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Which physics can gamma-ray astronomy probe?

intergalactic space
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galaxy formation
active galactic nuclei FEes

dark matter
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The Questions

Probing physics and cosmology with gamma-ray astronomy

@ which objects can we see?
active galactic nuclei (blazars, radio galaxies), starburst
galaxies, gamma-ray bursts, diffuse radiation
— astronomy: characterization, population studies

@ what underlying physics can we probe?
most extreme physics laboratories of the cosmos:
plasma instabilities, particle acceleration, magnetic fields
— plasma physics, high-energy astrophysics

@ what (fundamental) physics can we hope to learn?
galaxy formation, dark matter, structure of space time
— structure formation, cosmology, particle physics
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The gamma-ray sky at GeV-to-TeV energies

GeV: all-sky survey by Fermi TeV: Cerenkov telescope observations

NASA/DOE/Fermi LAT Collaboration H.E.S.S./MAGIC/VERITAS

@ dramatic increase in number of sources and phenomena:

e huge discovery potential for high-energy astrophysics
e wonderful playground for creative theoreticians

@ GeV and TeV observations provide complementary views with
different strengths and weaknesses (homogeneous vs. biased ..
selection functions, “average” vs. extreme energies) ,XJH”S
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Gamma-ray emission induced by cosmic rays

Complementary information to cosmic rays: gamma rays point back to origin

hadronic processes: leptonic processes:
@ pion decay: @ inverse Compton:
0 * *
. T — vy e +v—e+vy
prion—{ 7 = oLLg,
@ photo-meson production: @ synchrotron radiation:
O * *
R ™ = gy e“+B—e+B+y
@ Bethe-Heitler pair production: @ bremsstrahlung:
P+y—p+e +e” e* +ion — e +ion + y*
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A sketch of the nonthermal emission

Example
Looking through the Galaxy

Starlight towards a supernova remnant
Dust

Bremsstrahlung
Pion-decay
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AGN physics and cosmology Physics
Feedback heating
Structure of space time

The physics and cosmology of active galactic nuclei

relativistic jet” ‘

accretion disk

dusty torus ‘

super—massive
black hole
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AGN physics and cosmology Physics
Feedback heating
Structure of space time

The physics and cosmology of active galactic nuclei

relativistic jet” ‘

accretion disk

dusty torus ‘

super—massive
black hole

Blazar: jet aligned with Iine—of—sigh i
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AGN physics and cosmology Physics
Feedback heating
Structure of space time

Active galactic nuclei

@ active galactic nuclei (AGN)

e compact region at the center of a galaxy, which dominates
the luminosity of its electromagnetic spectrum

o AGN emission is caused by mass accretion onto a
supermassive black hole — launching of relativistic jets

("]

e jet momentum pushes ambient plasma around
— AGN feedback prevents cooling catastrophe in cores of
galaxy clusters and mitigates star formation in ellipticals

@ example: Cen A (3.7 Mpc)
“AGN under the microscope”

e GeV emission from giant radio
lobes (Fermi)

e TeV emission from
nucleus/inner jet (H.E.S.S.)
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@ current paradigm for emission:

synchrotron self Compton
external Compton
proton-induced cascades
proton synchrotron

Proton-induced
cascade

@ open questions:
o energetics

nverse-Compton

) scattering @ mechanisms for jet

. formation and collimation

@ plasma composition
(leptonic vs. hadronic,
1-zone vs. spine-layer)

@ acceleration mechanisms

@ TeV “flares” may sign instabilities in the accretion of matter onto <
the central supermassive black hole ><]Hns
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AGN physics and cosmology Physics
Feedback heating
Structure of space time

Feedback heating: M87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000) v = 140 MHz (LOFAR/de Gasperin+ 2012)
@ high-v: freshly accelerated CR electrons

low-v:
@ LOFAR: same picture — puzzle of “missing fossil electrons”

@ solution: electrons are fully mixed with the dense cluster gas -
and cooled through Coulomb interactions /><JH.TS
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AGN physics and cosmology Physics

Feedback heating
Structure of space time

The gamma-ray picture of M87

@ high state is time variable
— jet emission

! ' ! Radio
1000 4
HST W]
Chandra &
@ low state: 4|

(1) Steady flux " HESS. hgh
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(3) spatial extension is under "
investigation (9) Rieger & Aharonian (2012)

— confirming this triad would be smoking gun for first v-ray
signal from a galaxy cluster!
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AGN physics and cosmology Physics
Feedback heating
Structure of space time

AGN feedback = cosmic ray heating (?)

hypothesis: low state y-ray emission traces 7° decay within cluster

10%

@ cosmic rays excite Alfvén
waves that dissipate the . radia extent ofradio hlo:
energy — heating rate

1081 B

Her = —Va- VFPcr

C,H [ergem3s7Y]

=
e

@ calibrate PR to y-ray
emission and v, to radio s —— et rae |
and X-ray emission i

1 10 100
radius [kpc]

C.P. (2013)

— cosmic-ray heating matches radiative cooling (observed in X-rays)

and may solve the famous “cooling flow problem” in galaxy clusters! /‘jxj
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AGN physics and cosmology

F b heating
Structure of space time

Probing the structure of space-time with gamma rays
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AGN physics and cosmology Physics
Feedback heating
Structure of space time

Probing the structure of space-time: idea

@ does quantum gravity make space-time ‘foamy’
or discrete at the Planck scale?

b= h/(mpc), p = h/(mpcz), mp = \/hC/G

@ this does not happen in string theory, but in
other approaches like loop quantum gravity

@ preserving the O(3) subgroup of SO(3,1), we
parametrize the new dispersion rel. for photons

c?p? = E2(1 + €E/Eqg + nE?/E3g + - . .)
@ assuming the Hamiltonian equ. of motions x; = 9H/dp;, we get
v=0E/op=c(1 —EE/Eqc+...) = At=E(E/Eqcl/c

— we can test this energy-dependent time delay by studying the \
propagation of high-energy gamma ray pulses (ameiino-camelia+ 1998) /><JH.TS
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AGN physics and cosmology Physics
Feedback heating
Structure of space time

Quantum gravity constraints with gamma-ray bursts

@ expected time delay for
EQG ~ Ep = 10'% GeV and

GeV pulse structure
E L
At=~10ms —— —
GeV Gpc . i
@ idea: use pulses from gamma-ray - b o

bursts or blazar flares

@ assuming anomalous photon
dispersion dominated by the linear ;
term yields the constraint (asdo+ 2009) ¢ -
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...set mainly by the early arrival £ .-, ¥ l | . Ry
time of the 31 GeV photon! 8 B ||”U . XJ

‘Time since GBM trigger (10 May 2009, 00:22:59.97 uT) (5) HITS
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Physics
Feedback heating
Structure of space time

AGN physics and cosmology

Quantum gravity constraints with blazar flares

107
200 - 800 GeV M
= °f YL " E
P W M Y 9“}0 i3 ]
é‘ " ‘0" “ ®
‘ “.. L J V
10° .F.” l'..'
a2 ¢ + +l l PKS 2155-304 7
—onsl + H.E.S.S.: July, 28 2006 1
++# ft i 3 ]
0.05 2l
OU éb‘ 20 ’ 80;)} Gev 60 éﬁi‘ﬂgﬁéi‘g—m%
t [min]

— Nno observable time delay between low and high energy photons!
— constraints on energy-dependent violation of Lorentz invariance:
Eqg > 2.1 x 108 GeV (90% CL limit)
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Propagation of + rays through intergalactic space

i e

e ” oo : »
* Tustris si#jutag:ri,",\i%elsbergem (2014)
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Observational gamma-ray cosmology

Annihilation and pair production

o TeV blazar
< —-IW/ W ==
W

extragalactic backgroud
light (infrared, eV)

%J HITS

Gamma-ray Astronomy



Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Observational gamma-ray cosmology

Annihilation and pair production

Vs = \/2EEgpL(1 — cos ) > 2m,c?

e TeV blazar
<I e" W <_\/\/\/\ W >.<

extragalactic backgroud
light (infrared, eV)

Ayy ~ (35...700) Mpc for z=1...0
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

The Fermi gamma-ray horizon

I . B @ staking of 150 significantly
! detected BL Lac blazars
] @ absorption feature moves to
oL 1 lower E for higher source
. L redshifts (propagation
| j'\\.\\\ distances) due to attenuation
£ ol L of gamma rays by EBL
| oaocos ] @ UV(> 5eV) EBL intensity:
‘ ‘ 3(+=1)NWm2srtatz ~ 1
1 0.5<z<16 ‘ \\\.\ 7
N Energy 1C?97V] N
Ackermann+ (2012) /X\Juns
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Extragalactic background light

Unique probe of the integrated star formation rate

100.0

T T TTTTT
Lo

observational

I ’ 7.\\\\\;“Lower/wp]:er bounds /ge
10.0 7N \ /’

T T T T

Franceschini et al. (2007)

vI,(A) (nW m™ sr™)

H
b Mazin & Raue 2010 "
I Stecker et al. 2006 =
[ Gilmore et al. 2011 it
0.1 L el | R i\ M R
0.1 1.0 10.0 100.0 1000

Dwek & Krennrich (2012) , /XJHITS
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itragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Annihilation and pair production

Vs = \/2EEgpL(1 — cos0) > 2m,c?
o TeV blazar
T——_
< -

extragalactic backgroud
light (infrared, eV)

Ay ~ (35...700) Mpc for z=1...0
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[SUELELE background light
Propagation of gamma rays Intergalacti gnetic fields?
Plasma physics

Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0

— each TeV point source should also be a GeV point source!
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray

halo
Lot 7 MU I B ——"\‘ s
N ey { .|
102 ‘f}“ l E
expected cascade EI'T 9 ~TeV detections

1ES 0347-121

emission

10-12

1 intrinsic spectra

cm?s,

EF; [erg/:

-1
10 1ES 1101-232

................. 2 I‘I\ il ’

103 10° 1010 1011 1012 1013 \\' '/v
. ]
Neronov & Vovk (2010) HITS
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo — not seen!

10-11

E 1ES 0229+200 S,
N i » P \‘
L \
10-1% 7 h'}v-l ll :
expected cascade | Vil LT ~TeV detections
emission Lot W e
E 1ES 0347-121 E| . . .
& § 4 intrinsic spectra
Sy Z ]
S0 S
=
Fermi
constraints 1071

My l‘l\ Ll ’

108 10® 101c 1011 1012 1012 NV
E [eV] ,XJ
Neronov & Vovk (2010) HITS
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[SUELELE background light
Propagation of gamma rays Intergalacti gnetic fields?
Plasma physics

Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0

.><‘/\J HITS




itragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Magnetic field deflection

- TeV blazar

e
Wﬂ/\/\ﬁ

extragalactic backgroud
light (infrared, eV)
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Magnetic field deflection

- TeV blazar

‘\NV\>.<

=

extragalactic backgroud
light (infrared, eV)

« GeV point source diluted — weak "pair halo"

« stronger B-field implies more deflection and dilution,
gamma-ray non-detection — B > 1076 G - primordial fields?

%J HITS
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Magnetic field deflection

- TeV blazar
W T—e—_
W

extragalactic backgroud
light (infrared, eV)

« problem for unified AGN model: no increase in comoving blazar
density with redshift allowed (as seen in other AGNSs) since other—
wise, extragalactic GeV background would be overproduced!

%J HITS
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itragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

What else could happen?

o TeV blazar
< e VUV m ‘\NV\ ——

extragalactic backgroud
light (infrared, eV)
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Plasma instabilities

< (= =i =
—

— pair plasma beam propagating
through the intergalactic medium
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alactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Plasma instabilities

@ pair beam intergalactic medium (IGM)
et e” ~< B
_ > p, e
et e ~< B
_ p, e
et.e T
> p, e

@ this configuration is unstable to plasma instabilities

@ characteristic frequency and length scale of the problem:

4me?n c
wp =1 —y Ap= — ~10%8cm

Me “raz-0) P
HITS
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ initially homogeneous beam-e—:
attractive (repulsive) force by potential maxima (minima)

@ ¢ attain lowest velocity in potential minima — bunching up
@ e* attain lowest velocity in potential maxima — bunching up

D

e, e

0]

e e~ ,kXJH.Ts
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ beam-et /e~ couple in phase with the background perturbation:
enhances background potential

@ stronger forces on beam-e* /e~ — positive feedback
@ exponential wave-growth — instability

D

e e~ ,kXJH.Ts
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> ctic background light
Propagation of gamma rays gnetic fields?
Plasma physics

Two-stream instability: momentum transfer

flvy 4
/ Vv,
g ‘.,
; , [
\\.__ l Il
‘-\-. ! —
— 9
0 T v
Vo

@ particles with v 2 Vphase:
pair momentum — plasma waves — growing modes: instability

@ particles with v < Vphase:
plasma wave momentum — pairs — Landau damping /><JH.TS
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> ound light
Propagation of gamma rays g agnetic fields?
Plasma physics

Oblique instability

@ k oblique to vpeam: real word perturbations don’t choose “easy”
alignment = ) all orientations

@ oblique grows faster than two-stream: E-fields can easier deflect

ultra-relativistic particles than change their parallel velocities
(Nakar, Bret & Milosavljevic 2011)

—— Boam flow #

k//c/u)p

Beam

‘ 4
< AN A RO
Bret (2009), Bret+ (2010) ><JHITS
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Beam physics — growth rates

excluded for collective o @ consider a Iight beam
plasma phenomena

104 1\@ 108 107 penetrating into

; T ||m||‘ T HHII‘ TT H\HI‘ T ng 1 relat|ve|y dense plasma
—~ FZ= - 2
110 E {0 S @ maximum growth rate
:? 10?2 ;’ £ 0% Ny
E = 2 eam
2 10 b 110 L M~0.4~ wp
= ERN- Mam
o0 E - 102 o=
g 10 g E 5 . . -
E Z < 10 — @ oblique instability beats
3 10°F S I 2 inverse Compton
10-8 C vl ol et 1 COOllng by faCtOr 10'100
102 10' 1 10 102 _ 3
E (TeV) @ assume that instability
grows at linear rate up
Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012) to saturation N\ J
NHITS
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts

additional IGM heating has significant implications for ...
@ thermal history of the IGM: Lyman-« forest

@ late time structure formation: dwarf galaxies, galaxy clusters \,'XJH”S
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Extragalactic background light
Propagation of gamma rays Intergalactic magnetic fields?
Plasma physics

Extragalactic gamma-ray background

= T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTTH

L Dominated by Abdo et al. (2010) 4
/T\ soft sources Ackermann et al. (in prep.)
7 100 % =
@ L P unabsorbed ]
© [ ii S absorbed by ]
T "~ ~ _pair production " 1
1%} L ~a 4
> - o~
[5} N
5 10-* | absorbed, after subtracting AN =
=) [ the resolved hard blazars, z < 0.3 \ q
C L ]
S N
=5 L \
w \

\
M [ \
\
1075 L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \\HHH
102 10! 1 10 102 103 10%
E (GeV) Broderick, C.P.+ (2014)

— evolving population of hard blazars provides excellent match to o
latest EGRB by Fermifor E 2 3 GeV oo
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AGN physics and cosmology Particle acceleration
Propagation of gamma rays Galaxy formation
Supernova remnants Starburst galaxies

Supernova remnants probe acceleration physics

How galactic gamma-ray astronomy informs high-energy astrophysics and
cosmological structure formation

Supermova femhant SN1006

+

o

starburst galaxy M82

X-ray-NASAJradio:NRAO/opticalNOAG: . '+ *
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Particle acceleration
Galaxy formation
Supernova remnants Starburst galaxies

Supernova remnants probe acceleration physics

@ high Mach number SNR shocks amplify magnetic fields and
accelerate CR electrons up to ~ 100 TeV (Chandra X-ray
synchrotron observations)

<]
(Fermi/AGILE ~-ray spectra)

@ shell-type SNRs show evidence for efficient shock acceleration
beyond ~ 100 TeV (HESS TeV ~4-ray observations)

Fermi observations of W44: HESS observations of shell-type SNRs:

3
T

E? dN/dE (erg cm®s™)
3
T

3
T

RCW 86 RX J1713.7-3946 RX J0852.0-4622 v
Hinton (2009) ,XJ

L
ot 102

! Energy‘?ev)
Ackermann+ (2013)
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Particle acceleration
Galaxy formation
Supernova remnants Starburst galaxies

Physics of galaxy formation

@ galactic supernova remnants
drive shock waves,
accelerate electrons,
amplify magnetic fields

supernova Cassiopeia A

X-ray: NASA/CXC/SAQ; Optical: NASA/STScl;
Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.

a
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Particle acceleration
Galaxy formation
Supernova remnants Starburst galaxies

Physics of galaxy formation

@ galactic supernova remnants
drive shock waves,
accelerate electrons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

@ critical for understanding the
physics of galaxy formation
— explains puzzle of low star

super wind in M82 formation efficiency in dwarf

galaxies

NASA/JPL-Caltech/STScl/CXC/UofA

HITS
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Particle acceleration
Galaxy formation
Supernova remnants Starburst galaxies

Physics of galaxy formation

@ galactic supernova remnants
drive shock waves,
accelerate electrons,
amplify magnetic fields

@ star formation and supernovae
drive gas out of galaxies by
galactic super winds

@ critical for understanding the
physics of galaxy formation
— explains puzzle of low star

. i formation efficiency in dwarf

“1 TWINK. 40U SHOULD BE MORE EXPLICIT .

HERE ™ STEP TNO.S galaxies

P ——

Sydney Harris X :
© Sy Y >\J
HITS
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Supernova remnants

Particle acceleration
Galaxy formation
Starburst galaxies

Cosmic ray-driven winds

2 [A" 1 kpe]

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA

@ toy model: cosmic rays successfully launch and energize super
winds that expel a large fraction of gas from the halo

20 T =
.... \:$rr~::1~~.5 =
ttttt \ | g . t=382n" Cyr| =
----- AU a - . .. §"

10 "t '\\ V J
..“‘\ - -~ . .
DRI [ ]

- - - - N O
07,-<</" v o v v P 45
N
I o S e
R

R 20 IR q
,,,,, // Now e e
..... v/ -, . . . . .
,,,,, ,/?v/:SOkmsﬁ 4

_20 1 h
-20 -10 0 10 20

z [ kpe]

galaxy simulation, 10'% M,

Uhlig, C.P+ (2012)
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AGN physics and cosmology Particle acceleration
Propagation of gamma rays Galaxy formation

Supernova remnants Starburst galaxies

Starburst galaxies

Declination [deg]

g VERITAS: M82
M82 i
R
N
Both:
D ~3 Mpc al @
SFR = SFR in MW et
(in a compact region) O e Ascansion {Dotros )

Fy~10" ergcm?®s™ ')

&
]

-26:

H.E.S.S.

NGC 253 20

0
\ .,
-40

00h48m

. L .
00hd6m

NGC 253

Right Ascension
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Particle acceleration
Galaxy formation
Supernova remnants Starburst galaxies

Cosmic rays and star formation

the picture: star formation — supernova remnants — proton
acceleration — pion decay gamma rays induced by p-p interactions

@ dense material in starburst region

(n) ~ 250 cm~3

tpp ~ lesc

approaching the calorimetric limit
large NT bremsstrahlung and B:
efficient electron emission

@ far-IR - radio correlation

e implies universal conversion:
star form. — CR — synchrotron
@ now:
far-IR — gamma-ray correlation

ph Pfrommer Gamma-ray Astrol



Particle acceleration
Galaxy formation

Supernova remnants Starburst galaxies

Far infra-red — gamma-ray correlation

Universal conversion: star formation — cosmic rays — gamma rays
SFR (Moyr'1)
10" 1 10 10?

10%

10%

-
Q
i

10%

e

o
W
©

Lo1-100 qev (€79 S7)

Y

o
W
o

10%

102

10°

[T
o LAT Non-detected (Upper Limit)
O LAT Non-detected with AGN (Upper Limit)
® LAT Detected oo
= LAT Detected with AGN
— Best-fit
[ Fit Uncertainty © onec2
[ Dispersion O
= =« Calorimetric Limit 0 ®
(Eyn= 10% erg)

LA LAl B 1) R L) I I A1)

T

ol ol vl 1l

T

Ll

102 10° 10" 10" 10"

L5-1000 um (L@)

Ackermann+ (2012)

\’.X:/\JHITS

ristoph Pfromm Gamma-ray Astronom:



Particle acceleration
Galaxy formation
Supernova remnants Starburst galaxies

Conclusions

@ the non-thermal universe uncovered by high-energy radiation
provides new probes of fundamental physics and cosmology

@ radio and X-ray astronomy have provided impressive discoveries
of new phenomena;

@ this is the right time to put v-ray astronomy on the global
observatory map — the Cherenkov Telescope Array

— non-thermal multi-messenger analyses:

“The only true voyage of discovery would be not to visit new
landscapes but to possess other eyes and to behold the universe
through the eyes of another, of a hundred others.”

Marcel Proust xj
/ HITS
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