#### The impact of magnetic fields on cosmological galaxy mergers A tale of magnetohydrodynamics and galactic dynamics

Based on work by Joe Whittingham, Martin Sparre, Christoph Pfrommer, Rüdiger Pakmor (2021, 2023)

Christoph Pfrommer / IAS Astro Coffee / Feb 22, 2023

# Motivation for this work

Magnetic fields exist on all scales (incl. galactic!) Know this from:

- Zeemann splitting
- Stellar light /dust polarisation
- Faraday rotation
- Synchrotron radiation (needed for FIR-radio correlation!)



Synchrotron emission in M51 Credit: Fletcher and Beck



#### Are magnetic fields important for galaxy evolution?

Magnetic fields appear to be important in disc galaxies today:

$$p = p_{th} + (p_{turb} + p_{mag} + p_{CR} + p_{dyn})$$

$$approximately in equipartition$$

Are they important for galaxy evolution?



Credit: Pakmor+, 2017

#### Are magnetic fields important for galaxy evolution?

 $\rm SFR\,[M_{\odot}~yr^{-1}]$ 

Previous work uncertain:

- Auriga: SFH unaffected
- FIRE: magnetic field doesn't reach equipartition

... but if we increase the seed-field strength to (unphysically) large values

- suppress SFRs (Marinacci & Vogelsberger, 2016)
- reduce disc size (Martin-Alvarez et al. 2020; Katz et al. 2021)



 $10^{-8}$ 

 $CR+(\kappa = 3e29)$ 

 $10^{1}$ 

Galacto-centric Radius r [kpc]

Credit: Hopkins+, 2020

 $10^{2}$ 



# Set-up

- Major mergers of disc galaxies at z~0.7
- Recover in relative isolation
- Auriga galaxy formation model (Grand+, 2017)
- Run with/without MHD from same initial conditions

# Re-simulate mergers selected from Illustris with ~38.5x better resolution

# Magnetic field amplification

# Mergers amplify the magnetic field rapidly





# Magnetic field modifies gas disc

Mergers amplify the magnetic field rapidly

Lead to substantial change in morphological features at z=0



Slices through midplane; colours show gas density



# **Magnetic field modifies stellar disc**

Mergers amplify the magnetic field rapidly

Lead to substantial change in morphological features at z=0





Mock gri visual image from stellar light







# Magnetic field modifies stellar disc (Auriga)

Mergers amplify the magnetic field rapidly

Lead to substantial change in morphological features at z=0

Even for more "isolated" (but still cosmological) galaxies





Mock gri visual image from stellar light







## Sufficient resolution is key

Mergers amplify the magnetic field rapidly

Lead to substantial change in morphological features at z=0

Even for more "isolated" (but still cosmological) galaxies

But sufficient resolution is required



![](_page_9_Picture_6.jpeg)

Mock gri visual image from stellar light (resolution becomes finer left to right)

![](_page_9_Picture_8.jpeg)

# Sufficient resolution is key for magnetic dynamo

Mergers amplify the magnetic field rapidly

Lead to substantial change in morphological features at z=0

Even for more "isolated" (but still cosmological) galaxies

But sufficient resolution is required (must resolve small-scale dynamo!)

![](_page_10_Figure_5.jpeg)

![](_page_10_Figure_6.jpeg)

 $-10^{0}$ 

# Ok, but how do magnetic fields affect the merger?

# Case study

Things to notice:

- Stellar distribution initially more compact in MHD
- Hydro produces bar and ring morphology whilst MHD produces spiral arms
- MHD remnant ultimately becomes much larger

![](_page_12_Figure_5.jpeg)

Mock gri visual image from stellar light for 1349-3M and 1349-3H

![](_page_12_Picture_8.jpeg)

![](_page_12_Picture_9.jpeg)

# Model

*i)* Magnetic field changes angular momentum transport *(usually increases baryonic concentration)* 

*ii)* This suppresses a bar instability in MHD case

*iii)* Bar in hydro case forms rapidly, produces ring structure

*iv)* More compact star formation in hydro case leads to strong stellar wind (disrupts CGM)

| MHD   |  |  |
|-------|--|--|
| Hydro |  |  |

i)

![](_page_13_Figure_6.jpeg)

![](_page_13_Picture_7.jpeg)

![](_page_13_Picture_8.jpeg)

# **Comparing to simulations**

Major evolutionary stage within 2 Gyr (starburst within this time)

MHD case shows compaction stage density much higher

Hydro case starts forming a bar at 1-2 Gyr

![](_page_14_Figure_4.jpeg)

![](_page_14_Figure_6.jpeg)

Stellar surface density maps for 1349-3M and 1349-3H (+/-5 kpc projection)

![](_page_14_Figure_8.jpeg)

## Is magnetic field strong enough?

#### Yes!

(although technically could be important even at lower strengths; cf. MRI)

NB: can also see signature of decreasing disc size for 3/4 cases

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

#### Impact on angular momentum

Reflected in evolution of gas angular momentum within 10 kpc of remnant

Evolution is fundamentally different in 3/4 cases:

- Peaks higher in MHD (indicative of more coherent flows; magnetic draping)
- 3/4 cases show reduction

![](_page_16_Figure_5.jpeg)

magnetic field more effective at redistributing angular momentum

![](_page_16_Figure_7.jpeg)

#### Impact on angular momentum

![](_page_17_Figure_1.jpeg)

Angular momentum transfer speeds up merger (most effective for most "in-spiralling" merger)

#### Impact on angular momentum

![](_page_18_Figure_1.jpeg)

Angular momentum transfer speeds up merger (most effective for most "in-spiralling" merger)

![](_page_18_Figure_3.jpeg)

*i*) Magnetic field changes angular momentum transport (usually increases baryonic concentration)

### Why a bar forms in hydro runs and not in MHD ones

Loss of angular momentum increases gas concentration

This increases the subsequent stellar concentration

The effect appears small, but has a major impact on the formation of the inner Lindblad resonance (ILR)

A large ILR is a barrier to bar formation - " $x_2$ " orbits exist within ILR and are aligned orthogonally to bar, acting against it

![](_page_19_Figure_5.jpeg)

### Why a bar forms in hydro runs and not in MHD ones

Loss of angular momentum increases gas concentration

This increases the subsequent stellar concentration

The effect appears small, but has a major impact on the formation of the inner Lindblad resonance (ILR)

A large ILR is a barrier to bar formation - " $x_2$ " orbits exist within ILR and are aligned orthogonally to bar, acting against it

![](_page_20_Figure_5.jpeg)

### How the bar affects hydro sims

Two other important resonances: co-rotation, and outer Lindblad (OLR)

Bar acts to drive gas away from co-rotation resonance and towards ILR and OLR

Results in high gas density high star formation rate

→ This causes the blue stellar ring

![](_page_21_Figure_5.jpeg)

![](_page_21_Picture_7.jpeg)

### How the bar affects hydro sims

Two other important resonances: co-rotation, and outer Lindblad (OLR)

Bar acts to drive gas away from co-rotation resonance and towards ILR and OLR

Results in high gas density high star formation rate

→ This causes the blue stellar ring

![](_page_22_Figure_5.jpeg)

angular momentum transport

![](_page_22_Picture_11.jpeg)

### The impact of winds on accretion

Stellar ring in hydro simulation severely disrupts the local CGM; as a result, accreting gas must have a strong radial component

Star formation is more distributed in MHD simulations; stellar wind is weaker, gas at the outskirts retains its angular momentum

Tracer analysis shows gas joining remnant in MHD simulation is typically closer; *this allows rapid (radial) growth* 

(5 Gyr post-merger, lookback time of ~ 1.4 Gyr)

![](_page_23_Figure_5.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

### The impact of winds on accretion

Stellar ring in hydro simulation severely disrupts the local CGM; as a result, accreting gas must have a strong radial component

Star formation is more distributed in MHD simulations; stellar wind is weaker, gas at the outskirts retains its angular momentum

Tracer analysis shows gas joining remnant in MHD simulation is typically closer; *this allows rapid (radial) growth* 

![](_page_24_Figure_4.jpeg)

![](_page_24_Figure_5.jpeg)

 $10^{3}$ 

### The impact of winds on accretion

Stellar ring in hydro simulation severely disrupts the local CGM; as a result, accreting gas must have a strong radial component

Star formation is more distributed in MHD simulations; stellar wind is weaker, gas at the outskirts retains its angular momentum

Tracer analysis shows gas joining remnant in MHD simulation is typically closer; *this allows rapid (radial) growth* 

![](_page_25_Figure_4.jpeg)

 $10^{2}$ 

 $10^{3}$ 

 $[\mathrm{km \ s}^{-1}]$ 

#### The Model

*i)* Magnetic field changes angular momentum transport *(usually increases baryonic concentration)* 

*ii)* This suppresses a bar instability in MHD case

*iii)* Bar in hydro case forms rapidly, produces ring structure

*iv)* More compact star formation in hydro case leads to strong stellar wind (disrupts CGM)

![](_page_25_Picture_10.jpeg)

#### The impact on the supermassive black hole

If the gas concentration increases in the MHD case, we should expect the black hole accretion rate should go up

→ indeed, black holes can grow twice as large in MHD simulations! (but this is still within errors of observed BH-stellar mass relation)

![](_page_26_Figure_3.jpeg)

#### The impact of the **SMBH** (is surprisingly MHD weak!)

Ran two extra simulations with quasar feedback turned off at start of merger

See same morphological changes anyway; in fact, differences are bigger without AGN feedback!

AGN appears to suppress effect rather than cause it

![](_page_27_Figure_4.jpeg)

+1.7 Gyr

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

![](_page_27_Picture_12.jpeg)

#### +3.1 Gyr

![](_page_27_Picture_14.jpeg)

![](_page_27_Picture_15.jpeg)

![](_page_27_Picture_16.jpeg)

![](_page_27_Picture_17.jpeg)

-15150  $x \; [\mathrm{kpc}]$ 

#### +6.4 Gyr

![](_page_27_Picture_20.jpeg)

![](_page_27_Picture_21.jpeg)

![](_page_27_Picture_22.jpeg)

![](_page_27_Picture_23.jpeg)

-15150  $x \; [
m kpc]$ 

![](_page_27_Figure_25.jpeg)

#### Summary

Magnetic field becomes dominant in first 100 Myr

- Ο disc; shrinks disc
- 0 instability (azimuthally-orientated field provides support against collapse)
- Ο thereof allows spiral arm features to form in MHD case)
- small. grows quickly and becomes larger

Non-azimuthal field redistributes angular momentum between accreting gas and gas in

Increased concentration produces inner Lindblad resonance, which suppresses bar

Bar in hydro run produces strong star-forming ring at outer Lindblad resonance (lack

• High SFR density in ring launches strong stellar wind, which disrupts CGM; keeps disc

In contrast, winds are less effective in MHD case; gas retains angular momentum, disc

#### Summary

Magnetic field becomes dominant in first 100 Myr

- Ο disc; shrinks disc
- Ο instability (azimuthally-orientated field provides support against collapse)
- 0 thereof allows spiral arm features to form in MHD case)
- small. grows quickly and becomes larger

Side remarks:

• Mergers are quicker in MHD case

• BHs grow up to 2x larger

Non-azimuthal field redistributes angular momentum between accreting gas and gas in

Increased concentration produces inner Lindblad resonance, which suppresses bar

Bar in hydro run produces strong star-forming ring at outer Lindblad resonance (lack

• High SFR density in ring launches strong stellar wind, which disrupts CGM; keeps disc

In contrast, winds are less effective in MHD case; gas retains angular momentum, disc

![](_page_29_Picture_14.jpeg)

This project has received funding from the European Research Counsil (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No PICOGAL-101019746).

![](_page_30_Picture_1.jpeg)

European Research Council Established by the European Commission

![](_page_30_Picture_3.jpeg)