Shocking Astrophysics in Galaxy Clusters

Christoph Pfrommer

in collaboration with

Nick Battaglia, Dick Bond, Torsten Enßlin, Tom Jones, Francesco Miniati, Anders Pinzke, John Sievers, Volker Springel, Kandaswamy Subramanian

1Heidelberg Institute for Theoretical Studies, Germany
Kavli Institute for Theoretical Physics, Santa Barbara

Mar 14, 2010 / KITP Conference
1 Non-thermal emission
 - Introduction
 - Physical processes
 - Radio halos and relics

2 Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality

3 Probes of accretion shocks
 - A puzzling radio galaxy
 - Radio galaxy-bubble system
 - Radio gischt emission
Outline

1. Non-thermal emission
 - Introduction
 - Physical processes
 - Radio halos and relics

2. Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality

3. Probes of accretion shocks
 - A puzzling radio galaxy
 - Radio galaxy-bubble system
 - Radio gischt emission
Shocks in galaxy clusters

1E 0657-56 ("Bullet cluster")
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
Giant radio halo in the Coma cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
What can we learn from non-thermal emission?

- **plasma astrophysics:**
 - shock and particle acceleration
 - large-scale magnetic fields
 - turbulence

- **dynamical state → cosmology?**
 - non-thermal pressure support: hydrostatics + SZE
 - history of individual clusters: cluster archeology
 - illuminating the process of structure formation

- **consistent picture of non-thermal processes:**
 radio, soft/hard X-rays, \(\gamma \)-rays
Hadronic cosmic ray proton interaction

- π^0
- π^+
- μ^+
- e^+
- ν_μ
- ν_e
- ν_μ
- p
- CRp
Hadronic cosmic ray proton interaction

Christoph Pfrommer
Shocking Astrophysics
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves

Christoph Pfrommer
Shocking Astrophysics
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons

hadronic reaction
Multi-messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons

Observational diagnostics:
- radio synchrotron emission
- IC: hard X-ray & gamma-ray emission

hadronic reaction
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons
- π^0

Observational diagnostics:
- radio synchrotron emission
- IC: hard X-ray & gamma-ray emission
- gamma-ray emission

Christoph Pfrommer
Shocking Astrophysics
Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
Observation – simulation of A2256

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic

Clarke & Enßlin (2006)

C.P. & Battaglia (in prep.)
Outline

1. Non-thermal emission
 - Introduction
 - Physical processes
 - Radio halos and relics

2. Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality

3. Probes of accretion shocks
 - A puzzling radio galaxy
 - Radio galaxy-bubble system
 - Radio gischt emission
Radio halo theory – (i) hadronic model

\[p_{\text{CR}} + p \rightarrow \pi^\pm \rightarrow e^\pm \]

strength:
- all required ingredients available:
 - shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:
- all clusters should have radio halos
- does not explain all reported spectral features
- ...
Radio halo theory – (i) hadronic model

\[p_{\text{CR}} + p \rightarrow \pi^\pm \rightarrow e^\pm \]

strength:
- all required ingredients available:
 - shocks to inject CRp, gas protons as targets, magnetic fields
- predicted luminosities and morphologies as observed without tuning
- power-law spectra as observed

weakness:
- all clusters should have radio halos
- does not explain all reported spectral features
- …
Radio luminosity - X-ray luminosity

- Radio halos
- Radio mini-halos

\[L_X \ (0.1 - 2.4 \text{ keV}) \ [10^{44} \text{ erg s}^{-1}] \]

\[P_{1.4 \text{GHz}} \ [10^3 \text{ erg s}^{-1} \text{ Hz}^{-1}] \]
Radio luminosity - X-ray luminosity

- **radio halos**
- **radio mini-halos**

\[P_{1.4\text{GHz}} \left[10^{31} \text{ erg s}^{-1} \text{ Hz}^{-1} \right] \]

\[L_X (0.1 - 2.4 \text{ keV}) \left[10^{44} \text{ erg s}^{-1} \right] \]

Christoph Pfrommer
Shocking Astrophysics
Radio luminosity - central entropy

\[P_{1.4 \text{GHz}} \left[10^{31} \text{erg s}^{-1} \text{Hz}^{-1} \right] \]

\[K_0 \left[\text{keV cm}^2 \right] \]

Christoph Pfrommer
Shocking Astrophysics
Radio luminosity - central entropy

Christoph Pfrommer Shocking Astrophysics
Radio luminosity - central entropy

The graph shows the relationship between radio luminosity, $P_{1.4\text{GHz}}$, and central entropy, K_0, in units of 10^{31} erg s$^{-1}$ Hz$^{-1}$ and keV cm2, respectively. The data points are plotted on a logarithmic scale, indicating a bimodal distribution. The red line represents a theoretical model or fit to the data.
Radio luminosity - central entropy

Christoph Pfrommer
Shocking Astrophysics
Proton cooling times

\[\tau = \frac{E}{\dot{E}} \text{ [Gyr]} \]

- Coulomb
- Hadronic

\[n_e = 10^{-4} \text{ cm}^{-3} \]
\[n_e = 10^{-3} \text{ cm}^{-3} \]
\[n_e = 10^{-2} \text{ cm}^{-3} \]
Proton cooling times

\[\tau = \frac{E}{\dot{E}} \text{ [Gyr]} \]

\[n_e = 10^{-4} \text{ cm}^{-3} \]
\[n_e = 10^{-3} \text{ cm}^{-3} \]
\[n_e = 10^{-2} \text{ cm}^{-3} \]
Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, …
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

weakness:

- Fermi II acceleration is inefficient – CRe cool rapidly
- observed power-law spectra require fine tuning
- …
Radio halo theory – (ii) re-acceleration model

strength:

- all required ingredients available: radio galaxies & relics to inject CRe, plasma waves to re-accelerate, …
- reported complex radio spectra emerge naturally
- clusters without halos ← less turbulent

weakness:

- Fermi II acceleration is inefficient – CRe cool rapidly
- observed power-law spectra require fine tuning
- …
Electron cooling times

\[\tau = \frac{E}{\dot{E}} \text{[Gyr]} \]

- synchrotron + IC:
 - \(B = 1 \mu \text{G} \)
 - \(B = 3 \mu \text{G} \)
 - \(B = 10 \mu \text{G} \)

- Hubble
- Coulomb:
 - \(n_e [\text{cm}^{-3}] = 10^{-4}, 10^{-3}, 10^{-2} \)
 - total loss

\(B = 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^{0}, 10^{1}, 10^{2} \)
Electron cooling times

\[\tau = \frac{E}{\dot{E}} \text{ [Gyr]} \]

- Synchrotron + IC:
 - \(B = 1 \mu G \)
 - \(B = 3 \mu G \)
 - \(B = 10 \mu G \)

- Hubble

- Coulomb:
 - \(n_e [\text{cm}^{-3}] = 10^{-4}, 10^{-3}, 10^{-2} \)

- Total loss
Electron cooling times

Electron kinetic energy E vs. electron loss timescale $\tau = E/\dot{E}$ (Gyr)

- Synchrotron + IC:
 - $B = 1 \, \mu G$
 - $B = 3 \, \mu G$
 - $B = 10 \, \mu G$

- Coulomb:
 - $n_e [\text{cm}^{-3}] = 10^{-4}, 10^{-3}, 10^{-2}$

- Hubble

Total loss
Cosmic ray transport – magnetic flux tube with CRs
Cosmic ray advection
Adiabatic expansion and compression
Cosmic ray streaming
Expanded CRs
Turbulent pumping
Turbulent pumping
Turbulent-to-streaming ratio

\[\gamma_{tu} = \frac{u_{tu}}{u_{st}} \]

\[\gamma_{tu} \gg 1 \]

\[\gamma_{tu} \ll 1 \]
Are CRs confined to magnetic flux tubes?
Escape via diffusion: energy dependence

\[\gamma_{tu} = \frac{\nu_{tu}}{\nu_{st}} \gg 1 \]

\[\nu_{st} \ll \nu_{micro} \sim c_s \]

\[\nu_{macro} \]

\[\text{Christoph Pfrommer} \]

Shocking Astrophysics
CR transport theory

CR continuity equation in the absence of sources and sinks:

\[
\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\vec{\nu} \rho) = 0
\]

\[
\vec{\nu}_{\text{st}} = -\nu_{\text{st}} \frac{\vec{\nabla} \rho}{|\vec{\nabla} \rho|}
\]

\[
\vec{\nu}_{\text{di}} = -\kappa_{\text{di}} \frac{1}{\rho} \vec{\nabla} \rho
\]

\[
\vec{\nu}_{\text{ad}} = -\kappa_{\text{tu}} \frac{\eta \vec{\nabla} \rho}{\rho \eta}
\]

\[
\kappa_{\text{tu}} = \frac{L_{\text{tu}} \nu_{\text{tu}}}{3}
\]

CR profile due to advection

$$\eta(r) = \left(\frac{P(r)}{P_0} \right)^{\frac{3}{5}}$$
$\gamma_{tu} = \frac{v_{tu}}{v_{st}}$

$\rho(r)$ vs r/r_c for different values of γ_{tu}.
CR density at fixed particle energy

\[\gamma_{tu} = \frac{\nu_{tu}}{\nu_{st}} \]

\(r/r_c \)

\[C(r) \]

\(\gamma_{tu} = 1, 3, 10, 30, 100 \)

Christoph Pfrommer

Shocking Astrophysics
Gamma-ray emission profile

$\rho_{\text{CR}} + p \rightarrow \pi^0 \rightarrow 2\gamma$

$\gamma_{tu} = \frac{v_{tu}}{v_{st}}$

Christoph Pfrommer

Shocking Astrophysics
Gamma-ray luminosity

\[\gamma_{tu} = \frac{v_{tu}}{v_{st}} \]

\[\rho_{CR} + p \rightarrow \pi^0 \rightarrow 2\gamma \]
Non-thermal emission
Cosmic ray transport
Probes of accretion shocks

Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

\[\gamma\text{-ray limits and hadronic predictions} \quad (\text{Ackermann et al. 2010}) \]

Christoph Pfrommer
Shocking Astrophysics
Radio emission profile

\[\rho_{\text{CR}} + \rho \rightarrow \pi^\pm \rightarrow e^\pm \rightarrow \text{radio} \]
Radio luminosity

\[L(V) = A_y \int dV C \rho_{gas} \frac{\varepsilon_B}{\varepsilon_B + \varepsilon_{ph}} \left(\frac{\varepsilon_B}{\varepsilon_B^*} \right)^{\alpha - 2} \]

\[\gamma_{tu} = \frac{V_{tu}}{V_{st}} \]

\[\varepsilon_B(r) = \frac{B_0^2}{8\pi} \frac{\rho(r)}{n_0} \left(\frac{\gamma_{tu}}{10} \right)^{\delta_B} \]

\[\rho_{CR} + \rho \rightarrow \pi^\pm \rightarrow e^\pm \rightarrow \text{radio} \]
Conclusions on cosmic ray transport

- Streaming & diffusion produce spatially flat CR profiles.
- Advection produces centrally enhanced CR profiles.
- Profile depends on advection-to-streaming-velocity ratio.
- Turbulent velocity \sim sound speed \leftarrow cluster merger.
- CR streaming velocity \sim sound speed \leftarrow plasma physics.
- Peaked/flat CR profiles in merging/relaxed clusters.
- Energy dependence of $\nu_{\text{st}}^{\text{macro}}$ \rightarrow CR & radio spectral variations.
- Outstreaming CR: dying halo \leftarrow decaying turbulence.
- Bimodality of cluster radio halos & gamma-ray emission!
Conclusions on cosmic ray transport

- Streaming & diffusion produce spatially flat CR profiles.
 - Advection produces centrally enhanced CR profiles.
 - Profile depends on advection-to-streaming-velocity ratio.

- Turbulent velocity \sim sound speed \leftarrow cluster merger.
 - CR streaming velocity \sim sound speed \leftarrow plasma physics.
 - Peaked/flat CR profiles in merging/relaxed clusters.

- Energy dependence of ν_{macro} \rightarrow CR & radio spectral variations.
 - Outstreaming CR: dying halo \leftarrow decaying turbulence.

\rightarrow Bimodality of cluster radio halos & gamma-ray emission!
Conclusions on cosmic ray transport

- Streaming & diffusion produce spatially flat CR profiles
- Advection produces centrally enhanced CR profiles
 → Profile depends on advection-to-streaming-velocity ratio
- Turbulent velocity \sim sound speed \leftarrow Cluster merger
- CR streaming velocity \sim sound speed \leftarrow Plasma physics
 → Peaked/flat CR profiles in merging/relaxed clusters
- Energy dependence of $\nu_{\text{st}}^{\text{macro}}$ \rightarrow CR & radio spectral variations
 → Outstreaming CR: Dying halo \leftarrow Decaying turbulence

→ Bimodality of cluster radio halos & gamma-ray emission!
Outline

1. Non-thermal emission
 - Introduction
 - Physical processes
 - Radio halos and relics

2. Cosmic ray transport
 - Observations and models
 - CR pumping, streaming, and diffusion
 - Radio and gamma-ray bimodality

3. Probes of accretion shocks
 - A puzzling radio galaxy
 - Radio galaxy-bubble system
 - Radio gischt emission
Wish list for shocks

What we would like to measure and hope to infer:

- jump conditions: shock strength
- upstream properties: infalling WHIM
- post- and pre-shock conditions: geometry, obliquity
- shock curvature: vorticity and B field generation
- post-shock turbulence: power spectrum, non-thermal pressure support
- ...

Christoph Pfrommer

Shocking Astrophysics
O’Dea & Owen (1986): 4.9 GHz (left) and 1.4 GHz (right)
Bipolar AGN jets in an ICM wind: magnetic field

credit: Porter, Mendygral & Jones

Christoph Pfrommer Shocking Astrophysics
Bipolar AGN jets in an ICM wind: synthetic radio

credit: Porter, Mendygral & Jones
Radio properties of NGC 1265

Sijbring & de Bruyn (1998), left: radio intensity $I_{600\,\text{MHz}}$; right: variations of $I_{600\,\text{MHz}}$ (triangles), $I_{150\,\text{MHz}}$ (squares) and spectral index (bottom) along the tail.
Requirements for any model of NGC 1265

- bright narrow angle tail radio jet: synchrotron cooling
- transition region: change of winding direction and sharp drop in S_ν and α
- coherent properties along the dim radio ring, confined morphology

→ we are looking at 2 electron populations in projection possibly suggesting 2 different epochs of feedback:

→ active jet + detached radio bubble that recently got energized coherently across 300 kpc → shock?
Shock overruns an aged radio bubble (C.P. & Jones 2011)
Bubble transformation to vortex ring

Enßlin & Brüggen (2002): gas density (top) and magnetic energy density (bottom)
Enßlin & Brüggen (2002): total 100 MHz intensity and polarization E-vectors, strong shock/weak B (left) and strong shock/strong B model (right)
C.P. & Jones (2011):

Top view (not to scale):

0

1

2

3

4

NGC 1265

radio torus

head–tail jet

shock surface

plasma bubbles

to observer

NGC 1265

C.P. & Jones (2011):
NGC 1265 as a perfect probe of a shock

- **idea:**
 - galaxy velocity not affected by shock → pre-shock conditions
 - tail & torus as tracers of the post-shock flow

- **assumptions:**
 - shock surface \parallel gravitational equipotential surface of Perseus
 - recent jet launched shortly after shock crossing

- **method:**
 - extrapolating position and velocity back in time
 - employing conservation laws at oblique shock
 - iterate until convergence
Derived geometry for NGC 1265

C.P. & Jones (2011)
Shock strength and jump conditions

- Shock compresses relativistic bubble adiabatically: \(P_2 / P_1 = C^{4/3} \)

- Bubble compression factor:

\[
C = \frac{V_{\text{bubble}}}{V_{\text{torus}}} = \frac{\frac{4}{3} \pi R^3}{2 \pi^2 R r_{\text{min}}^2} = \frac{2}{3 \pi} \left(\frac{R}{r_{\text{min}}} \right)^2 \approx 10
\]

- Assuming pressure equilibrium → shock jumps:

\[
\frac{P_2}{P_1} \approx 21.5, \quad \frac{\rho_2}{\rho_1} \approx 3.4, \quad \frac{T_2}{T_1} \approx 6.3 \quad \text{and} \quad M \approx 4.2
\]

C.P. & Jones (2011)
Perseus accretion shock and WHIM properties

- jet has low Faraday RM \rightarrow NGC 1265 on near side of Perseus
 - NGC 1265 redshifted w/r to Perseus \rightarrow infalling system
 - shock likely the accretion shock

- extrapolating X-ray n- and T-profiles to R_{200} & shock jumps:
 - upper limits on infalling warm-hot intergalactic medium

\[
\begin{align*}
kT_1 & \lesssim 0.4 \text{ keV} \\
n_1 & \lesssim 5 \times 10^{-5} \text{ cm}^{-3} \\
P_1 & \lesssim 3.6 \times 10^{-14} \text{ erg cm}^{-3}
\end{align*}
\]

C.P. & Jones (2011)
ellipticity of radio torus (magnitude and orientation) & bending direction of tail
→ excludes projection effects
→ evidence for post-shock shear flow

shock curvature injects vorticity that shears the gas westwards:

\[
\frac{\varepsilon_{\text{shear}}}{\varepsilon_{\text{th,2}}} = \frac{\mu m_p v^2}{3kT_2} \approx 0.14,
\]

with \(kT_2 \approx 2.4 \text{ keV} \) and \(v_\perp \approx 400 \text{ km/s} \).

C.P. & Jones (2011)
Structure formation shocks triggered by a recent merger of a large galaxy cluster.

red/yellow: shock-dissipated energy,
blue/contours: 150 MHz radio gischt emission from shock-accelerated CRe

Combining the low-frequency radio observables of relics, we can probe

- strength and coherence scale of cluster magnetic fields
- diffusive shock acceleration of electrons
- existence and properties of the WHIM
- dynamical state of the cluster
Population of faint radio relics in merging clusters
Probing the large scale magnetic fields

Finding radio relics with an FOF-finder that links radio emission instead of DM → relic luminosity function:

radio map with GMRT emissivity threshold

“theoretical” threshold (towards SKA)
Relic luminosity function → magnetic field behaviour and dynamical state:

- Varying magnetic decline with radius
- Varying overall magnetic strength
Rotation measure (RM)

RM maps and power spectra have the potential to infer the magnetic pressure support and discriminate the nature of MHD turbulence in clusters:

Left: RM map of the largest relic, right: Magnetic and RM power spectrum comparing Kolmogorow and Burgers turbulence models.

Christoph Pfrommer
Shocking Astrophysics
Conclusions on probes of accretion shocks

- **radio galaxies** are perfect probes of pre- and post-shock flows:
 - hydrodynamic jumps and Mach numbers
 - statistical properties of the infalling WHIM (+ X-rays)
 - estimating the curvature radius of shocks and induced shear flows

- **radio gischt emission** in cluster outskirts probes
 - strength and coherence scale of magnetic fields
 - diffusive shock acceleration of electrons
 - nature of magnetic and hydrodynamic turbulence
 - dynamical cluster state
Non-thermal emission
Cosmic ray transport
Probes of accretion shocks

A puzzling radio galaxy
Radio galaxy-bubble system
Radio gischt emission

Literature for the talk