Cosmic Rays in Galaxy Formation: Acceleration, Transport, and Feedback

Christoph Pfrommer¹

in collaboration with

PhD students: K. Ehlert¹, R. Lemmerz¹, T. Thomas¹, M. Werhahn¹, J. Whittingham¹, G. Winner¹
Postdocs: T. Berlok¹, T. Buck¹, P. Girichidis¹, M. Shalaby¹, M. Sparre^{2,1}
M. Pais³, E. Puchwein¹, R. Pakmor⁴, V. Springel⁴, T. Enßlin⁴, C. Simpson⁵
¹AIP Potsdam, ²U of Potsdam, ³Hebrew U, ⁴MPA Garching, ⁵U of Chicago
Astrolunch, Hebrew University, Jerusalem, Aug 2021

うくぐ

Outline

Introduction

- Puzzles in galaxy formation
- Galaxy formation paradigm
- Cosmic ray acceleration
- 2 Cosmic ray transport
 - Wave-particle interactions
 - CR hydrodynamics
 - Radio harps

Supernovae and galaxy formation

- Supernovae
- Isolated galaxies
- Cosmological galaxies

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Outline

Introduction

- Puzzles in galaxy formation
- Galaxy formation paradigm
- Cosmic ray acceleration
- 2 Cosmic ray transport
 - Wave-particle interactions
 - CR hydrodynamics
 - Radio harps
- 3 Supernovae and galaxy formation
 - Supernovae
 - Isolated galaxies
 - Cosmological galaxies

< 🗇

AIP

Cosmic ray transport Supernovae and galaxy formation Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Puzzles in galaxy formation

Cosmic ray transport Supernovae and galaxy formation Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Puzzles in galaxy formation

Cosmic ray transport Supernovae and galaxy formation Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Puzzles in galaxy formation

Cosmic ray transport Supernovae and galaxy formation Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Puzzles in galaxy formation

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Feedback by galactic winds

supernova Cassiopeia A

X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech/Steward/O.Krause et al. • galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Feedback by galactic winds

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Feedback by galactic winds

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- star formation and supernovae drive gas out of galaxies by galactic super winds
- critical for understanding the physics of galaxy formation

 → may explain puzzle of low star conversion efficiency in dwarf galaxies

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

How are galactic winds driven?

super wind in M82

- thermal pressure provided by supernovae or AGNs?
- radiation pressure and photoionization by massive stars and QSOs?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?

< 🗇 🕨

observed energy equipartition between cosmic rays, thermal gas and magnetic fields

 \rightarrow suggests self-regulated feedback loop with CR driven winds

Shock waves

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

shock waves: sudden change in density, temperature, and pressure that decelerates supersonic flow

thickness \sim mean free path $\lambda_{\rm mfp}$

in air, $\lambda_{mfp} \sim \mu m$, on Earth, most shocks are mediated by collisions

slide concept Spitkovsky

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Shock waves

shock waves: sudden change in density, temperature, and pressure that decelerates supersonic flow

thickness \sim mean free path $\lambda_{\rm mfp}$

in air, $\lambda_{\text{mfp}} \sim \mu m,$ on Earth, most shocks are mediated by collisions

 $\label{eq:listers/galaxies} \begin{array}{ll} \mbox{coulomb collisions set λ_{mfp}:} \\ \lambda_{mfp} \sim L_{cluster}/10, \qquad \lambda_{mfp} \sim L_{SNR} \end{array}$

Mean free path \gg observed shock width!

 \rightarrow shocks must be mediated without collisions, but through interactions with collective fields \rightarrow collisionless shocks

slide concept Spitkovsky

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Particle acceleration at relativistic shock, $B_0 = 0$

- self-generated magnetic turbulence scatters particles across the shock
- each crossing results in energy gain Fermi process
- movie below shows magnetic filaments in the shock frame (top), particle energy is measured the downstream frame (bottom): particle gains energy upon scattering in the upstream (Spitkovsky 2008)

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

lon spectrum

Non-relativistic parallel shock in long-term hybrid simulation

quasi-parallel shocks accelerate ions

- particles gain energy in each crossing and have probability of leaving the Fermi cycle by being swept downstream → power-law spectrum
- maximum energy increases with time

< 17 ▶

Cosmic ray transport Supernovae and galaxy formation Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Astrophysical shocks

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks $\sim 20~pc$ supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2 \text{ Mpc}$ giant radio relic (van Weeren)

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Astrophysical shocks

astrophysical collisionless shocks can:

- accelerate particles (electrons and ions) \rightarrow cosmic rays (CRs)
- amplify magnetic fields (or generate them from scratch)
- exchange energy between electrons and ions

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks \sim 20 pc supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2 \text{ Mpc}$ giant radio relic (van Weeren)

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Astrophysical shocks

astrophysical collisionless shocks can:

- accelerate particles (electrons and ions) \rightarrow cosmic rays (CRs)
- amplify magnetic fields (or generate them from scratch)
- exchange energy between electrons and ions

collisionless shocks \iff energetic particles \iff electro-magnetic waves

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks \sim 20 pc supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2 \text{ Mpc}$ giant radio relic (van Weeren)

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin

Puzzles in galaxy formation Galaxy formation paradigm Cosmic ray acceleration

Galactic cosmic ray spectrum

- spans more than 33 decades in flux and 12 decades in energy
- "knee" indicates characteristic maximum energy of galactic accelerators
- CRs beyond the "ankle" have extra-galactic origin
- energy density of cosmic rays, magnetic fields, and turbulence in the interstellar gas all similar

Wave-particle interaction CR hydrodynamics Radio harps

Outline

Introduction

- Puzzles in galaxy formation
- Galaxy formation paradigm
- Cosmic ray acceleration

2 Cosmic ray transport

- Wave-particle interactions
- CR hydrodynamics
- Radio harps

Supernovae and galaxy formation

- Supernovae
- Isolated galaxies
- Cosmological galaxies

< 🗇

AIP

Wave-particle interactions CR hydrodynamics Radio harps

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

$$r_{
m gal} \sim 10^4~
m pc$$

gyro-orbit of GeV cosmic ray:

$$c_{
m cr}=rac{m{
ho}_{\perp}}{e\,B_{\mu
m G}}\sim 10^{-6}~
m pc\simrac{1}{4}~
m AU$$

\Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)

Introduction Cosmic ray transport Wave-particle interactions CR hydrodynamics Radio harps

Interactions of CRs and magnetic fields

Supernovae and galaxy formation

Cosmic ray

sketch: Jacob

ヨト ・ヨト

A D > A P >

Wave-particle interactions CR hydrodynamics Radio harps

Interactions of CRs and magnetic fields

sketch: Jacob

< 17 ▶

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

Wave-particle interactions CR hydrodynamics Radio harps

Interactions of CRs and magnetic fields

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega$

Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

• CRs scatter on magnetic fields \rightarrow isotropization of CR momenta

イロト イポト イヨト イヨト

Wave-particle interactions CR hydrodynamics Radio harps

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

Wave-particle interactions CR hydrodynamics Radio harps

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

ightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

Wave-particle interactions CR hydrodynamics Radio harps

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling \rightarrow CR stream with waves strong wave damping: less waves to scatter \rightarrow CR diffusion prevails

Cosmic ray transport

Supernovae and galaxy formation

Wave-particle interaction CR hydrodynamics Radio harps

Modes of CR propagation

ъ

・ロット (雪) (山) (山)

Wave-particle interactions CR hydrodynamics Radio harps

Modes of CR propagation

Wave-particle interactions CR hydrodynamics Radio harps

Modes of CR propagation

Introduction Wave-particle interaction Cosmic ray transport CR hydrodynamics Supernovae and galaxy formation Radio harps

CR vs. radiation hydrodynamics

 captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

< ∃⇒

Introduction Wave-particle interaction Cosmic ray transport CR hydrodynamics Supernovae and galaxy formation Radio harps

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

Alfvén wave velocity in lab frame: $\boldsymbol{w}_{\pm} = \boldsymbol{v} \pm \boldsymbol{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$ Introduction Wave-particle interaction Cosmic ray transport CR hydrodynamics Supernovae and galaxy formation Radio harps

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{\mathsf{S}}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$
Introduction Wave-particle interaction Cosmic ray transport CR hydrodynamics Supernovae and galaxy formation Radio harps

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

• lab-frame equ's for radiation energy and momentum density, ε and f/c^2 (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

• problem: CR lab-frame equation requires resolving rapid gyrokinetics!

Introduction Wave-particle interaction Cosmic ray transport CR hydrodynamics Supernovae and galaxy formation Radio harps

CR vs. radiation hydrodynamics

- captitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

 lab-frame equ's for radiation energy and momentum density, ε and f/c² (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

• solution: transform in comoving frame and project out gyrokinetics!

Introduction Wave-particle interaction Cosmic ray transport CR hydrodynamics Supernovae and galaxy formation Radio harps

Alfvén-wave regulated CR transport

comoving equ's for CR energy and momentum density (along B), ε_{cr} and f_{cr}/c², and Alfvén-wave energy densities ε_{a,±} (Thomas & CP 2019)

$$\begin{split} \frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \left[\boldsymbol{\nu} (\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) + \boldsymbol{b} f_{\rm cr} \right] &= \boldsymbol{\nu} \cdot \boldsymbol{\nabla} \boldsymbol{P}_{\rm cr} \\ &- \frac{\boldsymbol{V}_{\rm a}}{3\kappa_{+}} \left[f_{\rm cr} - \boldsymbol{v}_{\rm a} (\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) \right] + \frac{\boldsymbol{V}_{\rm a}}{3\kappa_{-}} \left[f_{\rm cr} + \boldsymbol{v}_{\rm a} (\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) \right], \end{split}$$

$$\frac{\partial f_{\rm cr}/c^2}{\partial t} + \boldsymbol{\nabla} \cdot \left(\boldsymbol{\nu} f_{\rm cr}/c^2 \right) + \boldsymbol{b} \cdot \boldsymbol{\nabla} P_{\rm cr} = -(\boldsymbol{b} \cdot \boldsymbol{\nabla} \boldsymbol{\nu}) \cdot (\boldsymbol{b} f_{\rm cr}/c^2) \\ - \frac{1}{3\kappa_+} \left[f_{\rm cr} - v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right] - \frac{1}{3\kappa_-} \left[f_{\rm cr} + v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right],$$

$$\begin{split} \frac{\partial \varepsilon_{\mathrm{a},\pm}}{\partial t} + \boldsymbol{\nabla} \cdot \left[\boldsymbol{v}(\varepsilon_{\mathrm{a},\pm} + P_{\mathrm{a},\pm}) \pm v_{\mathrm{a}} \boldsymbol{b} \varepsilon_{\mathrm{a},\pm} \right] &= \boldsymbol{v} \cdot \boldsymbol{\nabla} P_{\mathrm{a},\pm} \\ &\pm \frac{v_{\mathrm{a}}}{3\kappa_{\pm}} \left[f_{\mathrm{cr}} \mp v_{\mathrm{a}}(\varepsilon_{\mathrm{cr}} + P_{\mathrm{cr}}) \right] - \mathcal{S}_{\mathrm{a},\pm}. \end{split}$$

Introduction Cosmic ray transport Wave-particle interactions CR hydrodynamics Radio harps

Non-equilibrium CR streaming and diffusion

Coupling the evolution of CR and Alfvén wave energy densities

Supernovae and galaxy formation

Christoph Pfrommer

Wave-particle interactions CR hydrodynamics Radio harps

Non-equilibrium CR streaming and diffusion

Varying damping rate of Alfvén waves modulates the diffusivity of solution

Christoph Pfrommer

Introduction Wave-p Cosmic ray transport CR hydi Supernovae and galaxy formation Radio h

Wave-particle interaction CR hydrodynamics Radio harps

Anisotropic CR streaming and diffusion – AREPO

CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

- CR streaming and diffusion along magnetic field lines in the self-confinement picture
- moment expansion similar to radiation hydrodynamics
- accounts for kinetic physics: non-linear Landau damping, gyro-resonant instability, ...
- Galilean invariant and causal transport
- energy and momentum conserving

MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)

< □

MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)

Introduction Wave-particle interact Cosmic ray transport CR hydrodynamics Supernovae and galaxy formation Radio harps

Radio synchrotron harps: the model

shock acceleration scenario

Thomas, CP, Enßlin (2020)

Christoph Pfrommer Cosmic rays in galaxy formation

AIP

Wave-particle interactions CR hydrodynamics Radio harps

Radio synchrotron harps: the model

shock acceleration scenario

magnetic reconnection at pulsar wind

Wave-particle interactions CR hydrodynamics Radio harps

Radio synchrotron harps: the model

shock acceleration scenario

CR diffusion vs. streamig + diffusion

Wave-particle interactions CR hydrodynamics Radio harps

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

Christoph Pfrommer Cosmic rays in galaxy formation

Wave-particle interactions CR hydrodynamics Radio harps

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

lateral radio profiles

Introduction Wave-pa Cosmic ray transport CR hydro Supernovae and galaxy formation Radio ha

Wave-particle interactions CR hydrodynamics Radio harps

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR diffusion

Wave-particle interactions CR hydrodynamics Radio harps

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

CR streaming and diffusion

Supernovae Isolated galaxies Cosmological galaxies

Outline

Introduction

- Puzzles in galaxy formation
- Galaxy formation paradigm
- Cosmic ray acceleration
- 2 Cosmic ray transport
 - Wave-particle interactions
 - CR hydrodynamics
 - Radio harps

Supernovae and galaxy formation

- Supernovae
- Isolated galaxies
- Cosmological galaxies

< 🗇

AIP

Supernovae Isolated galaxies Cosmological galaxies

Cosmological moving-mesh code AREPO (Springel 2010)

Supernovae Isolated galaxies Cosmological galaxies

Global MHD simulations of SNRs with CR physics

 detect and characterize shocks and jump conditions on the fly

AIP

Mach number finder with CRs

CP+ (2017)

Supernovae Isolated galaxies Cosmological galaxies

Global MHD simulations of SNRs with CR physics

- detect and characterize shocks and jump conditions on the fly
- measure Mach number \mathcal{M} and magnetic obliquity θ_B

AIP

obliquity-dep. acceleration efficiency

Pais, CP+ (2018) based on hybrid PIC sim.'s by Caprioli & Spitkovsky (2015)

Supernovae Isolated galaxies Cosmological galaxies

Global MHD simulations of SNRs with CR physics

simulated TeV gamma-ray map

Pais & CP (2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number \mathcal{M} and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission

Supernovae Isolated galaxies Cosmological galaxies

Global MHD simulations of SNRs with CR physics

simulated gamma-ray spectrum

Winner, CP+ (2019, 2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number M and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission
- inject and transport CR electrons
- calculate non-thermal radio, X-ray, γ-ray emission

Supernovae

Isolated galaxies Cosmological galaxies

Hadronic TeV γ rays: SN 1006

Christoph Pfrommer

Cosmic rays in galaxy formation

AIP

Supernovae Isolated galaxies Cosmological galaxies

Hadronic TeV γ rays: Vela Jr. and RXJ 1713

Christoph Pfrommer

Supernovae Isolated galaxies Cosmological galaxies

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

→ Ξ → < Ξ →</p>

< < >> < </>

Supernovae Isolated galaxies Cosmological galaxies

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

 \Rightarrow Correlation structure of patchy TeV γ -rays constrains magnetic coherence scale in ISM:

SN 1006: $\lambda_B > 200^{+80}_{-10}$ pc

Supernovae Isolated galaxies Cosmological galaxies

SN 1006: CR electron acceleration models

- different obliquity dependent electron acceleration efficiencies:
 - 1. preferred quasi-perpendicular acceleration (PIC simulations)
 - 2. constant acceleration efficiency (a straw man's model)
 - 3. preferred quasi-parallel acceleration (like CR protons)

Supernovae Isolated galaxies Cosmological galaxies

CR electron acceleration: quasi-perpendicular shocks

Christoph Pfrommer

Supernovae Isolated galaxies Cosmological galaxies

CR electron acceleration: constant efficiency

Christoph Pfrommer

Supernovae Isolated galaxies Cosmological galaxies

CR electron acceleration: quasi-parallel shocks

Christoph Pfrommer

Supernovae Isolated galaxies Cosmological galaxie

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

quasi-parallel acceleration model fits multi-frequency spectrum

Supernovae Isolated galaxies Cosmological galaxie

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

AIP

- quasi-parallel acceleration model fits multi-frequency spectrum
- GeV regime: leptonic inverse Compton dominates
- TeV regime: hadronic pion decay

Supernovae Isolated galaxies Cosmological galaxies

1. Cosmic ray feedback in galaxy formation

Pakmor, CP+ (2016), CP+ (2017b) Galactic winds driven by CR diffusion in isolated disk galaxies MHD + CR advection + anisotropic diffusion, $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

AIP

Supernovae Isolated galaxies Cosmological galaxie

Simulation of Milky Way-like galaxy, t = 0.5 Gyr

Christoph Pfrommer Cosmic rays in galaxy formation

Supernovae Isolated galaxies Cosmological galaxies

Simulation of Milky Way-like galaxy, t = 1.0 Gyr

Christoph Pfrommer Cosmic rays in

Cosmic rays in galaxy formation

AIP

Supernovae Isolated galaxies Cosmological galaxies

Cosmic ray driven wind: mechanism

CR streaming in 3D simulations: Uhlig, CP+ (2012), Ruszkowski+ (2017) CR diffusion in 3D simulations: Jubelgas+ (2008), Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014), Pakmor, CP+ (2016), Simpson+ (2016), Girichidis+ (2016), Dubois+ (2016), CP+ (2017b), Jacob+ (2018), ...

Supernovae Isolated galaxies Cosmological galaxies

CR diffusion vs. advection

Pakmor, CP, Simpson, Springel (2016)

프 🖌 🛪 프 🕨

- CR diffusion launches powerful winds
- simulation without CR diffusion exhibits only weak fountain flows

Supernovae Isolated galaxies Cosmological galaxies

2. Cosmic rays and non-thermal emission

Werhahn, CP, Girichidis+ (2021) Cosmic rays and non-thermal emission in simulated galaxies: I. & II. MHD + CR advection + anisotropic diffusion: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$ steady-state spectra of CR protons, primary & secondary electrons

Supernovae Isolated galaxies Cosmological galaxies

Steady-state cosmic ray spectra

• solve the steady-state equation in every cell for each CR population:

$$rac{f(E)}{ au_{
m esc}} - rac{{\sf d}}{{\sf d}E} \left[f(E)b(E)
ight] = q(E)$$

- protons: Coulomb, hadronic and escape losses (re-normalized to ε_{cr})
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries

Supernovae Isolated galaxies Cosmological galaxies

Steady-state cosmic ray spectra

• solve the steady-state equation in every cell for each CR population:

$$\frac{f(E)}{\tau_{\rm esc}} - \frac{\mathsf{d}}{\mathsf{d}E} \left[f(E)b(E) \right] = q(E)$$

- protons: Coulomb, hadronic and escape losses (re-normalized to ε_{cr})
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries
- steady state assumption is fulfilled in disk and in regions dominating the non-thermal emission but not at low densities, at SNRs and in outflows

Supernovae Isolated galaxies Cosmological galaxies

From a starburst galaxy to a Milky Way analogy

Christoph Pfrommer Cos

Supernovae Isolated galaxies Cosmological galaxies

From a starburst galaxy to a Milky Way analogy

Christoph Pfrommer Cos

Supernovae Isolated galaxies Cosmological galaxies

Comparing CR spectra to Voyager and AMS-02 data

AIP

Christoph Pfrommer

Supernovae Isolated galaxies Cosmological galaxies

Comparing the positron fraction to AMS-02 data

Supernovae Isolated galaxies Cosmological galaxie

Simulation of a starburst galaxy

Christoph Pfrommer

Cosmic rays in galaxy formation

Supernovae Isolated galaxies Cosmological galaxie

Simulation of a starburst galaxy

Christoph Pfrommer Cosmic

Supernovae Isolated galaxies Cosmological galaxies

Gamma-ray spectra of starburst galaxies

Messier 82

NGC 253

Werhahn, CP+ (2021)

- gamma-ray spectra in starbursts dominated by pion decay
- CR protons propagate in Kolmogorov turbulence: $\kappa \propto E^{0.3}$

Supernovae Isolated galaxies Cosmological galaxies

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Christoph Pfrommer Cosmic rays in galaxy formation

Supernovae Isolated galaxies Cosmological galaxies

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Supernovae Isolated galaxies Cosmological galaxies

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Supernovae Isolated galaxies Cosmological galaxies

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Christoph Pfrommer Cosmic rays in galaxy formation

Supernovae Isolated galaxies Cosmological galaxies

Far infra-red – gamma-ray correlation

Hadronic vs. leptonic emission and calorimetric fraction across galaxy scales

Werhahn, CP+ (2021)

- pion decay dominates gamma-ray emission in starbursts
- leptonic component (primarily inverse Compton) dominates at low star formation rates
- calorimetric energy fraction in starbursts $\eta_{cal,p} \approx 0.5$: half of the energy available for CR feedback
- faster CR diffusion decreases calorimetric fraction at low star formation rates

Supernovae Isolated galaxies Cosmological galaxies

3. Cosmological galaxy formation

Christoph Pfrommer Cosmic rays in galaxy formation

Supernovae Isolated galaxies Cosmological galaxies

Cosmic rays in cosmological galaxy simulations

The galaxy formation model

- primordial and metal line cooling
- sub-resolution model for star formation (Springel+ 03)
- mass and metal return from stars to ISM
- cold dense gas stabilised by pressurised ISM
- thermal and kinetic energy from supernovae modelled by isotropic wind – launched outside of SF region
- black hole seeding and accretion model (Springel+ 05)
- thermal feedback from AGN in radio and quasar mode
- uniform magnetic field of 10⁻¹⁰ G seeded at z = 128

Simulation suite (Buck, CP+ 2020)

- 2 galaxies, baryons with $5 \times 10^4 \, M_\odot \sim 5 \times 10^6$ resolution elements in halo, 2×10^6 star particles
- 4 models with different CR physics for each galaxy:
 - no CRs
 - CR advection
 - + CR anisotropic diffusion
 - + CR Alfvén wave cooling

Christoph Pfrommer

Supernovae Isolated galaxies Cosmological galaxies

Cosmic rays in cosmological galaxy simulations Auriga MHD models: CR transport changes disk sizes

Christoph Pfrommer Cosmic rays in galaxy formation

Supernovae Isolated galaxies Cosmological galaxies

Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport modifies the circum-galactic medium

Christoph Pfrommer

Cosmic rays in galaxy formation

Supernovae Isolated galaxies Cosmological galaxies

Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion

< 🗇 🕨

Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

- moment expansion similar to radiation hydrodynamics
- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion

CR acceleration and feedback in galaxy formation:

- global MHD simulations of SNRs constrain plasma physics of particle acceleration
- CR feedback drives galactic winds & slows down star formation
- 3D galactic emission models calibrate CR feedback and probe non-thermal physics
- CRs modify galaxy disk sizes and the circumgalactic medium

Supernovae Isolated galaxies Cosmological galaxies

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

AIP

Christoph Pfrommer

Supernovae Isolated galaxies Cosmological galaxies

Literature for the talk – 1

Cosmic ray acceleration:

- Pais, Pfrommer, Ehlert, Pakmor, The effect of cosmic-ray acceleration on supernova blast wave dynamics, 2018, MNRAS, 478, 5278.
- Winner, Pfrommer, Girichidis, Pakmor, *Evolution of cosmic ray electron spectra in magnetohydrodynamical simulations*, 2019, MNRAS, 488, 2235.
- Pais, Pfrommer, Ehlert, Werhahn, Winner, Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants, 2020, MNRAS, 496, 2448.
- Pais, Pfrommer, Simulating TeV gamma-ray morphologies of shell-type supernova remnants, 2020, MNRAS, 498, 5557.
- Winner, Pfrommer, Girichidis, Werhahn, Pais, Evolution and observational signatures of the cosmic ray electron spectrum in SN 1006, 2020, MNRAS, 499, 2785.

イロト イ理ト イヨト イヨト

Supernovae Isolated galaxies Cosmological galaxies

Literature for the talk -2

Cosmic ray transport:

- Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS.
- Thomas, Pfrommer, Enßlin, *Probing cosmic ray transport with radio synchrotron harps in the Galactic center*, 2020, ApJL.
- Thomas, Pfrommer, Pakmor, A finite volume method for two-moment cosmic-ray hydrodynamics on a moving mesh, 2021, MNRAS
- Thomas & Pfrommer, Comparing different closure relations for cosmic ray hydrodynamics, 2021, submitted.

Cosmic rays and non-thermal emission in galaxies:

- Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and non-thermal emission in simulated galaxies. I. Electron and proton spectra explain Voyager-1 data, 2021
- Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation, 2021

イロト イポト イヨト イヨト

Supernovae Isolated galaxies Cosmological galaxies

Literature for the talk – 3

Cosmic ray feedback in galaxies:

- Pakmor, Pfrommer, Simpson, Springel, Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies, 2016, ApJL.
- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017a, MNRAS.
- Pfrommer, Pakmor, Simpson, Springel, Simulating gamma-ray emission in star-forming galaxies, 2017b, ApJL.
- Jacob, Pakmor, Simpson, Springel, Pfrommer, The dependence of cosmic ray driven galactic winds on halo mass, 2018, MNRAS.
- Buck, Pfrommer, Pakmor, Grand, Springel, The effects of cosmic rays on the formation of Milky Way-like galaxies in a cosmological context, 2020, MNRAS.

イロト イポト イヨト イヨト