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Introduction Puzzles in galaxy formation
Galaxy formation paradigm

Cosmic ray population

Puzzles in galaxy formation
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Introduction Puzzles in galaxy formation
Galaxy formation paradigm
Cosmic ray population

Stellar feedback

@ thermal pressure provided by
supernovae or active galactic
nuclei?

@ radiation pressure and
photoionization by massive
stars and quasars?

@ pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA
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Introduction Puzzles in galaxy formation
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Galactic cosmic ray spectrum
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Galactic cosmic ray spectrum

10" Cosmic Ray @ spans more than 33 decades in
o energy spectrum .
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Introduction z galaxy formation
formation paradigm
Cosmic ray population

Review on cosmic ray feedback

The Astronomy and Astrophysics Review manuscript No.
(will be inserted by the editor)

Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration,
transport, observables, and dynamical impact of cosmic rays

Mateusz Ruszkowski'>*, Christoph Pfrommer>*
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy: gyro-orbit of GeV CR:
1
Iyal ~ 104 C = pL ~ -6 ~ —
0al p Ior eB.o 107° pc ) AU
= need to develop a fluid theory for a collisionless,
non-Maxwellian component! _E
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019) TAIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
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Interactions of CRs and magnetic fields

Cosmic ray
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F. = qicB
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F, = qicB
@ Lorentz force depends on relative phase of CR gyro orbit and wave: —=

@ sketch: decelerating Lorentz force along CR orbit — p; decreases
@ phase shift by 180°: accelerating Lorentz force — p; increases AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase

=

AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase

BN
@ this increases the CR pitch angle cosine = cos6 = % . % E
AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

=
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

_p.c
LH =TI qB
=N
@ gyro resonance: w—Kv =nQ= n% E

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency ~ AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

_p.c
LH =TI qB
=N
@ gyro resonance: w—Kv =nQ= n% ﬁ

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency ~ AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Cosmic ray streaming and diffusion

@ CR streaming InStablllty' Kulsrud & Pearce 1969

@ if vgr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

=

AIP
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CR hydrodynamics

Cosmic ray streaming and diffusion

@ CR streaming InStablllty' Kulsrud & Pearce 1969

@ if vgr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Cosmic ray streaming and diffusion

@ CR streaming InStablllty' Kulsrud & Pearce 1969

@ if vgr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas
— CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling — CR stream with waves E

strong wave damping: less waves to scatter — CR diffusion prevails
AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Modes of CR propagation

advection
“AAr
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Modes of CR propagation

advection diffusion
T
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Cosmic ray transport

Modes of CR propagation

Wave-particle interactions
CR driven instabilities
CR hydrodynamics

advection diffusion streaming 0
g T - N .
0.8
0.6 2
0.4
s —— — — 0.0
Vadvl 2kt Vat

Christoph Pfrommer

Thomas, CP, EnBlin (2020)
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

=

AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, ¢ and f/c?

0 bb
Cor +Vfy =—wy o — - [fcr - Wi(&:r + Pcr)] — V* Giorentz+Se

ot 3K+

1 of; bb
? a(t:r + V. Pcr - - ﬁ * [fcr - Wi(Ecr + Pcr)] - gLorentz +Sf

Alfvén wave velocity in lab frame: wy = v + v,, CR pressure tensor
P.. = P 1, CR scattering frequency 7. = ¢?/(3k4)

=

AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, ¢ and f/c?

0 bb
Cor +Vfy =—wy o — - [fcr - Wi(&:r + Pcr)] — V* Giorentz+Se

ot 3K+

1 of; bb
? a(t:r + V. Pcr - - ﬁ * [fcr - Wi(Ecr + Pcr)] - gLorentz +Sf

Alfvén wave velocity in lab frame: wy = v + v,, CR pressure tensor
P.. = P 1, CR scattering frequency 7. = ¢?/(3k4)

@ lab-frame equ’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas 1984, Lowrie+ 1999):

g—i-i—v-f:—asv-[f—v-(a1+P)]+Sa
1 of N
2 TV P=-0s [f-v-(1+P)]+5v E

AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, ¢ and f/c?

0 bb
Cor +Vfy =—wy o — - [fcr - Wi(&:r + Pcr)] — V* Giorentz+Se

ot 3K+

1 of; bb
? a(t:r + V. Pcr - - ﬁ * [fcr - Wi(Ecr + Pcr)] - gLorentz +Sf

Alfvén wave velocity in lab frame: wy = v + v,, CR pressure tensor
P.. = P 1, CR scattering frequency 7. = ¢?/(3k4)

@ lab-frame equ’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas 1984, Lowrie+ 1999):

g—i-i—v-f:—asv-[f—v-(a1+P)]+Sa
1 of N
2 TV P=-0s [f-v-(1+P)]+5v E

@ problem: CR lab-frame equation requires resolving rapid gyrokinetics! AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

CR vs. radiation hydrodynamics

@ capitalize on analogies of CR and radiation hydrodynamics (Jiang & oh 2018)
derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

@ lab-frame equ’s for CR energy and momentum density, o and f/c?

0 bb
Cor +Vfy =—wy  — - [fcr - Wi(&:r + Pcr)] — V* Giorentz+Se

ot 3K+

1 of; bb
? a(t:r + V. Pcr - - ﬁ * [fcr - Wi(Ecr + Pcr)] - gLorentz +Sf

Alfvén wave velocity in lab frame: wy = v + v,, CR pressure tensor
P.. = P 1, CR scattering frequency 7. = ¢?/(3k4)

@ lab-frame equ’s for radiation energy and momentum density, ¢ and f/c?
(Mihalas & Mihalas 1984, Lowrie+ 1999):

g—i-i—v-f:—asv-[f—v-(a1+P)]+Sa
1 of N
2 TV P=—0s [f-v-(1+P)]+5v E

@ solution: transform in comoving frame and project out gyrokinetics! AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities
CR hydrodynamics

Alfvén-wave regulated CR transport

@ comoving equ’s for CR energy and momentum density (along B), eq
and f,/c?, and Alfvén-wave energy densities ¢, - (Thomas & CP 2019)

Ocer
ot

+V. [V(50r+Pcr)+bfcr] =v-VPy

Va
- m [fcr - Vd(€CI' + Pcr)] + [fcr + Va(Ecr + Pcr)]

dfy/C?
ot

V. (Vfcr/&) +b-VPy=—(b-VV)- (bfy/c?)

1
— 3 [fcr Va(Ecr + Pcr)] 3 [fcr + Va(Ecr + Pcr)]
+

0€a, +

at + V : [V(E‘d,i + Pﬂ,:t) + VabEa,j:] =V. VPayj:

e

Va

+ gl F e+ Po)] = St -]
AIP
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Wave-particle interactions

Cosmic ray transport CR driven instabilities
CR hydrodynamics

CR interactions with Alfvén waves

acceleration
+ energy transfer

—
\ .
CRs —— Alfvén waves
are ... fast _— are ... slow
will ... lose energy will ... gain energy

—

L}

slide concept Thomas ~ AIP
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Wave-particle interactions

Cosmic ray transport CR driven instabilities
CR hydrodynamics

CR interactions with Alfvén waves

acceleration
+ energy transfer

Alfvén waves

——
I

are ... fast _— are ... slow

will ... lose energy will ... gain energy

v

a

slide concept Thomas ~ AIP
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Wave-particle interactions
Cosmic ray transport CR driven instabilities

CR hydrodynamics

Non-equilibrium CR streaming and diffusion

Coupling the evolution of CR and Alfvén wave energy densities
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Wave-particle interactions

Cosmic ray transport CR driven instabilities
CR hydrodynamics

Non-equilibrium CR streaming and diffusion

Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

1. Galaxy simulations with cosmic ray feedback

Thomas, CP, Pakmor (2023)

Cosmic ray-driven galactic winds: transport modes of cosmic rays
and Alfvén-wave dark regions

MHD + Alfvén wave regulated CR hydrodynamics: 10'' M, halo AIP

N
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

CR interactions with Alfvén waves

acceleration
+ energy transfer

—
A

CRs ——

are ... fast _—
will ... lose energy

—

Alfvén waves

I
are ... slow
will ... gain energy

L}

slide concept Thomas ~ AIP
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Cosmic ray driven winds
Galactic magnetic dynamo

Cosmic rays in galaxy formation Cosmological galaxy formation

Wind launching
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Thomas, CP, Pakmor (2023)




Cosmic ray driven winds
Galactic magnetic dynamo

Cosmic rays in galaxy formation Cosmological galaxy formation

Magnetic field topology

Thomas, CP, Pakmor (2023) AIP
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

Wind launching
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Thomas, CP, Pakmor (2023)




Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

Wind launching

800

700
— 600
Z 500
400

300
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Thomas, CP, Pakmor (2023)




Cosmic ray driven winds
Galactic magnetic dynamo

Cosmic rays in galaxy formation Cosmological galaxy formation

Wind launching

800

700

£ 400

velocitie

200

Pamag,pressure = —VBZ/Q
P8mag,tension = + (B-V)B

100

ignoring toroidal field
components:

P8mag,pressure,z = *(asz)Bz
Pamag,tension,z = +Bz(02Bz)

0 1 2 3 0 1 2 3 E

2] [kpe] 2| [kpe

Thomas, CP, Pakmor (2023)
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

Wind properties

Gas density p [m, cm™3] CR energy density = [erg pc?]  Alfvén wave energy density

10 107! 10" 10% 104 10% 10%
—

Temperature [K velocity v, [km s7] CR = velocity v . [km s7]
10* 10 10° —10°-10°-10'=10° 0 10° 10" 10 10° —10°-10*-10"—10" 0 10" 10" 10?

Thomas, CP, Pakmor (2023)
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

What is the origin of the Alfvén wave dark regions?

Alfvén wave energy density [erg pe™?]

10103 10% 100 107 10% 10%

0.8
<
= 0.6
0.4
0.2 E
10 5 0 5 10 e
arc length [kpe| AIP

Thomas, CP, Pakmor (2023)
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

What is the origin of the Alfvén wave dark regions?

Alfvén wave energy density [erg pe™?]

10103 10% 100 107 10% 10%

CRs faster than AWs
AWs gain energy

0.8
<
= 0.6
0.4
0.2 E
10 5 0 5 10 e
arc length [kpe| AIP

Thomas, CP, Pakmor (2023)
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Cosmic ray driven winds
Galactic magnetic dynamo

Cosmic rays in galaxy formation Cosmological galaxy formation

What is the origin of the Alfvén wave dark regions?

Alfvén wave energy density [erg pe™?]

10103 10% 100 107 10% 10%

CRs faster than AWs
AWs gain energy

0.8
K
£ 0.6
04 CRs slower than AWs
02 AWs lose energy E
10 5 0 5 10 —_—
arc length [kpe| AIP

Thomas, CP, Pakmor (2023)
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Cosmic ray driven winds

Cosmic rays in galaxy formation

Parallel CR diffusion coefficient

CR energy per pixel [erg]
1047 10% 10% 109 105" 1072 10% 1054

10771076107°10-*107310210" 10°
p [m, em™?

1077107510-°10*107310"210~1 10° 10!

0% 109 10% 10" 10%
B [uG]

ecr [erg pe)
Thomas, CP, Pakmor (2023)

a

@ The CR diffusion coefficient is not constant but strongly depends on environment!
AIP
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Cosmic ray driven winds
Galactic magnetic dynamo

Cosmic rays in galaxy formation Cosmological galaxy formation

Origin and growth of magnetic fields

The general picture:
@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

=

AIP
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase . ’

- stretch
transition in the early universe or 2. by
the Biermann battery

@ Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which Tmerge
the kinetic (turbulent) energy is

converted into magnetic energy: the

mechanism relies on magnetic fields to D<‘ )
become stronger when the field lines are fold

stretched N

=

AIP
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

Origin and growth of magnetic fields

The general picture:

@ Origin. Magnetic fields are generated by
1. electric currents sourced by a phase m
transition in the early universe or 2. by
the Biermann battery
@ Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which Tmerge twistl
the kinetic (turbulent) energy is

become stronger when the field lines are
stretched

@ Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions

converted into magnetic energy: the
mechanism relies on magnetic fields to D<‘ )
fold

=

AIP
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

2. Galactic magnetic dynamo

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared—radio correlation

MHD + cosmic ray advection + diffusion: {10'°,10"",3 x 10"",10"?} Mg AIP

=)
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

Time evolution of SFR and energy densities

T T T T
10 A --+ CRadv — M =10"M, ]
— CRdiff Mo = 10" Mo
Magy = 10" M, )
T T —
=S £
° 5
° s 1077 |
=) 5 :
= g
]0:” = — (sn) — Mo =10"M; 7§
1077 - (Ea) Moy = 10" Mo 3
10720 - s (eB) — Mg = 10"M; 4
I I I I I 102! £ I I I I I
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 20 25 3.0
time [Gyr] time [Gyr]

CP+ (2022)

@ cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

I}
@ magnetic growth faster in Milky Way galaxies than in dwarfs -
AIP
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays in galaxy formation Cosmological galaxy formation

|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)
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|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)
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|dentifying different growth phases
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@ 75 phase: adiabatic growth with B o p?/3 (isotropic collapse)

@ 2" phase: with small
dynamical times tyyn ~ (Gp)~'/2 _E

@ 3 phase: growth migrates to lower p on larger scales o« p~'/2 D
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108

@ 1% phase: adiabatic growth (independent of resolution)
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Studying growth rate with numerical resolution
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@ faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N > 108

@ 1% phase: adiabatic growth (independent of resolution)
@ 2" phase: E
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Exponential field growth in kinematic regime
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@ corrugated accretion shock dissipates kinetic energy from E
gravitational infall, injects vorticity that decays into turbulence, =
and drives a small-scale dynamo AIP
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Dynamo saturation on small scales while A\g increases
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@ supersonic velocity shear between the rotationally supported E
cool disk and hotter CGM: excitation of Kelvin-Helmholtz body = =
modes that interact and drive a small-scale dynamo AIP
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Kinetic and magnetic power spectra

Fluctuating small-scale dynamo in different analysis regions
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@ Ep(k) superposition of form factor and turbulent spectrum E
@ pure turbulent spectrum outside steep central B profile AIP
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3. Cosmological galaxy formation
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Cosmic rays in cosmological galaxy simulations

The galaxy formation model
@ primordial and metal line cooling
sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM
cold dense gas stabilised by pressurised ISM

thermal and kinetic energy from supernovae modelled
by isotropic wind — launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10~ 0 G seeded at z = 128

Simulation suite (Buck, cP+ 2020)

@ 2 galaxies, baryons with 5 x 10* Mg ~ 5 x 10°
resolution elements in halo, 2 x 10° star particles

@ 4 models with different CR physics for each galaxy:
no CRs

CR advection

+ CR anisotropic diffusion

+ CR Alfvén wave cooling

AIP

The Auriga Project Grand+ (2017
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Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport changes disk sizes
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Auriga MHD models: CR transport modifies the circum-galactic medium
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Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:
@ moment expansion similar to radiation hydrodynamics

° and
coupled to magneto-hydrodynamics

@ Diffusion coefficient emerges from CR-wave interactions

=

AIP
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Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:
@ moment expansion similar to radiation hydrodynamics

° and
coupled to magneto-hydrodynamics

@ Diffusion coefficient emerges from CR-wave interactions

CRs and magnetic fields in galaxy formation:

@ small-scale dynamo grows magnetic field to equipartition with
turbulent energy density

@ CR feedback drives galactic winds & slows down star formation
@ CRs modify galaxy disk sizes and the circumgalactic medium E

AIP
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