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Feedback by galactic winds

supernova Cassiopeia A
X-ray: NASA/CXC/SAO; Optical: NASA/STScI;
Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.

galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

star formation and supernovae
drive gas out of galaxies by
galactic super winds

critical for understanding the
physics of galaxy formation
→ may explain puzzle of low
star conversion efficiency in
dwarf galaxies
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How are galactic winds driven?

super wind in M82
NASA/JPL-Caltech/STScI/CXC/UofA

thermal pressure provided by
supernovae or active galactic
nuclei?

radiation pressure and
photoionization by massive
stars and quasars?

pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

energy density of CRs,
magnetic fields, and ISM
turbulence all similar
⇒ important feedback agent
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Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV CR:

rcr =
p⊥

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)
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Review on cosmic ray feedback

Christoph Pfrommer Cosmic ray feedback in galaxies



Cosmic ray transport
Cosmic rays in galaxy formation

Galactic winds and cosmic rays
Wave-particle interactions
Radio harps

Interactions of CRs and magnetic fields

Christoph Pfrommer Cosmic ray feedback in galaxies

B

Cosmic ray

sketch: Jacob & CP



Cosmic ray transport
Cosmic rays in galaxy formation

Galactic winds and cosmic rays
Wave-particle interactions
Radio harps

Interactions of CRs and magnetic fields

Christoph Pfrommer Cosmic ray feedback in galaxies

B

Cosmic ray

δB

v⊥

F‖

sketch: Jacob & CP

electric fields vanish in the Alfvén wave frame: ∇× E = − 1
c

∂B
∂t

work out Lorentz forces on CRs in wave frame: FL = q v × B
c

Lorentz force depends on relative phase of CR gyro orbit and wave:

sketch: decelerating Lorentz force along CR orbit → p∥ decreases
phase shift by 180◦: accelerating Lorentz force → p∥ increases
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only electric fields can provide work on charged particles and
change their energy

in Alfvén wave frame, where E = 0, CR energy is conserved:
p2 = p2

∥ + p2
⊥ = const. so that decreasing p∥ causes p⊥ to increase

this increases the CR pitch angle cosine µ = cos θ = B
|B| ·

p
|p|
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CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

L∥ = rg =
p⊥c
qB

gyro resonance: ω − k∥v∥ = nΩ = n qB
γmic

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency
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Cosmic ray streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ va

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling → CR stream with waves
strong wave damping: less waves to scatter → CR diffusion prevails
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MeerKAT image of the Galactic Center Haywood+ (Nature, 2019)



  

MeerKAT image of the Galactic Center Haywood+ (Nature, 2019)
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Radio synchrotron harps: the model

shock acceleration scenario

B
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bow shock

contact layer

termination shock

Thomas, CP, Enßlin (2020)

magnetic reconnection at pulsar wind
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Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)
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Cosmic ray transport in galaxies

HST mock image of CRISPy Milky Way Thomas+ (in prep.)

CR transport in galaxies
demands modeling
non-linear Landau damping
(in warm/hot phase) and
ion-neutral damping (in disk)

this requires resolving the
multi-phase structure of the
ISM

development of CRISP
framework (Cosmic Rays
and InterStellar Physics,
Thomas+ 2024)
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A model for the multi-phase interstellar medium

Thomas, CP, Pakmor (2024)
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CR feedback in the multi-phase interstellar medium
Explore how CR transport impacts on galactic outflows – stratified box simulations

isothermal disk with
T0 = 104 K

hydrostatic equilibrium:

fg∇2Φ = 4πGρ

self-gravity; turbulent stirring for 50 Myrs

CRISP framework with non-equilibrium chemistry
(Thomas, CP, Pakmor 2014)

attenuated FUV stellar radiation field

MHD with small magnetic seed field (Pakmor+ 2011)

cosmic ray physics (Thomas & CP 2019, Thomas+ 2021)
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CR feedback in the multi-phase interstellar medium
Explore how CR transport impacts on galactic outflows – stratified box simulations

supernova rate:

ṀSN,i = Ṁ⋆,i
1 event
100 M⊙

CR-to-thermal energy
injection rate = 5 %

comparing 4 models:

pure MHD
CR advection
CR transport with non-linear Landau (NL)
damping (strong CR coupling)
CR transport with NL and ion-neutral
damping (weak CR coupling in dense ISM)
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ISM tallbox: density and temperature
Comparing models: MHD, CR advection, full CR transport (different wave damping)
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Characteristics of supernovae- vs. CR-driven winds

−3 −2 −1 0 1 2 3

z [kpc]

102

103

104

105

106

107

108

T
[K

]

MHD

CR-NL

CR-NL-IN

Sike+ (2024)

MHD: thermal/kinetic
pressure from SNe mainly
propell galactic fountains
that self-regulate the ISM

CRs drive colder and denser
galactic winds

weak non-linear Landau
(NL) damping tightly couples
CRs to the ambient plasma
⇒ strong CR driven winds

NL and strong ion-neutral
damping decouple CRs in
the cold and warm ISM
⇒ weaker winds
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Mass and energy loading factors
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most of CR energy transported to
the wind while other energy forms
are quickly dissipated

CR energy loading comparable to
kinetic energy loading with
rotational boost (vkin+rot = v + vrot)
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CR Eddington factors for different ISM phases
Cold (0 K < T < 184 K)

Cool (184 K < T < 5050 K)

Warm (5050 K < T < 2× 104 K)

Ionized (2× 104 K < T < 5× 105 K)

Hot (5× 105 K < T < 1010 K)
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ΓEdd,CR ≡ −aCR,z
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CRs supply no momentum to the
hot phase

CRs accelerate warm and ionized
gas to launch a wind

CRs support the cool and cold
phases against freefall but do not
actively drive them out
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Conclusions for cosmic ray physics in galaxies

CR magneto-hydrodynamics:

novel theory of CR transport mediated by Alfvén waves
developed and coupled to magneto-hydrodynamics

self-generated diffusion coefficient emerges from CR-wave
interactions: validated at radio harps

CR feedback in the multi-phase ISM:

CRISP models multiphase ISM with full CR physics

CR feedback mildly suppresses star formation because of strong
ion-neutral damping in disk, which weakens CR coupling

CR feedback drives powerful galactic winds

CR feedback increases mass and energy loading factors
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