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Stellar feedback

super wind in M82
NASA/JPL-Caltech/STScI/CXC/UofA

thermal pressure provided by
supernovae or active galactic
nuclei?

radiation pressure and
photoionization by massive
stars and quasars?

pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?
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Galactic cosmic ray spectrum

data compiled by Swordy

spans more than 33 decades in
flux and 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin

energy density of cosmic rays,
magnetic fields, and turbulence
in the interstellar gas all similar
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Review on cosmic ray feedback
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Wave-particle interactions
CR driven instabilities
CR hydrodynamics

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV CR:

rcr =
p⊥

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)
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electric fields vanish in the Alfvén wave frame: ∇× E = − 1
c

∂B
∂t

work out Lorentz forces on CRs in wave frame: FL = q v × B
c

Lorentz force depends on relative phase of CR gyro orbit and wave:

sketch: decelerating Lorentz force along CR orbit → p∥ decreases
phase shift by 180◦: accelerating Lorentz force → p∥ increases
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only electric fields can provide work on charged particles and
change their energy

in Alfvén wave frame, where E = 0, CR energy is conserved:
p2 = p2

∥ + p2
⊥ = const. so that decreasing p∥ causes p⊥ to increase

this increases the CR pitch angle cosine µ = cos θ = B
|B| · p

|p|
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CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

L∥ = rg =
p⊥c
qB

gyro resonance: ω − k∥v∥ = nΩ = n qB
γmic

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency
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Cosmic ray streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ va

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling → CR stream with waves
strong wave damping: less waves to scatter → CR diffusion prevails
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CR vs. radiation hydrodynamics
capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)

derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

lab-frame equ’s for CR energy and momentum density, εcr and fcr/c2

∂εcr

∂t
+∇ · fcr = −w± · bb

3κ±
· [fcr − w±(εcr + Pcr)]− v ·gLorentz+Sε

1
c2

∂fcr

∂t
+∇ · Pcr = − bb

3κ±
· [fcr − w±(εcr + Pcr)]− gLorentz +Sf

Alfvén wave velocity in lab frame: w± = v ± va, CR pressure tensor
Pcr = Pcr1, CR scattering frequency ν̄± = c2/(3κ±)

lab-frame equ’s for radiation energy and momentum density, ε and f/c2

(Mihalas & Mihalas 1984, Lowrie+ 1999):

∂ε

∂t
+∇ · f = −σsv · [f − v · (ε1 + P)] + Sa

1
c2

∂f
∂t

+∇ · P = −σs [f − v · (ε1 + P)] + Sav

problem: CR lab-frame equation requires resolving rapid gyrokinetics!
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Alfvén-wave regulated CR transport

comoving equ’s for CR energy and momentum density (along B), εcr

and fcr/c2, and Alfvén-wave energy densities εa,± (Thomas & CP 2019)

∂εcr

∂t
+∇ · [v(εcr + Pcr) + bfcr] = v · ∇Pcr

− va

3κ+
[fcr − va(εcr + Pcr)] +

va

3κ−
[fcr + va(εcr + Pcr)] ,

∂fcr/c2

∂t
+∇ ·

(
v fcr/c2

)
+ b · ∇Pcr = −(b · ∇v) · (bfcr/c2)

− 1
3κ+

[fcr − va(εcr + Pcr)]− 1
3κ−

[fcr + va(εcr + Pcr)] ,

∂εa,±
∂t

+∇ · [v(εa,± + Pa,±)± vabεa,±] = v · ∇Pa,±

± va

3κ±
[fcr ∓ va(εcr + Pcr)]− Sa,±.
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Non-equilibrium CR streaming and diffusion
Coupling the evolution of CR and Alfvén wave energy densities

Thomas & CP (2019)
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Non-equilibrium CR streaming and diffusion
Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Cosmic rays in galaxy formation

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmological galaxy formation

1. Galaxy simulations with cosmic ray feedback

Thomas, CP, Pakmor (2023)
Cosmic ray-driven galactic winds: transport modes of cosmic rays
and Alfvén-wave dark regions

MHD + Alfvén wave regulated CR hydrodynamics: 1011 M⊙ halo
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Magnetic field topology

Thomas, CP, Pakmor (2023)
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Wind properties

Thomas, CP, Pakmor (2023)
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What is the origin of the Alfvén wave dark regions?

Thomas, CP, Pakmor (2023)

CRs faster than AWs
AWs gain energy

CRs slower than AWs
AWs lose energy
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Parallel CR diffusion coefficient
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Thomas, CP, Pakmor (2023)

The CR diffusion coefficient is not constant but strongly depends on environment!
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Origin and growth of magnetic fields

The general picture:
Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which
the kinetic (turbulent) energy is
converted into magnetic energy: the
mechanism relies on magnetic fields to
become stronger when the field lines are
stretched

Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions
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2. Galactic magnetic dynamo

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared–radio correlation

MHD + cosmic ray advection + diffusion:
{

1010, 1011, 3 × 1011, 1012} M⊙
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Time evolution of SFR and energy densities
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CP+ (2022)

cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

energy budget in disks is dominated by CR pressure

magnetic growth faster in Milky Way galaxies than in dwarfs
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Identifying different growth phases
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CP+ (2022)

1st phase: adiabatic growth with B ∝ ρ2/3 (isotropic collapse)

2nd phase: additional growth at high density ρ with small
dynamical times tdyn ∼ (Gρ)−1/2

3rd phase: growth migrates to lower ρ on larger scales ∝ ρ−1/3
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Studying growth rate with numerical resolution
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CP+ (2022)

faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N ≳ 106

1st phase: adiabatic growth (independent of resolution)

2nd phase: small-scale dynamo with resolution-dep. growth rate

Γ = V
L Re1/2

num, Renum = L V
νnum

= 3L V
dcellvth

Christoph Pfrommer Cosmic Rays and Magnetic Fields in Galaxy Formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmological galaxy formation

Studying growth rate with numerical resolution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [Gyr]

10−21

10−20

10−19

10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

〈ε
B
〉[

er
g

cm
−3

]

N = 107

N = 106

N = 105

M200 = 1012 M�
M200 = 1011 M�
M200 = 1010 M�

0.0 0.2 0.4 0.6 0.8 1.0
time [Gyr]

10−21

10−20

10−19

10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

〈ε
B
〉[

er
g

cm
−3

]

N = 107

N = 106

N = 105

CP+ (2022)

faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N ≳ 106

1st phase: adiabatic growth (independent of resolution)

2nd phase: small-scale dynamo with resolution-dep. growth rate

Γ = V
L Re1/2

num, Renum = L V
νnum

= 3L V
dcellvth

Christoph Pfrommer Cosmic Rays and Magnetic Fields in Galaxy Formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmological galaxy formation

Studying growth rate with numerical resolution

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [Gyr]

10−21

10−20

10−19

10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

〈ε
B
〉[

er
g

cm
−3

]

N = 107

N = 106

N = 105

M200 = 1012 M�
M200 = 1011 M�
M200 = 1010 M�

0.0 0.2 0.4 0.6 0.8 1.0
time [Gyr]

10−21

10−20

10−19

10−18

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

〈ε
B
〉[

er
g

cm
−3

]

N = 107

N = 106

N = 105

CP+ (2022)

faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N ≳ 106

1st phase: adiabatic growth (independent of resolution)

2nd phase: small-scale dynamo with resolution-dep. growth rate

Γ = V
L Re1/2

num, Renum = L V
νnum

= 3L V
dcellvth

Christoph Pfrommer Cosmic Rays and Magnetic Fields in Galaxy Formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmological galaxy formation

Exponential field growth in kinematic regime
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CP+ (2022)

corrugated accretion shock dissipates kinetic energy from
gravitational infall, injects vorticity that decays into turbulence,
and drives a small-scale dynamo
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Dynamo saturation on small scales while λB increases
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CP+ (2022)

supersonic velocity shear between the rotationally supported
cool disk and hotter CGM: excitation of Kelvin-Helmholtz body
modes that interact and drive a small-scale dynamo
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Kinetic and magnetic power spectra
Fluctuating small-scale dynamo in different analysis regions
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EB(k) superposition of form factor and turbulent spectrum

pure turbulent spectrum outside steep central B profile
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3. Cosmological galaxy formation
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Cosmic rays in cosmological galaxy simulations
The galaxy formation model

primordial and metal line cooling

sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM

cold dense gas stabilised by pressurised ISM

thermal and kinetic energy from supernovae modelled
by isotropic wind – launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10−10 G seeded at z = 128

Simulation suite (Buck, CP+ 2020)

2 galaxies, baryons with 5 × 104 M⊙ ∼ 5 × 106

resolution elements in halo, 2 × 106 star particles

4 models with different CR physics for each galaxy:
no CRs
CR advection
+ CR anisotropic diffusion
+ CR Alfvén wave cooling

The Auriga Project Grand+ (2017)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport changes disk sizes
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Buck, CP, Pakmor, Grand, Springel (2020)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport modifies the circum-galactic medium
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Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

moment expansion similar to radiation hydrodynamics

novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

Diffusion coefficient emerges from CR-wave interactions

CRs and magnetic fields in galaxy formation:

small-scale dynamo grows magnetic field to equipartition with
turbulent energy density

CR feedback drives galactic winds & slows down star formation

CRs modify galaxy disk sizes and the circumgalactic medium
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CRs modify galaxy disk sizes and the circumgalactic medium
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