Cosmic rays in galaxy formation

Christoph Pfrommer¹

in collaboration with

PhD students: K. Ehlert¹, M. Pais¹, T. Thomas¹, M. Werhahn¹, G. Winner¹
Postdocs: T. Berlok¹, T. Buck¹, P. Girichidis¹, M. Shalaby¹
E. Puchwein¹, R. Pakmor², V. Springel², T. Enßlin², C. Simpson³

¹AIP Potsdam, ²MPA Garching, ³U of Chicago

Virgo Consortium meeting, Durham, Jan 2020
Do cosmic rays matter in galaxy formation?
Puzzles in galaxy formation

- Dwarf galaxy
- Spiral galaxy
- Giant elliptical galaxy

\[
\frac{\log(\text{stellar mass})}{\log(\text{halo mass})}
\]

20% of baryons

Moster+ (2010)
Cosmic rays in galaxy formation

Puzzles in galaxy formation

- Dwarf galaxy
- Spiral galaxy
- Giant elliptical galaxy

\[
\frac{\text{stellar mass}}{\text{halo mass}} = \log(\text{stellar mass}) - \log(\text{halo mass})
\]

Approximately 20% of baryons

\text{stellar feedback}

Moster+ (2010)
Puzzles in galaxy formation

- **dwarf galaxy**
- **spiral galaxy**
- **giant elliptical galaxy**

- **log(stellar/halo mass)**
- **log(halo mass)**

- 20% of baryons
- Feedback by active galactic nuclei

Moster+ (2010)
How are galactic winds driven?

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- cosmic-ray pressure and Alfvén wave heating of CRs accelerated at supernova shocks?
Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- “knee” indicates characteristic maximum energy of galactic accelerators
- CRs beyond the “ankle” have extra-galactic origin

Cosmic Ray energy spectrum

89% protons
10% 4He (alphas)
1% mostly e^- (betas)

1 m$^{-2}$ s$^{-1}$
1 m$^{-2}$ yr$^{-1}$
1 km$^{-2}$ yr$^{-1}$

data compiled by Swordy
Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin
- energy density of cosmic rays, magnetic fields, and turbulence in the interstellar gas all similar
How are galactic winds driven?

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- cosmic-ray pressure and Alfvén wave heating of CRs accelerated at supernova shocks?

Observed energy equipartition between cosmic rays, thermal gas and magnetic fields not a coincidence
→ suggests self-regulated feedback loop with CR driven winds
Outline

1. Cosmic ray transport
 - Introduction
 - CR hydrodynamics
 - Observational tests

2. Cosmic ray feedback
 - Modeling physics
 - Galaxy simulations
 - Galaxy cluster physics
Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

\[r_{\text{gal}} \sim 10^4 \text{ pc} \]

gyro-orbit of GeV cosmic ray:

\[r_{\text{cr}} = \frac{p_\perp}{eB_{\mu G}} \sim 10^{-6} \text{ pc} \sim \frac{1}{4} \text{ AU} \]

⇒ need to develop a **fluid theory for a collisionless, non-Maxwellian component!**

Interactions of CRs and magnetic fields

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

CRs scatter on magnetic fields

→ isotropization of CR momenta

sketch: Jacob
Interactions of CRs and magnetic fields

Gyro resonance:
\[\omega - k_{\parallel} v_{\parallel} = n\Omega \]

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

Sketch: Jacob
Interactions of CRs and magnetic fields

- **gyro resonance:** \[\omega - k_\parallel v_\parallel = n\Omega \]
 Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

- CRs scatter on magnetic fields → isotropization of CR momenta
CR streaming instability: Kulsrud & Pearce 1969

- if $v_{cr} > v_a$, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs.
- scattering off of this wave field limits the (GeV) CRs’ bulk speed $\sim v_a$.
- wave damping: transfer of CR energy and momentum to the thermal gas.
CR streaming and diffusion

CR streaming instability: *Kulsrud & Pearce 1969*

- If $v_{\text{cr}} > v_a$, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs.
- Scattering off of this wave field limits the (GeV) CRs’ bulk speed $\sim v_a$.
- Wave damping: transfer of CR energy and momentum to the thermal gas.

→ *CRs exert pressure on thermal gas via scattering on Alfvén waves*
CR streaming and diffusion

- **CR streaming instability:** Kulsrud & Pearce 1969
 - if $v_{cr} > v_a$, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs’ bulk speed $\sim v_a$
 - wave damping: transfer of CR energy and momentum to the thermal gas

\rightarrow **CRs exert pressure on thermal gas via scattering on Alfvén waves**

Weak wave damping: strong coupling \rightarrow CR stream with waves

Strong wave damping: less waves to scatter \rightarrow CR diffusion prevails
Modes of CR propagation

$\nu_{adv} t$

Thomas, CP, Enßlin (2020)
Modes of CR propagation

- **Advection**
 - \(v_{\text{adv}}t \)

- **Diffusion**
 - \(\sqrt{2\kappa t} \)

Thomas, CP, Enßlin (2020)

Christoph Pfrommer

Cosmic rays in galaxy formation
Modes of CR propagation

- **Advection**: \(v_{\text{adv}} t \)
- **Diffusion**: \(\sqrt{2\kappa t} \)
- **Streaming**: \(v_\text{a} t \)

Thomas, CP, Enßlin (2020)
CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)
- derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)
- derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

Lab-frame equ’s for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{cr}}{\partial t} + \nabla \cdot f_{cr} = -w_{\pm} \cdot \frac{bb}{3\kappa_{\pm}} \cdot [f_{cr} - w_{\pm}(\varepsilon_{cr} + P_{cr})] - v \cdot g_{\text{Lorentz}} + S_{\varepsilon}$$

$$\frac{1}{c^2} \frac{\partial f_{cr}}{\partial t} + \nabla \cdot P_{cr} = -\frac{bb}{3\kappa_{\pm}} \cdot [f_{cr} - w_{\pm}(\varepsilon_{cr} + P_{cr})] - g_{\text{Lorentz}} + S_{f}$$

Alfvén wave velocity in lab frame: $w_{\pm} = v \pm v_a$,
CR scattering frequency $\bar{\nu}_{\pm} = c^2/(3\kappa_{\pm})$
CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)
- derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

Lab-frame equ’s for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

\[
\frac{\partial \varepsilon_{cr}}{\partial t} + \nabla \cdot f_{cr} = -w_{\pm} \cdot \frac{bb}{3\kappa_{\pm}} \cdot [f_{cr} - w_{\pm}(\varepsilon_{cr} + P_{cr})] - v \cdot g_{\text{Lorentz}} + S_{\varepsilon}
\]

\[
\frac{1}{c^2} \frac{\partial f_{cr}}{\partial t} + \nabla \cdot P_{cr} = -\frac{bb}{3\kappa_{\pm}} \cdot [f_{cr} - w_{\pm}(\varepsilon_{cr} + P_{cr})] - g_{\text{Lorentz}} + S_{f}
\]

Alfvén wave velocity in lab frame: $w_{\pm} = v \pm v_{a}$,
CR scattering frequency $\bar{\nu}_{\pm} = c^2/(3\kappa_{\pm})$

Lab-frame equ’s for radiation energy and momentum density, ε and f/c^2

(Mihalas & Mihalas, 1984, Lowrie+ 1999):

\[
\frac{\partial \varepsilon}{\partial t} + \nabla \cdot f = -\sigma_s v \cdot [f - v \cdot (\varepsilon 1 + P)] + S_a
\]

\[
\frac{1}{c^2} \frac{\partial f}{\partial t} + \nabla \cdot P = -\sigma_s [f - v \cdot (\varepsilon 1 + P)] + S_a v
\]
CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)
- derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

Lab-frame equ’s for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{cr}}{\partial t} + \nabla \cdot f_{cr} = -w_\pm \cdot \frac{bb}{3\kappa_\pm} \cdot \left[f_{cr} - w_\pm (\varepsilon_{cr} + P_{cr}) \right] - v \cdot g_{\text{Lorentz}} + S_\varepsilon$$

$$\frac{1}{c^2} \frac{\partial f_{cr}}{\partial t} + \nabla \cdot P_{cr} = - \frac{bb}{3\kappa_\pm} \cdot \left[f_{cr} - w_\pm (\varepsilon_{cr} + P_{cr}) \right] - g_{\text{Lorentz}} + S_f$$

Alfvén wave velocity in lab frame: $w_\pm = v_\pm v_a$,

CR scattering frequency $\bar{\nu}_\pm = c^2/(3\kappa_\pm)$

Lab-frame equ’s for radiation energy and momentum density, ε and f/c^2

(Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot f = -\sigma_s v \cdot [f - v \cdot (\varepsilon 1 + P)] + S_a$$

$$\frac{1}{c^2} \frac{\partial f}{\partial t} + \nabla \cdot P = -\sigma_s \cdot [f - v \cdot (\varepsilon 1 + P)] + S_a v$$

Problem: CR lab-frame equation requires resolving rapid gyrokinetics!
CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)
- derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

lab-frame equ’s for CR energy and momentum density, \(\varepsilon_{\text{cr}} \) and \(f_{\text{cr}}/c^2 \)

\[
\frac{\partial \varepsilon_{\text{cr}}}{\partial t} + \nabla \cdot f_{\text{cr}} = - \bm{w}_\pm \cdot \frac{bb}{3\kappa_\pm} \cdot [f_{\text{cr}} - \bm{w}_\pm (\varepsilon_{\text{cr}} + P_{\text{cr}})] - \bm{v} \cdot \bm{g}_{\text{Lorentz}} + S_\varepsilon
\]

\[
\frac{1}{c^2} \frac{\partial f_{\text{cr}}}{\partial t} + \nabla \cdot P_{\text{cr}} = - \frac{bb}{3\kappa_\pm} \cdot [f_{\text{cr}} - \bm{w}_\pm (\varepsilon_{\text{cr}} + P_{\text{cr}})] - \bm{g}_{\text{Lorentz}} + S_f
\]

Alfvén wave velocity in lab frame: \(\bm{w}_\pm = \bm{v}_\pm + \bm{v}_a \),

CR scattering frequency \(\nu_\pm = c^2/(3\kappa_\pm) \)

lab-frame equ’s for radiation energy and momentum density, \(\varepsilon \) and \(f/c^2 \)

(Mihalas & Mihalas, 1984, Lowrie+ 1999):

\[
\frac{\partial \varepsilon}{\partial t} + \nabla \cdot f = -\sigma_s \bm{v} \cdot [f - \bm{v} \cdot (\varepsilon \mathbf{1} + P)] + S_a
\]

\[
\frac{1}{c^2} \frac{\partial f}{\partial t} + \nabla \cdot P = -\sigma_s \ [f - \bm{v} \cdot (\varepsilon \mathbf{1} + P)] + S_a \bm{v}
\]

solution: transform in comoving frame and project out gyrokinetics!
Non-equilibrium CR streaming and diffusion
Coupling the evolution of CR and Alfvén wave energy densities

Thomas & CP (2019)
Non-equilibrium CR streaming and diffusion
Varying damping rate of Alfvén waves modulates the diffusivity of solution

\[\epsilon_{\text{cr}} \]

\[\epsilon_{\text{a,+}} \]

\[\epsilon_{\text{a,−}} \]

\[x \]

\[\alpha = 1 \times 10^{11} \]
\[\alpha = 5 \times 10^{11} \]
\[\alpha = 1 \times 10^{12} \]
CR streaming and diffusion along magnetic field lines in the self-confinement picture

- moment expansion similar to radiation hydrodynamics
- accounts for kinetic physics: non-linear Landau damping, gyro-resonant instability, . . .
- Galilean invariant and causal transport
- energy and momentum conserving

Thomas, Pakmor, CP (in prep.)
MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)
MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)
Radio synchrotron harps: the model

shock acceleration scenario

Thomas, CP, Enßlin (2020)
Cosmic ray transport
Cosmic ray feedback

Introduction
CR hydrodynamics
Observational tests

Radio synchrotron harps: the model

shock acceleration scenario

magnetic reconnection at pulsar wind

Thomas, CP, Enßlin (2020)
Radio synchrotron harps: the model

shock acceleration scenario

CR diffusion vs. streaming + diffusion

Thomas, CP, Enßlin (2020)
Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)
Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

Thomas, CP, Enßlin (2020)
Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR diffusion

- Thomas, CP, Enßlin (2020)
Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR streaming and diffusion

Thomas, CP, Enßlin (2020)
Simulations – flowchart

observables:
- X-ray, Hα, HI, ... emission
- stellar spectra

physical processes:
- thermal energy
- radiative cooling
- supernovae
- shocks
- AGN

loss processes
gain processes
observables
populations

CP+ (2017a)
Simulations with cosmic ray physics

observables:
- X-ray, Hα, HI, ... emission
- stellar spectra

physical processes:
- radiative cooling
- supernovae
- shocks
- AGN
- Coulomb losses

- thermal energy
- cosmic ray energy

loss processes
gain processes
observables
populations

CP+ (2017a)
Simulations with cosmic ray physics

observables:
- X-ray, Hα, HI, ...
- stellar spectra

physical processes:
- thermal energy
- shocks
- supernovae
- AGN
- Coulomb losses
- CR streaming & diffusion

loss processes
gain processes
observables
populations

CP+ (2017a)

Christoph Pfrommer
Cosmic rays in galaxy formation
Simulations with cosmic ray physics

observables:
- X-ray, Hα, HI, ... emission
- stellar spectra
- radio synchrotron
- gamma-ray emission

physical processes:
- thermal energy
- radiative cooling
- shocks
- supernovae
- AGN
- Coulomb losses
- CR streaming & diffusion
- heat conduction
- hadronic losses
- gain processes

observables: physical processes:
cosmic ray energy

CP+ (2017a)

Christoph Pfrommer
Cosmic rays in galaxy formation
Gamma-ray emission of the Milky Way
Galactic wind in the Milky Way?
Fermi gamma-ray bubbles

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.
1. Galaxy formation in idealized halos

CP, Pakmor, Simpson, Springel (2017b)

Simulating gamma-ray emission in star-forming galaxies

MHD + CR advection + anisotropic diffusion, \(\{10^{10}, 10^{11}, 10^{12}\} \) \(M_\odot \)
Simulation of Milky Way-like galaxy, $t = 0.5$ Gyr

$t = 0.5$ Gyr, $M_{200} = 10^{12} M_\odot$, anisotropic CR diffusion

\[\rho [M_\odot \text{ pc}^{-3}] \]

\[\varepsilon_{\text{cr}} [\text{erg cm}^{-3}] \]

\[\sqrt{B^2} [\mu\text{G}] \]

CP+ (2017b)
Simulation of Milky Way-like galaxy, $t = 1.0$ Gyr

Simulation of Milky Way-like galaxy, $t = 1.0$ Gyr, $M_{200} = 10^{12} M_\odot$, anisotropic CR diffusion

$\rho [M_\odot \text{pc}^{-3}]$

$\varepsilon_{\text{cr}} [\text{erg cm}^{-3}]$

$\sqrt{B^2} [\mu \text{G}]$

$\rho [M_\odot \text{pc}^{-3}]$

$\varepsilon_{\text{cr}} [\text{erg cm}^{-3}]$

$\sqrt{B^2} [\mu \text{G}]$

CP+ (2017b)
Cosmic ray driven wind: mechanism

\[\nabla P_{\text{cr}} + \nabla P_{\text{th}} > \rho \nabla \Phi \]

CR streaming in 3D simulations: Uhlig, CP+ (2012), Ruszkowski+ (2017)

CR-driven winds: dependence on halo mass

Jacob+ (2018)
CR-driven winds: suppression of star formation

![Graph showing the relationship between M_*/(f_{bar} M_{vir})$ and M_{vir} (in M_{\odot}). The graph compares different scenarios such as no CRs, CRs, CRs, iso. diff., CRs, aniso. diff., and an empiric model, with a Behroozi+2013 model as a reference.](image)

Jacob+ (2018)
2. Cosmological galaxy formation
The galaxy formation model

- primordial and metal line cooling
- sub-resolution model for star formation (Springel+ 03)
- mass and metal return from stars to ISM
- cold dense gas stabilised by pressurised ISM
- thermal and kinetic energy from supernovae modelled by isotropic wind – launched outside of SF region
- black hole seeding and accretion model (Springel+ 05)
- thermal feedback from AGN in radio and quasar mode
- uniform magnetic field of 10^{-10} G seeded at $z = 128$

Simulation suite (Buck+ 2019)

- 2 galaxies, baryons with $5 \times 10^4 \ M_\odot \sim 5 \times 10^6$
- resolution elements in halo, 2×10^6 star particles
- 4 models with different CR physics for each galaxy:
 - no CRs
 - CR advection
 - + CR anisotropic diffusion
 - + CR Alfvén wave cooling
Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport changes disk sizes

Buck, CP, Pakmor, Grand, Springel (2019)
Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport modifies the circum-galactic medium

Buck, CP, Pakmor, Grand, Springel (2019)
Puzzles in galaxy formation: galaxy clusters

- Dwarf galaxy
- Spiral galaxy
- Giant elliptical galaxy

20% of baryons

Active galactic nuclei

Feedback by active galactic nuclei

Log(stellar/halo mass) vs. Log(halo mass)

Moster+ (2010)
Jet simulation: gas density, CR energy density, B field

Ehlert, Weinberger, CP+ (2018)
Perseus cluster – heating vs. cooling: theory

CR and conductive heating balance radiative cooling:
\[H_{cr} + H_{th} \approx C_{rad} \]: modest mass deposition rate of \(1 \, M_\odot \, \text{yr}^{-1} \)

Ehlert, Weinberger, CP+ (2018)
CR and conductive heating balance radiative cooling:
\[H_{\text{cr}} + H_{\text{th}} \approx C_{\text{rad}} \]: modest mass deposition rate of \(1 \, \text{M}_\odot \, \text{yr}^{-1} \)

Simulated CR heating rate matches 1D steady state model
Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion
Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:
- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion

CR feedback in galaxy formation:
- CR feedback drives galactic winds & slows down star formation
- CRs modify disk sizes and the circumgalactic medium
- CR heating may balance radiative cooling in cluster cooling flows
CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtion

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No CRAGSMAN–646955).

Christoph Pfrommer

Cosmic rays in galaxy formation
Cosmic ray transport:
- Thomas & Pfrommer, *Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays*, 2019, MNRAS.

Cosmic ray feedback in galaxy clusters:
- Jacob & Pfrommer, *Cosmic ray heating in cool core clusters I: diversity of steady state solutions*, 2017a, MNRAS.
- Jacob & Pfrommer, *Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission*, 2017b, MNRAS.
- Ehlert, Weinberger, Pfrommer, Pakmor, Springel, *Simulations of the dynamics of magnetised jets and cosmic rays in galaxy clusters*, 2018, MNRAS.
Cosmic ray feedback in galaxies:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017a, MNRAS.
- Jacob, Pakmor, Simpson, Springel, Pfrommer, *The dependence of cosmic ray driven galactic winds on halo mass*, 2018, MNRAS.