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The Hitchhiker’s Guide to ... Blazar Heating

@ Blazar Physics

e black holes and jets
e TeV photon propagation
e plasma physics

@ Cosmological Consequences for

intergalactic magnetic fields
gamma-ray background
thermal history of the Universe
Lyman-« forest

formation of dwarf galaxies
galaxy cluster thermodynamics

Christoph Pfrommer The Physics and Cosmology of TeV Blazars



Physics of blazar heating Black hole jets
Plasma instabilities
Gamma-ray sky

Outline

@ Physics of blazar heating
@ Black hole jets
@ Plasma instabilities
@ Gamma-ray sky
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Black hole
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Black hole jets - nearby

Centaurus A in X-rays: Messier 87 in the radio:
closest active galaxy with a closest active cluster galaxy in
super-massive black hole the Virgo cluster: My, ~ 6 x 10°
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Black hole jets - at cosmological distances

2 arcminutes
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Quasar 3CT75

Quasar 3C175: Giant radio galaxy B1545-321: »
1 million light years across relic radio plasma and new jet activity”
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Unified model of active galactic nuclei

relativistic jet” :

"

accretion disk

dusty torus ‘

super—massive
black hole
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The blazar sequence

@ continuous sequence
from LBL—IBL-HBL

@ TeV blazars are dim
(very sub-Eddington)

@ TeV blazars have
rising spectra in the
Fermi band (o < 2)

Log L [erg s7!]

@ define TeV blazar =
hard IBL + HBL

Log v [Hz]

Ghisellini (2011), arXiv:1104.0006 -
.
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The TeV gamma-ray sky

There are several classes of TeV sources:
@ Galactic - pulsars, BH binaries, supernova remnants

@ Extragalactic - mostly blazars, two starburst galaxies

VHEy-ray sources
VHE y-ray Sky Map s50° §
(E 100 GeV)

W Flst Specium Radio Quasar
& Rado Galy

Staburst galary
Pukar Wind Nebula
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Annihilation and pair production

o TeV blazar
< = W W\ =

extragalactic backgroud
light (infrared, eV)
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Annihilation and pair production

Vs = \/2EEgpL(1 — cos0) > 2m,c?
o TeV blazar
T——_
< -

extragalactic backgroud
light (infrared, eV)

Ay ~ (35...700) Mpc for z=1...0
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0

— each TeV point source should also be a GeV point source!
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray

halo
Lot 7 MU I B ——"\‘ s
N ey { .|
102 ‘f}“ l E
expected cascade EI'T 9 ~TeV detections

1ES 0347-121

emission

10-12

1 intrinsic spectra

cm?s,

EF, [ere/

-1
10 1ES 1101-232

................. [H] \ ’

Yloe e o 1011 1012 10‘3 /\<I
E [eV] HITS

Neronov & Vovk (2010)
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo — not seen!

10-11

E 1ES 0229+200 S,
N i » P \‘
L \
10712 - {Il ll e
expected cascade | Vil l LT ~TeV detections
emission w i
10-u O ]
E IES 0347-121 E R
& § 4 intrinsic spectra
Sy Z ]
S0 S
-
Fermi
constraints 1071

Ty ’

Yoo lor o 1011 1012 10‘3 /\<I
B [ev] HITS

Neronov & Vovk (2010)
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0
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Magnetic field deflection

- TeV blazar
W T—e—_
W

extragalactic backgroud
light (infrared, eV)
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Magnetic field deflection

- TeV blazar

‘\NV\>.<

=

extragalactic backgroud
light (infrared, eV)

» GeV point source diluted — weak "pair halo"

« stronger B-field implies more deflection and dilution,
gamma-ray non-detection — B > 10~!¢ 4G - primordial fields?

/\<I
HITS

The Physics and Cosmology of TeV Blazars



Physics of blazar heating Black hole jets
Plasma instabilities
Gamma-ray sky

Magnetic field deflection

- TeV blazar
W T—e—_
W

extragalactic backgroud
light (infrared, eV)

« problem for unified AGN model: blazars and quasars apparently do
not share the same cosmological evolution (as otherwise, evolving
blazars would overproduce the gamma-ray background)!
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What else could happen?

o TeV blazar
< -\ W =

extragalactic backgroud
light (infrared, eV)
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Plasma beam instabilities

_ e blazar
——

— pair plasma beam propagating
through the intergalactic medium
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Interlude: plasma physics

How do et /e~ beams propagate through the intergalactic medium?

@ interpenetrating beams of charged particles are unstable to
plasma instabilities

@ consider the two-stream instability:

P
>

e, e” -~ b e

et,e” - p’ o

e+’ e - p7 .
- )

-
-

@ one frequency (timescale) and one length in the problem:

4re?
e e ¢ ~108¢cm /<I
p(z=0) HITS
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Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ initially homogeneous beam-e—:
attractive (repulsive) force by potential maxima (minima)

@ ¢ attain lowest velocity in potential minima — bunching up
@ e* attain lowest velocity in potential maxima — bunching up

D

e, e

0]

e e~ HITS
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Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ beam-et /e~ couple in phase with the background perturbation:
enhances background potential

@ stronger forces on beam-e* /e~ — positive feedback
@ exponential wave-growth — instability

Y

e, e”
et et
(D \/\/
e p o p

e e~ HITS
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Two-stream instability: momentum transfer

@ particles with v 2 Vphage:
pair momentum — plasma waves — growing modes: instability

@ particles with v < Vphage: =
plasma wave momentum — pairs — Landau damping /@H.Ts
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Oblique instability

@ k oblique to vpeam: real word perturbations don’t choose “easy”
alignment = ) all orientations

@ oblique grows faster than two-stream: E-fields can easier deflect

ultra-relativistic particles than change their parallel velocities
(Nakar, Bret & Milosavljevic 2011)

wey/c

—— Boam flow #

wgylc

k//c/u)p kidmp

Beam

i ]HITS

Bret (2009), Bret+ (2010)
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Beam physics — growth rates

excluded for collective o @ consider a Iight beam
plasma phenomena

104 1\@ 108 107 penetrating into

% T LLLLLL e AL ng 1 relat'vely dense plasma
— EZ— ] Q
. 1o 2 10 8 @ maximum growth rate
> - =
: 10-® E £ 0% Ny

E = 2 eam
S 10-0 b 1 I ~0.4~y wp
= B ] 5 MM
o E 5 10° 0
£ 10 3 =
) ‘f: 104 =
© 10°% ¢ o 3
© ; ‘\‘Cf‘ = 108 L.

10*6 Il \HHH‘ \I\HI\‘ Il M\HI\‘ L
102 10°' 1 10 10?
E (TeV)
Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012) /4
NHiTs
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Beam physics — growth rates

excluded for collective o @ consider a Iight beam
plasma phenomena

104 1\@ 108 107 penetrating into

; T ||m||‘ T HHII‘ TT H\HI‘ T ng 1 relat|ve|y dense plasma
— FZ= - 2
110 E {0 S @ maximum growth rate
:? 102 ;’ £ 0% Ny
E = 2 eam
2 10 b 710 L M~0.4~ wp
= ERNN- Mnam
o0 E - 102 o=
g 10 g E 5 . . -
5 Z = 10 —. @ oblique instability beats
3 10°F S I 2 inverse Compton
10-8 C vl vl el 1 COOllng by faCtOr 10'100
102 107 1 10 10? _ 3
E (TeV) @ assume that instability
grows at linear rate up
Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012) to saturation /<I
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars
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Implications for B-field measurements

Fraction of the pair energy lost to inverse-Compton on the CMB: fic = 'c/(Tic + MNoblique)

EL; (erg s™!) at z=0.1
1041 1042 1043 1044 1045 1046

L

fIC( 1—e ™)

1072 =

108 | E
F z=0.1 E
I ]

10*4 lHlA 11 11““1 11 lllHA 11 lll“d 11 11““1 1 lHlM 1

10715 10—14 10—13 10712 10—11 10—10

EdN/dE (cm™2 s7!) /’\<I
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Broderick, Chang, C.P. (2012)
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Conclusions on B-field constraints from blazar spectra

@ it is thought that TeV blazar spectra might constrain IGM B-fields

@ this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

@ beam instabilities allow high-energy et /e~ pairs to self scatter
and/or lose energy

@ isotropizes the beam — no need for B-field

@ < 1-10% of beam energy to IC CMB photons
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Conclusions on B-field constraints from blazar spectra

@ it is thought that TeV blazar spectra might constrain IGM B-fields

@ this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

@ beam instabilities allow high-energy et /e~ pairs to self scatter
and/or lose energy

@ isotropizes the beam — no need for B-field

@ < 1-10% of beam energy to IC CMB photons

— TeV blazar spectra are not suitable to measure IGM B-fields
(if plasma instabilities saturate close to linear rate)!

Broderick, Chang, C.P. (2012), Schlickeiser, Krakau, Supsar (2013), Chang+ (in prep.) —
-
/<IH|TS
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TeV blazar luminosity density: today

@ collect luminosity of all 23
TeV blazars with good
spectral measurements
§~ @ account for the selection
B effects (sky coverage,
5 duty cycle, galactic
LR ) . occultation, TeV flux limit)
EER . e TeV blazar luminosity
a4 ST ] density is a scaled
I e ] version (g ~ 0.2%) of
N S that of quasars!
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) /<IH|TS
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Unified TeV blazar-quasar model

42

Quasars and TeV blazars are:

@ regulated by the same

- mechanism
g
= @ contemporaneous
0 elements of a single AGN
3, population: TeV-blazar
3 . activity does not lag
H ES ] quasar activity

- 5. .

[ o Rl g 1

= 38 40 42 44 46 48 -

L log,ofL/erg 571} |

e T I AR I B R
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) /<IH|TS
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Unified TeV blazar-quasar model

42 —
. Quasars and TeV blazars are:
i @ regulated by the same
= mechanism
g
= @ contemporaneous
0 elements of a single AGN
3, population: TeV-blazar
i T — NN activity does not lag
LA L N quasar activity
a ST n
- I 1 — assume that they trace
[ ‘ pree ‘ 1 each other for all redshifts!
3 38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) /<IH|TS
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How many TeV blazars are there?

Hopkins+ (2007) /'\'(J
HITS
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How many TeV blazars are there?

-7.0T T T T T

g 7Sk

(=8

= [

= 8o

o !

v !

™ !

= -8.5F

N i !

s i Fermi hard R

8 -9.0} gamma-ray blazar
i counts

-9.5 L L N L

0 1 2 3 4 5 6

Hopkins+ (2007) /'\<I
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How many TeV blazars are there?

Fermi extragalactic
gamma-ray background

Fermi hard _
gamma-ray blazar ‘i
counts

log[ ®(z, Mg < 27) ] [Mpc”]

Hopkins+ (2007) /4
NHITS
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Redshift distribution of Fermi hard ~-ray blazars

1LAC, Abdo et al. 2010

- 2LAC, Ackermann et al. 2011 i
3+ _

e .

evolving hard gamma-ray blazars

~ /above the Fermi flux limit _

By

dlog#,/dz
©

— =
—

Broderick, C.P.+ (2013)
HITS
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Redshift distribution of Fermi hard ~-ray blazars

1LAC, Abdo et al. 2010
2LAC, Ackermann et al. 2011

b

evolving hard gamma-ray blazars

/above the Fermi flux limit

dlog#,/dz
©
L B e e B (SR I
—

1.5 2
Broderick, C.P.+ (2013)

(=)
N — j

]

|

-

|

— evolving (increasing) blazar population consistent with ¥
observed declining evolution (Fermi flux limit)! /qm
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How many TeV blazars are there?

Fermi extragalactic
gamma-ray background

Fermi hard _
gamma-ray blazar ‘i
counts

log[ ®(z, Mg < 27) ] [Mpc”]

Hopkins+ (2007) /4
NHITS
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Extragalactic gamma-ray background

@ intrinsic spectrum for a TeV blazar:

(&) + (&)

Ep = 1TeV is break energy, ', = 3 is high-energy spectral index,

I, related to ', which is drawn from observed distribution
@ extragalactic gamma-ray background (EGRB):

/\ F/ A

E’ = E(1 4+ Z’) is gamma-ray energy at emission,
Aq is physical quasar luminosity density,
ng ~ 0.2% is blazar fraction, 7 is optical depth /\<IHITS
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Extragalactic gamma-ray background

E2dN/dE (MeV s~! cm™? sr-t)

FT \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTITH
L Dominated by Abdo et al. (2010) {
soft sources Ackermann et al. (in prep.)
1072 & E
L %% unabsorbed ]
r " absorbed by ., 1
"~ ~ _pair production " 1
— \\\
10-* | absorbed, after subtracting N
F the resolved hard blazars, z < 0.3 \ K
L N ]
L \ ]
\
\
L \ J
\
\
1075 Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \\HHH

10-2 10! 1

hristoph Pfromm

10 102 103 104

E (Gev) Broderick, C.P+ (2013)

Cosmology of TeV Blazars
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Extragalactic gamma-ray background

= T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTTH

L Dominated by Abdo et al. (2010) {
/T\ soft sources Ackermann et al. (in prep.)
7 100 % =
B L %% unabsorbed ]
© [ ii g absorbed by ]
N - "~ ~ _pair production " 1
%) L ~a B
> L SN
[0 N
5 10-* | absorbed, after subtracting N =
= F the resolved hard blazars, z < 0.3 \ B
C L ]
S ]
= \
~ \

\
M \
\
1075 L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \\HHH
102 10! 1 10 102 103 10%
E (GeV) Broderick, C.P.+ (2013)

— evolving population of hard blazars provides excellent match /I
to latest EGRB by Fermi for E > 3 GeV 7 NHITS
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Extragalactic gamma-ray background

FE T \\\HH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTTH
Dominated by g0 T ITT I o= |
o soft sources 5 B0F 3/ E
| = r 1
4 107 g EE
¥ 5 40 El
El ]
£ 37
g 5 Ll ‘: n
‘T 2 3
wn z i
>
)
Z 10 =
<3 ]
< L ae e ]
N [ e ]
=z
e R e
B peee
10*5 L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ Lo
102 10—t 1 10 102 103 104

E (GeV) Broderick, C.P+ (2013)

— the signal at 10 (100) GeV is dominated by redshifts z ~ 1.2 /I
(z ~0.6) con
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM

The Lyman-« forest

Outline

e The intergalactic medium
@ Properties of blazar heating
@ Thermal history of the IGM
@ The Lyman-« forest
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts

additional IGM heating has significant implications for ...
@ thermal history of the IGM: Lyman-« forest

@ late time structure formation: dwarf galaxies, galaxy clusters /\qms
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The intergalactic medium Thermal history of the IGM
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Evolution of the heating rates

HI,Hel-/Hell-reionization

d 7N
T

5107 ¢
> blazar heatjng
L, 10f

8
5
&t

o0
=
T 01f | 10x larger
= . heating

\ photoheating

1072 F ! 1

10 5 2 1

142 /\<I
HITS
Chang, Broderick, C.P. (2012)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T s
eth=—> ~10
hE e
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T —9
eh=—— ~ 10
" moe?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

Erad =1 ~ 0.1 x 107 ~ 107°
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
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Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T 9
eth=—> ~10
hE e

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
erad = 1 Qn ~ 0.1 x 107* ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:

ewv ~ 0.1eag ~ 1078 — KT ~ keV
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Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T -9
= —_ ~ 10
" moe?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
Erad = 1 Qpn ~ 0.1 x 1074 ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:
e ~0.16g ~107%  — KT ~ keV

@ photoheating efficiency 7pn ~ 107°  — KT ~ non cuy mpC? ~ eV

(limited by the abundance of H I/He 11 due to the small recombination rate)

HITS
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Blazar heating vs. photoheating

total power from AGN/stars vastly exceeds the TeV power of blazars
Tiam ~ 10% K (1 eV) at mean density (z ~ 2)

T -9
= —_ ~ 10
" moe?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
Erad = 1 Qpn ~ 0.1 x 1074 ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:
e ~0.16g ~107%  — KT ~ keV

@ photoheating efficiency 7pn ~ 107°  — KT ~ non cuy mpC? ~ eV

(limited by the abundance of H I/He 11 due to the small recombination rate)

@ blazar heating efficiency non ~ 107°  — KT ~ 1jon £rag MpC* ~ 1OeV/.-<I
HITS

(limited by the total power of TeV sources)
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Thermal history of the IGM
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— only photoheating
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--- optimistic BLF P
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The intergalactic medium

Evolution of the temperature-density relation

no blazar heating

10"

TK]

1
146
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The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Evolution of the temperature-density relation

no blazar heating

10"

TK]

0.1 1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density
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The intergalactic medium Thermal history of the IGM
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Evolution of the temperature-density relation

no blazar heating

10"

TK]

0.1 1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density
— makes low density regions hot .
— causes inverted temperature-density relation, T o« 1/§ /‘@Hns
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The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Evolution of the temperature-density relation

no blazar heating with blazar heating

10°

== Viel et al. (2009)

cee 2=05

10"

TK]

10"

10°

0.1 1
1+6
Chang, Broderick, C.P. (2012)

1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density
— makes low density regions hot .
— causes inverted temperature-density relation, T o« 1/§ )@HITS
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The intergalactic medium

Blazars cause hot voids

Properties of blazar heating
Thermal history of the IGM
The Lyman-« forest

no blazar heating

hristoph Pfromm

with blazar heating

10°

10!

The Physics

== Viel et al. (2009)
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Chang, Broderick, C.P. (2012)
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Properties of blazar heating
Thermal history of the IGM
The Lyman-« forest

The intergalactic medium

Blazars cause hot voids

no blazar heating with blazar heating

10°

== Viel et al. (2009)

10!
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1
140

Chang, Broderick, C.P. (2012)

@ blazars completely change the thermal history of the diffuse
IGM and late-time structure formation
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Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2012):
@ L = 15h~"Mpc boxes with 2 x 3843 particles
@ one reference run without blazar heating

@ three with blazar heating at different levels of efficiency
(address uncertainty)

@ used an up-to-date model of the UV background (raucher-Giguere+ 2009)
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The intergalactic medium
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Properties of blazar heating
Thermal history of the IGM

The intergalactic medium

Temperature-density relation

no blazar heating intermediate blazar heating
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The Lyman-« forest

Flux
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The observed Lyman-« forest
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The simulated Ly-« forest
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The intergalactic medium

Properties of blazar heating
Thermal history of the IGM

The Lyman-« forest

Optical depths and temperatures

effective optical depth Tefr
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weak blazar heating
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strong blazar heating
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The intergalactic medium Thermal history of the IGM
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Optical depths and temperatures

T T T T
no blazar heating
——- weak blazar heating i
intermediate blazar heating
—-— strong blazar heating
©  Beckeretal. 2011
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Puchwein+ (2012)

Redshift evolutions of effective optical depth and IGM temperature
match data only with additional heating, e.g., provided by blazars! /@
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The intergalactic medium

Properties of blazar heating
Thermal history of the IGM
The Lyman-« forest

Ly-a flux PDFs and power spectra

PDF of transmitted flux fraction
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Voigt profile decomposition

V[ km/sec |
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@ decomposing Lyman-« forest into individual Voigt profiles

@ allows studying the thermal broadening of absorption lines
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Properties of blazar heating

The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Voigt profile decomposition — line width distribution
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The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Lyman-« forest in a blazar heated Universe

improvement in modelling the Lyman-« forest is a direct consequence
of the peculiar properties of blazar heating:

@ heating rate independent of IGM density — naturally produces
the inverted T—p relation that Lyman-« forest data demand

@ recent and continuous nature of the heating needed to match
the redshift evolutions of all Lyman-« forest statistics

@ magnitude of the heating rate required by Lyman-« forest data
~ the total energy output of TeV blazars (or equivalently ~ 0.2%
of that of quasars)
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Outline

e Structure formation
@ Formation of dwarf galaxies
@ Galaxy cluster thermodynamics
@ Conclusions B
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Entropy evolution

temperature evolution

only photoheating
standard BLF .
optimistic BLF . -
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Entropy evolution

temperature evolution entropy evolution

10°
—only photoheating P , |[— only photoheating
-~ standard BLF o S 107l -~ standard BLF et
-~ optimistic BLF E .-

.- optimistic BLF el . .
g 10
— B
[<jpet =
=10
= &
<
0.1
3
105 ] 10 5 B
1+2

C.P,, Chang, Broderick (2012)
. _2 .
@ evolution of entropy, Ko = kTn, 73, governs structure formation

@ blazar heating: late-time, evolving, modest entropy floor /@
HITS
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Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales

@ characteristic length/mass scale below which objects do not form

HITS
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Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales
@ characteristic length/mass scale below which objects do not form

@ hotter intergalactic medium — higher thermal pressure
— higher Jeans mass:

1/2
3 3/2
MJ x ?22 x TIGM N MJ,bIazar ~ (Tblazar) Z 30
P / P MJ,photo 7-photo

— blazar heating increases M, by 30 over pure photoheating!

/\<I
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Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales
@ characteristic length/mass scale below which objects do not form

@ hotter intergalactic medium — higher thermal pressure
— higher Jeans mass:

1/2

3 3/2

MJ x ?22 x TIGM N MJ,bIazar ~ (Tblazar) Z 30
P / P MJ,photo 7-photo

— blazar heating increases M, by 30 over pure photoheating!

@ complications:
non-linear collapse,
delayed pressure response in expanding universe — concept of
“filtering mass” =
C.P,, Chang, Broderick (2012) /\<IH|TS
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Dwarf galaxy formation — Filtering mass

102 blazar heating\i/,_:
only photoheating LT
’ ==4 Mg~ 10'M,
3 w0° Mg~ 10'°M,
=
=4 10°
10°= .
§ 10F L emTITCS
i S L
10 1
1+z )
C.P, Chang, Broderick (2012) /\<IH|TS
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Peebles’ void phenomenon explained?

mean density void, 1+ 46 =0.5
102 148=1,7,4=10 o 12| 1+0=05724,=10
—~ 1090 = 1001
20 s
= =
= linear theory = linear theory
0 ___ nonineartheory w0 _ noninear theory

_._._._ optimistic blazar —._._.. optimistic blazar

— - - - standard blazar ____ standard blazar
10° __ only photoheating | 106 — only photoheating |
& t - ; —
§ 10 T --I0H § 10 v/::,::‘ - E
B | S il 4 s b_-—-———="" 4
10 1 10 1
1+z 1+z

C.P, Chang, Broderick (2012)

@ blazar heating efficiently suppresses the formation of void dwarfs
within existing DM halos of masses < 3 x 10" M, (z = 0)

@ may reconcile the number of void dwarfs in simulations and the ~;
paucity of those in observations HITS
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Structure formation

“Missing satellite” problem in the Mllky Way

IC5152

MYLM
Cetus
C1613 . ¥
Springel+ (2008)
Pegasus
T
7T o P® asaqnl Ll
i ox
Dolphin+ (2005) Looa Sex B

Substructures in cold DM simulations much more numerous than .
observed number of Milky Way satellites! %H.Ts
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When do dwarfs form?

V=l
Dolphin+ (2005)

isochrone fitting for different metallicities — star formation histories

HITS
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s form?

NGC 205

NGC 147 NGC 185

; i "
Sagittarius Fornax Leo | Cassiopeia NGC 3109 IC 5152 NGC 6822 IC 1613
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Milky Way satellites: formation history and abundance

satellite formation time

Bbr——TT T 7T T——T—7
Maccio & Fontanot (2010)-{

late forming satellites (< 10 Gyr)
not observed!
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Milky Way satellites: formation history and abundance

satellite formation time satellite luminosity function

br——T—T1+—71T—"——T—"—T"—7—T 100 : : .
Maccio & Fontanot (2010)-{

q no blazar heating:

linear theory

non-linear theory

)
0 ‘\2
late forming satellites (< 10 Gyr) z
not observed! 2

M, [mag]

Maccio+ (2010)

@ blazar heating suppresses late satellite formation, may reconcne
low observed dwarf abundances with CDM simulations

HITS
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Structure formation

Galactic H I-mass function
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Conclusions

Mo+ (2005)
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@ H I-mass function is too flat (i.e., gas version of missing dwarf problem!)

@ photoheating and SN feedback too inefficient

@ IGM entropy floor of K ~ 15keV cm? at z ~ 2 — 3 successfull /qms
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When do clusters form?

mass accretion history mass accretion rates
10°F - ] 7
1041 / B \ | \
i | -
- ] PR
| | 17 h A E|
w2l P 7 | |
1 : |

C.P, Chang, Broderick (2012)

@ most cluster gas accretes after z = 1, when blazar heating can
have a large effect (for late forming objects)! -\-
/<IHITS
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Entropy floor in clusters

Cluster entropy profiles

K [keV cm?]

Cavagnolo+ (2009)
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1 10 100 1000
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Entropy floor in clusters

Cluster entropy profiles ICM entropy at 0.1 Rogo:

T

Optically S 433;

L selected &

- X-ray selected

2
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K [keV cm?]
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Cavagnolo+ (2009)
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@ Do optical and X-ray/Sunyaev-Zel'dovich cluster observations
probe the same population? (Hicks+ 2008) /@
HITS
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Entropy profiles: effect of blazar heating

varying formation time varying cluster mass
1000
M, =3% 105 Mg My =1x10%Mg, 2=05
My =3%x10%Mg, 2=05
My =1x10%Mg, 2=05
E E 100F B
3 g
N2 N2
101 optimistic blazar 10+ optimistic blazar
0.01 0.10 1.00 0.01 0.10 1.00
' Rom r/ Ry

C.P,, Chang, Broderick (2012)
assume big fraction of intra-cluster medium collapses from IGM:
@ redshift-dependent entropy excess in cores
@ greatest effect for late forming groups/small clusters /\@Hns
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Gravitational reprocessing of entropy floors

Cogeneoo9 |~ ] @ greater initial entropy Ko
@ 1990 Ey ~ 25 kev om? 2 — more shock heating
> 4 . .
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Cool-core versus non-cool core clusters

Number of clusters

Fractional number of clusters
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Cool-core versus non-cool core clusters
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Cool-core versus non-cool core clusters

Number of clusters
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Fractional number of clusters
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@ time-dependent preheating + gravitational reprocessing
— CC-NCC bifurcation (two attractor solutions)

@ need hydrodynamic simulations to confirm this scenario /\@Hns
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How efficient is heating by AGN feedback?

- — —
C.P., Chang, Broderick (2011)
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How efficient is heating by AGN feedback?
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C.P., Chang, Broderick (2011)
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How efficient is heating by AGN feedback?

C.P., Chang, Broderick (2011) EomlkTx=59keV)
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How efficient is heating by AGN feedback?

C.P., Chang, Broderick (2011) EomlKTx =59keV)
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AGNSs cannot transform CC to NCC clusters (on a buoyancy timescale) /\<IHITs
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e quantitative self-consistent picture of high-z Lyman-« forest
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e quantitative self-consistent picture of high-z Lyman-« forest

@ significantly modifies late-time structure formation:

e suppresses late dwarf formation (in accordance with SFHs):
void phenomenon, “missing satellites” (?) B
e group/cluster bimodality of core entropy values /@
HITS
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Literature for the talk

@ Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars
I: implications of plasma instabilities for the intergalactic magnetic field and
extragalactic gamma-ray background, ApJ, 752, 22, 2012.

@ Chang, Broderick, Pfrommer, The cosmological impact of luminous TeV blazars
1I: rewriting the thermal history of the intergalactic medium, ApdJ, 752, 23, 2012.

@ Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars
Ill: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752,
24, 2012.

@ Puchwein, Pfrommer, Springel, Broderick, Chang, The Lyman-« forest in a
blazar-heated Universe, MNRAS, 423, 149, 2012.

@ Broderick, Pfrommer, Chang, Puchwein, Implications of plasma beam
instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin
of the extragalactic gamma-ray background, ApJ, subm., 2013.

@ Broderick, Pfrommer, Chang, Puchwein, Lower limits upon the anisotropy of the
extragalactic gamma-ray background implied by the 2FGL and 1FHL catalogs,
ApJ, subm., 2013.
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Additional slides
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TeV photon absorption by pair production

top: intrinsic and observed SEDs of blazars at z = 1;
bottom: inferred I ¢ for the spectra in the top panel;

Fermi data on BL Lacs and non-BL Lacs (mostly FSRQs)
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Challenges to the Challenge

Challenge #1 (known unknowns): non-linear saturation
@ we assume that the non-linear damping rate = linear growth rate
@ effect of wave-particle and wave-wave interactions need to be resolved

@ using slow collisional scattering (reactive regime), Miniati & Elyiv (2012)
claim that the nonlinear Landau damping rate is < linear growth rate

@ also accounting for much faster collisionless scattering (kinetic regime)
— pOWGI’fU| instability, faster than IC cooling (Schlickeiser+ 2013, Chang-+ in prep.)
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Challenges to the Challenge

Challenge #1 (known unknowns): non-linear saturation
@ we assume that the non-linear damping rate = linear growth rate
@ effect of wave-particle and wave-wave interactions need to be resolved

@ using slow collisional scattering (reactive regime), Miniati & Elyiv (2012)
claim that the nonlinear Landau damping rate is < linear growth rate

@ also accounting for much faster collisionless scattering (kinetic regime)
— pOWGI’fU| instability, faster than IC cooling (Schlickeiser+ 2013, Chang-+ in prep.)

Challenge #2 (unknown unknowns): inhomogeneous universe

@ universe is inhomogeneous and hence density of electrons change as
function of position

@ could lead to loss of resonance over length scale < spatial growth
length scale (Miniati & Elyiv 2012)

@ growth length in oblique kinetic regime appears to be shorter than —
gradient — no instability quenching! (chang+ in prep) /\<Lns
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