynamics Observational tests

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- cosmic-ray pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

Introduction CR hydrodynamics Observational tests

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin

Introduction CR hydrodynamics Observational tests

Galactic cosmic ray spectrum

data compiled by Swordy

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin
- energy density of cosmic rays, magnetic fields, and turbulence in the interstellar gas all similar

Introduction CR hydrodynamics Observational tests

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- cosmic-ray pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

observed energy equipartition between cosmic rays, thermal gas and magnetic fields not a coincidence

 \rightarrow suggests self-regulated feedback loop with CR driven winds

Introduction CR hydrodynamics Observational tests

Outline

Cosmic ray transport

- Introduction
- CR hydrodynamics
- Observational tests

2 Cosmic ray feedback

- Modeling physics
- Galaxy simulations
- Galaxy cluster physics

Introduction CR hydrodynamics Observational tests

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

gyro-orbit of GeV cosmic ray:

$$r_{
m gal}\sim 10^4~
m pc$$
 $r_{
m cr}=rac{p_\perp}{e\,B_{
m uG}}\sim 10^{-6}~
m pc\sim rac{1}{4}~
m AU$

\Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)

Introduction CR hydrodynamics Observational tests

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob

★ E → ★ E →

Christoph Pfrommer Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Interactions of CRs and magnetic fields

sketch: Jacob

ヘロト ヘヨト ヘヨト

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

Introduction CR hydrodynamics Observational tests

Interactions of CRs and magnetic fields

sketch: Jacob

イロト イポト イヨト イヨト

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

• CRs scatter on magnetic fields \rightarrow isotropization of CR momenta

Introduction CR hydrodynamics Observational tests

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

Introduction CR hydrodynamics Observational tests

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

Introduction CR hydrodynamics Observational tests

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling \rightarrow CR stream with waves strong wave damping: less waves to scatter \rightarrow CR diffusion prevails

Introduction CR hydrodynamics Observational tests

Modes of CR propagation

Christoph Pfrommer Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Modes of CR propagation

Christoph Pfrommer Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Modes of CR propagation

Introduction CR hydrodynamics Observational tests

CR vs. radiation hydrodynamics

 captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

∃ ► < ∃ ►</p>

Introduction CR hydrodynamics Observational tests

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + P_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\stackrel{1}{\longrightarrow} \frac{\partial \boldsymbol{f}_{\rm cr}}{\delta \mathbf{r}} + \boldsymbol{\nabla} \cdot \boldsymbol{p}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial \mathbf{r}_{cr}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P}_{cr} = - \qquad \frac{\partial \boldsymbol{D}}{\partial \kappa_{\pm}} \cdot [\mathbf{f}_{cr} - \boldsymbol{w}_{\pm}(\varepsilon_{cr} + P_{cr})] - \boldsymbol{g}_{\text{Lorentz}} + \boldsymbol{S}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

< 🗇 🕨

Introduction CR hydrodynamics Observational tests

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, $\varepsilon_{\rm cr}$ and $f_{\rm cr}/c^2$

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

• lab-frame equ's for radiation energy and momentum density, ε and f/c^2 (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

Introduction CR hydrodynamics Observational tests

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, $\varepsilon_{\rm cr}$ and $f_{\rm cr}/c^2$

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{\mathsf{S}}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

• **problem:** CR lab-frame equation requires resolving rapid gyrokinetics!

Introduction CR hydrodynamics Observational tests

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, $\varepsilon_{\rm cr}$ and $f_{\rm cr}/c^2$

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{\mathsf{S}}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

• solution: transform in comoving frame and project out gyrokinetics!

Introduction CR hydrodynamics Observational tests

Non-equilibrium CR streaming and diffusion

Coupling the evolution of CR and Alfvén wave energy densities

Christoph Pfrommer Cosi

Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Non-equilibrium CR streaming and diffusion

Varying damping rate of Alfvén waves modulates the diffusivity of solution

Christoph Pfrommer

Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Anisotropic CR streaming and diffusion – AREPO CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

- CR streaming and diffusion along magnetic field lines in the self-confinement picture
- moment expansion similar to radiation hydrodynamics
- accounts for kinetic physics: non-linear Landau damping, gyro-resonant instability, ...
- Galilean invariant and causal transport
- energy and momentum conserving

MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)

< □

MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)

Introduction CR hydrodynamics Observational tests

Radio synchrotron harps: the model

shock acceleration scenario

Thomas, CP, Enßlin (2020)

Introduction CR hydrodynamics Observational tests

Radio synchrotron harps: the model

shock acceleration scenario

magnetic reconnection at pulsar wind

Introduction CR hydrodynamics Observational tests

Radio synchrotron harps: the model

shock acceleration scenario

CR diffusion vs. streamig + diffusion

Introduction CR hydrodynamics Observational tests

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

Christoph Pfrommer Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

4.0background 1 pc signal 3.53.0 2.52.01.51.00.50.0 -0.045-0.030-0.0150.000 0.0150.030 arc length [°] Thomas, CP, Enßlin (2020)

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

AIP

lateral radio profiles

Christoph Pfrommer Cosmic rays in galaxy formation

Introduction CR hydrodynamics Observational tests

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR diffusion

Introduction CR hydrodynamics Observational tests

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR streaming and diffusion

Christoph Pfrommer Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Simulations – flowchart

observables:

physical processes:

э

CP+ (2017a)

Modeling physics Galaxy simulations Galaxy cluster physics

Simulations with cosmic ray physics

observables:

physical processes:

Modeling physics Galaxy simulations Galaxy cluster physics

Simulations with cosmic ray physics

observables:

physical processes:

Modeling physics Galaxy simulations Galaxy cluster physics

Simulations with cosmic ray physics

observables:

physical processes:

Modeling physics Galaxy simulations Galaxy cluster physics

Gamma-ray emission of the Milky Way

Christoph Pfrommer

Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Galactic wind in the Milky Way?

Modeling physics Galaxy simulations Galaxy cluster physics

1. Galaxy formation in idealized halos

CP, Pakmor, Simpson, Springel (2017b) Simulating gamma-ray emission in star-forming galaxies MHD + CR advection + anisotropic diffusion, $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

Modeling physics Galaxy simulations Galaxy cluster physics

Simulation of Milky Way-like galaxy, t = 0.5 Gyr

Christoph Pfrommer Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Simulation of Milky Way-like galaxy, t = 1.0 Gyr

Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Cosmic ray driven wind: mechanism

CR streaming in 3D simulations: Uhlig, CP+ (2012), Ruszkowski+ (2017) CR diffusion in 3D simulations: Jubelgas+ (2008), Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014), Pakmor, CP+ (2016), Simpson+ (2016), Girichidis+ (2016), Dubois+ (2016), CP+ (2017b), Jacob+ (2018), ...

Modeling physics Galaxy simulations Galaxy cluster physics

CR-driven winds: dependence on halo mass

Christoph Pfrommer Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

CR-driven winds: suppression of star formation

Modeling physics Galaxy simulations Galaxy cluster physics

2. Cosmological galaxy formation

Christoph Pfrommer Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Cosmic rays in cosmological galaxy simulations

The galaxy formation model

- primordial and metal line cooling
- sub-resolution model for star formation (Springel+ 03)
- mass and metal return from stars to ISM
- cold dense gas stabilised by pressurised ISM
- thermal and kinetic energy from supernovae modelled by isotropic wind – launched outside of SF region
- black hole seeding and accretion model (Springel+ 05)
- thermal feedback from AGN in radio and quasar mode
- uniform magnetic field of 10^{-10} G seeded at z = 128

Simulation suite (Buck+ 2019)

- 2 galaxies, baryons with $5 \times 10^4 \, M_\odot \sim 5 \times 10^6$ resolution elements in halo, 2×10^6 star particles
- 4 models with different CR physics for each galaxy:
 - no CRs
 - CR advection
 - + CR anisotropic diffusion
 - + CR Alfvén wave cooling

AIP

Christoph Pfrommer

Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Cosmic rays in cosmological galaxy simulations Auriga MHD models: CR transport changes disk sizes

Christoph Pfrommer Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Cosmic rays in cosmological galaxy simulations Auriga MHD models: CR transport modifies the circum-galactic medium

Christoph Pfrommer

Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Puzzles in galaxy formation: galaxy clusters

Modeling physics Galaxy simulations Galaxy cluster physics

Jet simulation: gas density, CR energy density, B field

 $60 \mathrm{Myr}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Modeling physics Galaxy simulations Galaxy cluster physics

Perseus cluster – heating vs. cooling: theory

• CR and conductive heating balance radiative cooling: $H_{cr} + H_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_☉ yr⁻¹

Modeling physics Galaxy simulations Galaxy cluster physics

Perseus cluster – heating vs. cooling: simulations

Ehlert, Weinberger, CP+ (2018)

- CR and conductive heating balance radiative cooling: $H_{cr} + H_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_o yr⁻¹
- simulated CR heating rate matches 1D steady state model

Modeling physics Galaxy simulations Galaxy cluster physics

Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion

Modeling physics Galaxy simulations Galaxy cluster physics

Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion

CR feedback in galaxy formation:

- CR feedback drives galactic winds & slows down star formation
- CRs modify disk sizes and the circumgalactic medium
- CR heating may balance radiative cooling in cluster cooling flows

Modeling physics Galaxy simulations Galaxy cluster physics

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

AIP

Christoph Pfrommer

Cosmic rays in galaxy formation

Modeling physics Galaxy simulations Galaxy cluster physics

Literature for the talk – 1

Cosmic ray transport:

- Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS.
- Thomas, Pfrommer, Enßlin, *Probing cosmic ray transport with radio synchrotron harps in the Galactic center*, 2020, submitted.

Cosmic ray feedback in galaxy clusters:

- Jacob & Pfrommer, Cosmic ray heating in cool core clusters I: diversity of steady state solutions, 2017a, MNRAS.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission, 2017b, MNRAS.
- Ehlert, Weinberger, Pfrommer, Pakmor, Springel, *Simulations of the dynamics of magnetised jets and cosmic rays in galaxy clusters*, 2018, MNRAS.

イロト イポト イヨト イヨ

Modeling physics Galaxy simulations Galaxy cluster physics

Literature for the talk -2

Cosmic ray feedback in galaxies:

- Pakmor, Pfrommer, Simpson, Springel, Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies, 2016, ApJL.
- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017a, MNRAS.
- Pfrommer, Pakmor, Simpson, Springel, Simulating gamma-ray emission in star-forming galaxies, 2017b, ApJL.
- Jacob, Pakmor, Simpson, Springel, Pfrommer, The dependence of cosmic ray driven galactic winds on halo mass, 2018, MNRAS.
- Buck, Pfrommer, Pakmor, Grand, Springel, The effects of cosmic rays on the formation of Milky Way-like galaxies in a cosmological context, 2019, subm.

