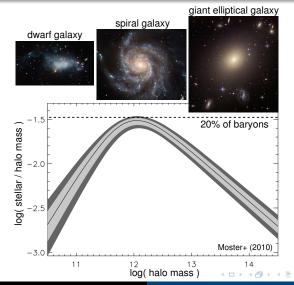
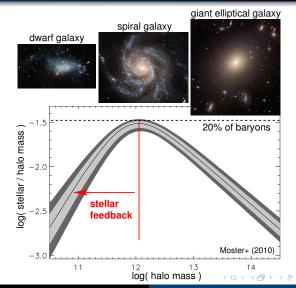
Cosmic ray feedback in galaxies

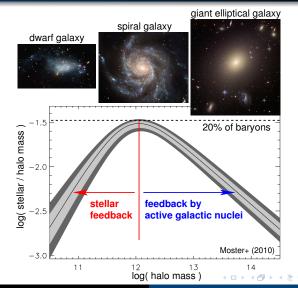
Christoph Pfrommer¹

in collaboration with


PhD students: Dusch, Jlassi, Tevlin, Weber, Chiu, Sike
Postdocs: Berlok, Girichidis, Lemmerz, Meenakshi, Perrone, Shalaby, Thomas, Werhahn, Whittingham
Faculty: Pakmor, Puchwein, Weinberger, Ruszkowski, Springel, Enßlin
AIP, Michigan, NBI, Heidelberg, Wisconsin, Perimeter Institute,

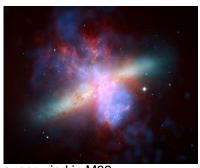
Annual Meeting of the German Astronomical Society, Görlitz, 2025





Feedback by galactic winds

supernova Cassiopeia A


X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.

 galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields

Feedback by galactic winds

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds

Feedback by galactic winds

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds
- ◆ critical for understanding the physics of galaxy formation
 → may explain puzzle of low star conversion efficiency in dwarf galaxies

How are galactic winds driven?

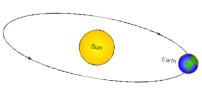
super willu iii woz

NASA/JPL-Caltech/STScI/CXC/UofA

- thermal pressure provided by supernovae or active galactic nuclei?
- radiation pressure and photoionization by massive stars and quasars?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?

How are galactic winds driven?

NASA/JPL-Caltech/STScI/CXC/UofA


- thermal pressure provided by supernovae or active galactic nuclei?
- radiation pressure and photoionization by massive stars and quasars?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?
- energy density of CRs, magnetic fields, and ISM turbulence all similar ⇒ important feedback agent

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

$$r_{\rm gal}\sim 10^4~{\rm pc}$$

gyro-orbit of GeV CR:

$$\emph{r}_{cr} = rac{\emph{p}_{\perp}}{\emph{e}\,\emph{B}_{\mu G}} \sim 10^{-6}~\textrm{pc} \sim rac{1}{4}~\textrm{AU}$$

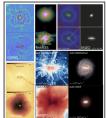
 \Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)

Review on cosmic ray feedback

Astron Astrophys Rev (2023) 31:4 https://doi.org/10.1007/s00159-023-00149-2

REVIEW ARTICLE

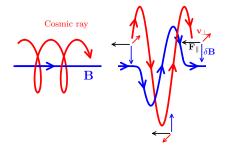

Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration, transport, observables, and dynamical impact of cosmic rays

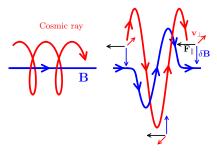
GLOBAL

Mateusz Ruszkowski^{1,3} · Christoph Pfrommer²

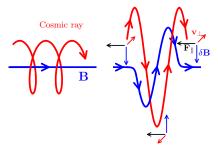
COSMO


Cosmic ray

sketch: Jacob & CP

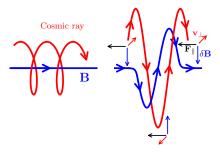


sketch: Jacob & CP



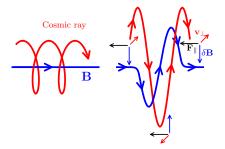
sketch: Jacob & CP

• electric fields vanish in the Alfvén wave frame: $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$



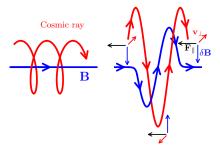
sketch: Jacob & CP

- ullet electric fields vanish in the Alfvén wave frame: $abla imes {m E}=-rac{1}{c}rac{\partial {m B}}{\partial t}$
- work out **Lorentz forces on CRs** in wave frame: $F_L = q \frac{\mathbf{v} \times \mathbf{B}}{c}$



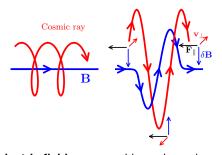
sketch: Jacob & CP

- ullet electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c}rac{\partial {m B}}{\partial t}$
- work out **Lorentz forces on CRs** in wave frame: $F_L = q \frac{\mathbf{v} \times \mathbf{B}}{C}$
- Lorentz force depends on relative phase of CR gyro orbit and wave:
 - ullet sketch: decelerating Lorentz force along CR orbit $o p_{\parallel}$ decreases
 - ullet phase shift by 180°: accelerating Lorentz force $o p_{\parallel}$ increases



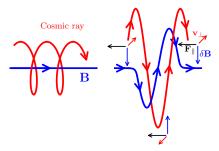
sketch: Jacob & CP

 only electric fields can provide work on charged particles and change their energy



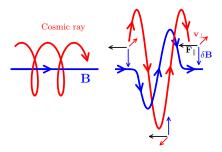
sketch: Jacob & CP

- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E=0, CR energy is conserved: $p^2=p_{\parallel}^2+p_{\perp}^2={\rm const.}$ so that decreasing p_{\parallel} causes p_{\perp} to increase



sketch: Jacob & CP

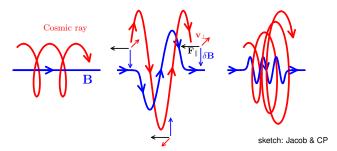
- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E=0, CR energy is conserved: $p^2=p_{\parallel}^2+p_{\perp}^2={\rm const.}$ so that decreasing p_{\parallel} causes p_{\perp} to increase
- ullet this increases the CR pitch angle cosine $\mu = \cos heta = rac{m{B}}{|m{B}|} \cdot rac{m{p}}{|m{p}|}$


sketch: Jacob & CP

 CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=r_{\rm g}=rac{p_{\perp}c}{qB}$$

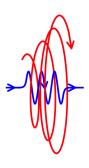
sketch: Jacob & CP


 CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=r_{\mathrm{g}}=rac{p_{\perp}c}{qB}$$

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega = n \frac{qB}{\gamma m_{\parallel} c}$ Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency

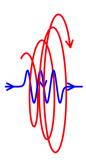
 CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:


$$L_{\parallel}=r_{\mathrm{g}}=rac{p_{\perp}c}{qB}$$

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega = n \frac{qB}{\gamma m_{\parallel} c}$ Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency

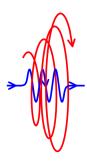
Cosmic ray streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas



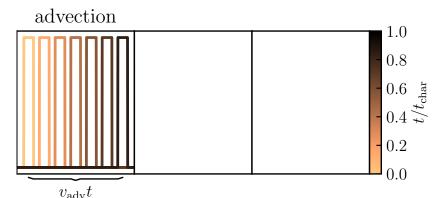
Cosmic ray streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ∼ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

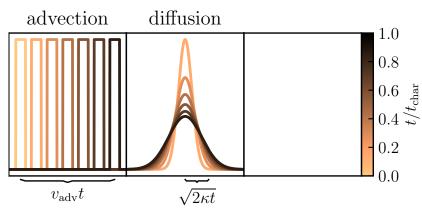

ightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

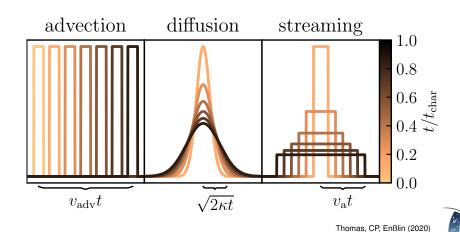
Cosmic ray streaming and diffusion

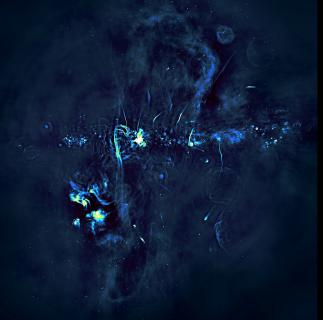
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed $\sim v_{\rm a}$
 - wave damping: transfer of CR energy and momentum to the thermal gas

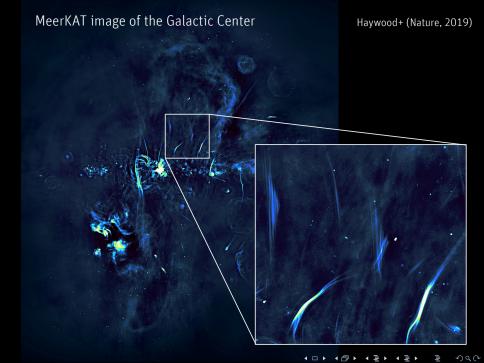

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling \to CR stream with waves strong wave damping: less waves to scatter \to CR diffusion prevails

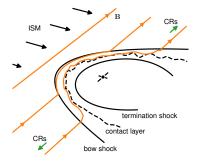

Modes of CR propagation


Modes of CR propagation



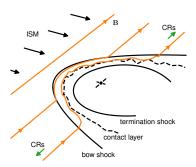

Thomas, CP, Enßlin (2020)

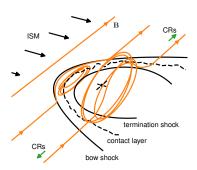
Modes of CR propagation



Radio synchrotron harps: the model

shock acceleration scenario

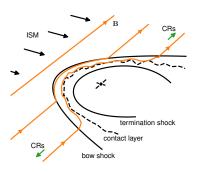

Thomas, CP, Enßlin (2020)

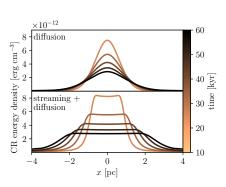

Radio synchrotron harps: the model

shock acceleration scenario

Thomas, CP, Enßlin (2020)

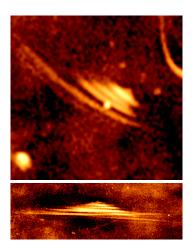
magnetic reconnection at pulsar wind



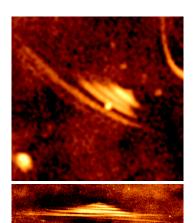

Radio synchrotron harps: the model

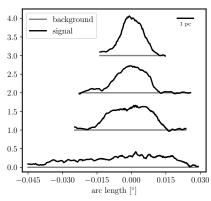
shock acceleration scenario

CR diffusion vs. streaming + diffusion


Thomas, CP, Enßlin (2020)

Radio synchrotron harps: testing CR propagation

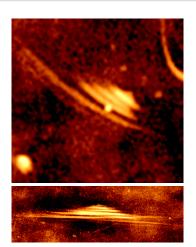




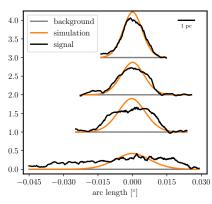
Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

lateral radio profiles



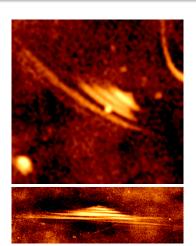
Thomas, CP, Enßlin (2020)



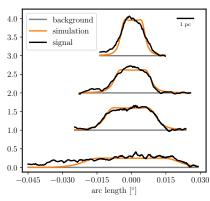
Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR diffusion



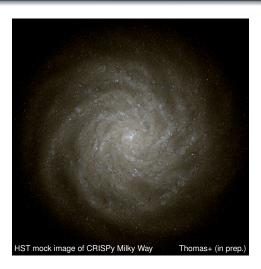
Thomas, CP, Enßlin (2020)



Radio synchrotron harps: testing CR propagation

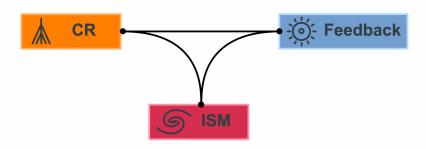
Haywood+ (Nature, 2019)

CR streaming and diffusion



Thomas, CP, Enßlin (2020)

Cosmic ray transport in galaxies


- CR transport in galaxies demands modeling non-linear Landau damping (in warm/hot phase) and ion-neutral damping (in disk)
- this requires resolving the multi-phase structure of the ISM
- development of CRISP framework (Cosmic Rays and InterStellar Physics, Thomas+ 2024)

CRISP framework

Cosmic Rays and InterStellar Physics

Thomas, CP, Pakmor (2024)

CRISP framework

Cosmic Rays and InterStellar Physics

Full H – H₂ – He chemistry sets ionization degree

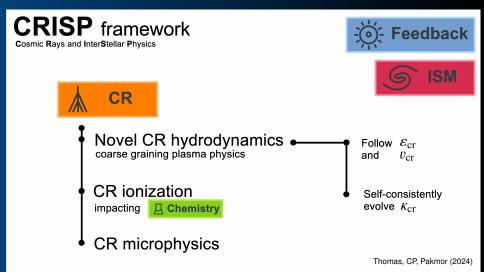
First ionization stages of C – O – Si low temperature cooling

Photoelectric heating by dust

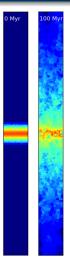
Thomas, CP, Pakmor (2024)

CRISP framework

Cosmic Rays and InterStellar Physics

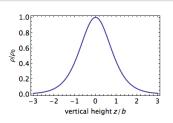


Improved SNe treatment (manifestly isotropic) and stellar winds


FUV NUV OPT radiation fields (reverse ray tracing)
absorbed by dust — impacting
Chemistry

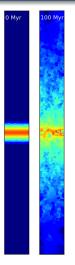
Metal enrichment

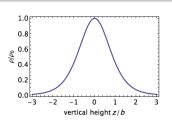
Thomas, CP, Pakmor (2024)



Explore how CR transport impacts on galactic outflows – stratified box simulations

- isothermal disk with
 T₀ = 10⁴ K
- hydrostatic equilibrium:

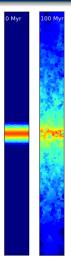

$$f_g \nabla^2 \Phi = 4\pi G \rho$$



Explore how CR transport impacts on galactic outflows – stratified box simulations

- isothermal disk with
 T₀ = 10⁴ K
- hydrostatic equilibrium:

$$f_g \nabla^2 \Phi = 4\pi G \rho$$

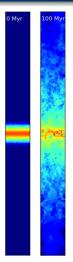


- self-gravity; turbulent stirring for 50 Myrs
- CRISP framework with non-equilibrium chemistry (Thomas, CP, Pakmor 2014)
- attenuated FUV stellar radiation field
- MHD with small magnetic seed field (Pakmor+ 2011)
- COSMIC ray physics (Thomas & CP 2019, Thomas+ 2021)

Explore how CR transport impacts on galactic outflows – stratified box simulations

supernova rate:

$$\dot{M}_{\mathrm{SN},i} = \dot{M}_{\star,i} \frac{1 \text{ event}}{100 \text{ M}_{\odot}}$$

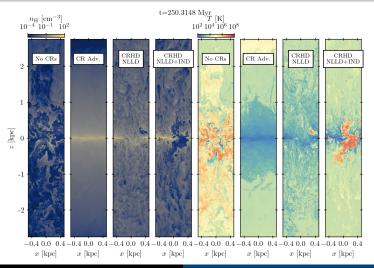

CR-to-thermal energy injection rate = 5 %

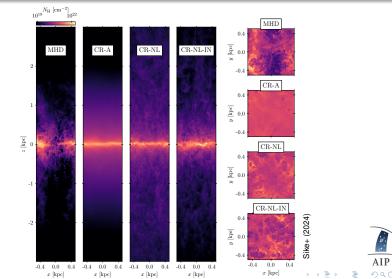
Explore how CR transport impacts on galactic outflows – stratified box simulations

supernova rate:

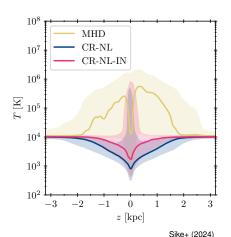
$$\dot{\textit{M}}_{\text{SN},i} = \dot{\textit{M}}_{\star,i} \frac{\text{1 event}}{\text{100 M}_{\odot}}$$

- CR-to-thermal energy injection rate = 5 %
- comparing 4 models:
 - pure MHD
 - CR advection
 - CR transport with non-linear Landau (NL) damping (strong CR coupling)
 - CR transport with NL and ion-neutral damping (weak CR coupling in dense ISM)



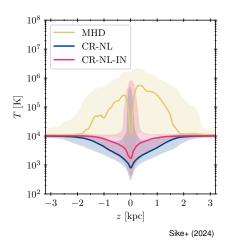

ISM tallbox: density and temperature

Comparing models: MHD, CR advection, full CR transport (different wave damping)



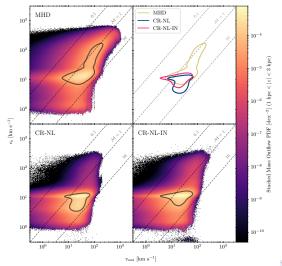
ISM column densities

Characteristics of supernovae- vs. CR-driven winds



- MHD: thermal/kinetic pressure from SNe mainly propell galactic fountains that self-regulate the ISM
- CRs drive colder and denser galactic winds

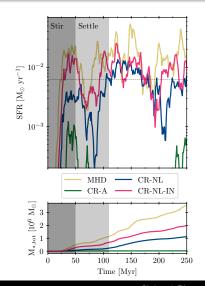
Characteristics of supernovae- vs. CR-driven winds

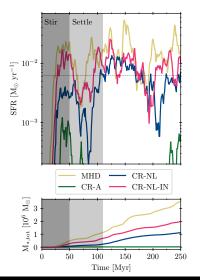


- MHD: thermal/kinetic pressure from SNe mainly propell galactic fountains that self-regulate the ISM
- CRs drive colder and denser galactic winds
- weak non-linear Landau (NL) damping tightly couples CRs to the ambient plasma
 ⇒ strong CR driven winds
- NL and strong ion-neutral damping decouple CRs in the cold and warm ISM
 ⇒ weaker winds

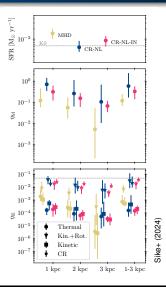
AIP

Phase structure of outflowing material

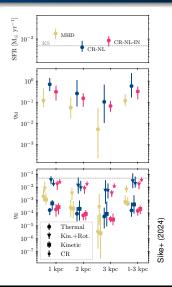



CR feedback mildly suppresses star formation

CR feedback mildly suppresses star formation

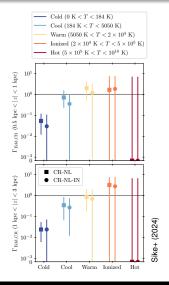


Mass and energy loading factors



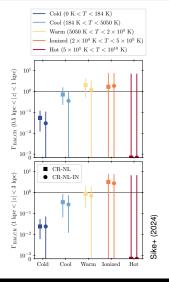
- MHD fountains self-regulate the ISM: mass/energy loading factors decrease steeply with height
- CR-driven mass loading factors 3-5 time larger than MHD case

Mass and energy loading factors



- MHD fountains self-regulate the ISM: mass/energy loading factors decrease steeply with height
- CR-driven mass loading factors 3-5 time larger than MHD case
- most of CR energy transported to the wind while other energy forms are quickly dissipated
- CR energy loading comparable to kinetic energy loading with rotational boost (v_{kin+rot} = v + v_{rot})

CR Eddington factors for different ISM phases


OR Eddington factors:

$$\Gamma_{ ext{Edd,CR}} \equiv -rac{a_{ ext{CR},z}}{a_{ ext{grav}}}, \quad a_{ ext{CR},z} = rac{oldsymbol{
abla} P_{ ext{CR}} oldsymbol{\cdot} oldsymbol{e}_z}{
ho}$$

CR Eddington factors for different ISM phases

CR Eddington factors:

$$\Gamma_{\mathsf{Edd},\mathsf{CR}} \equiv -rac{a_{\mathsf{CR},z}}{a_{\mathsf{crav}}}, \quad a_{\mathsf{CR},z} = rac{
abla P_{\mathsf{CR}} \cdot oldsymbol{e}_z}{
ho}$$

- CRs supply no momentum to the hot phase
- CRs accelerate warm and ionized gas to launch a wind
- CRs support the cool and cold phases against freefall but do not actively drive them out

Conclusions for cosmic ray physics in galaxies

CR magneto-hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves developed and coupled to magneto-hydrodynamics
- self-generated diffusion coefficient emerges from CR-wave interactions: validated at radio harps

Conclusions for cosmic ray physics in galaxies

CR magneto-hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves developed and coupled to magneto-hydrodynamics
- self-generated diffusion coefficient emerges from CR-wave interactions: validated at radio harps

CR feedback in the multi-phase ISM:

- CRISP models multiphase ISM with full CR physics
- CR feedback mildly suppresses star formation because of strong ion-neutral damping in disk, which weakens CR coupling
- CR feedback drives powerful galactic winds
- CR feedback increases mass and energy loading factors

Multi-phase ISM
Cosmic ray driven winds
SFR, mass and energy loading factors

PICOGAL: From Flasma KInetics to COsmological GALaxy Formation

Literature for the talk

CR feedback in galaxy formation:

- Ruszkowski, Pfrommer, Cosmic ray feedback in galaxies and galaxy clusters, 2023, Astron Astrophys Rev, 31, 4.
- Thomas, Pfrommer, Pakmor, Cosmic ray-driven galactic winds: transport modes of cosmic rays and Alfvén-wave dark regions, 2023, MNRAS, 521, 3023.
- Thomas, Pfrommer, Pakmor, Why are thermally- and cosmic ray-driven galactic winds fundamentally different? 2025, A&A, 698, A104.
- Sike, Thomas, Ruszkowski, Pfrommer, Weber, Cosmic Ray-Driven Galactic Winds with Resolved ISM and Ion-Neutral Damping, 2025, ApJ, 987, 204.

CR hydrodynamics:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on a moving mesh, 2017, MNRAS, 465, 4500.
- Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS, 485, 2977.
- Thomas, Pfrommer, Pakmor, A finite volume method for two-moment cosmic-ray hydrodynamics on a moving mesh, 2021, MNRAS, 503, 2242.

