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The Hitchhiker’s Guide to ... Blazar Heating

@ Blazar Physics

e black holes and jets
e propagation ~y rays
e plasma physics

@ Cosmological Consequences

intergalactic magnetic fields
unification of blazars and AGN
gamma-ray background
thermal history of the Universe
Lyman-« forest

formation of dwarf galaxies
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Blazars Black hole jets
Propagating ~ rays
Plasma instabilities

Outline

Q Blazars

@ Black hole jets
@ Propagating v rays
@ Plasma instabilities
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Black hole jets - nearby

Centaurus A in X-rays: Messier 87 in the radio:
closest active galaxy with a closest active cluster galaxy in
super-massive black hole the Virgo cluster: My, ~ 6 x 10°
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Black hole jets - at cosmological distances

2 arcminutes
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Quasar 3C175: Giant radio galaxy B1545-321: »
1 million light years across relic radio plasma and new jet activity”
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Unified model of active galactic nuclei

relativistic jet” :

"

accretion disk

dusty torus ‘

super—massive
black hole
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Blazars

The blazar sequence

Black hole jets
Propagating ~ rays
Plasma instabilities

Log vL, [erg s-1]

10 15 20 R5
Log v [Hz]

Donato+ (2001)

ph Pfrommer

@ continuous sequence from
FSRQ-LBL-IBL—-HBL

@ TeV blazars (v > 10% Hz) are
dim: very sub-Eddington

@ TeV blazars have rising
energy spectra in the Fermi
band

@ define TeV blazar =
hard IBL + HBL
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The TeV gamma-ray sky

There are several classes of TeV sources:
@ Galactic - pulsars, BH binaries, supernova remnants

@ Extragalactic - mostly blazars, two starburst galaxies

VHEy-ray sources
VHE y-ray Sky Map s50° §
(E 100 GeV)

W Fst Spectum Radio Quasar

& Rado Galoy
Staburst galary

Pukar Wind Nebula
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Annihilation and pair production

o TeV blazar
< = W W\ =

extragalactic backgroud
light (infrared, eV)
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Annihilation and pair production

Vs = \/2EEgpL(1 — cos0) > 2m,c?
o TeV blazar
T——_
< -

extragalactic backgroud
light (infrared, eV)

Ay ~ (35...700) Mpc for z=1...0
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0

— each TeV point source should also be a GeV point source!
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Blazars

Black hole jets
Propagating -y rays
Plasma instabilities

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray

halo

10-11

10-12
expected cascade

emission

cm?s,

10-12

EF, [ere/

1011

10-2

1ES 0229+200

1ES 0347-121

1ES 1101-232
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e S

' {Illl

My l‘l\ Ll ’

108 10¢ 1010
E [eV]

1011 1012 1018

Neronov & Vovk (2010)

i~TeV detections

1 intrinsic spectra
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo — not seen!

10-11

E 1ES 0229+200 S,
N i » P \‘
L \
10712 - {Il ll e
expected cascade | Vil l LT ¥~TeV detections
emission w i
10-u O ]
E IES 0347-121 E R
& § 4 intrinsic spectra
Sy Z ]
S0 S
-
Fermi
constraints 1071

Ty ’

Yloe e o 1011 1012 10‘3 /\<I
E [eV] HITS

Neronov & Vovk (2010)
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0
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Propagating -y rays
Plasma instabilities

Magnetic field deflection

- TeV blazar
W T—e—_
W

extragalactic backgroud
light (infrared, eV)
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Blazars Black hole jets
Propagating -y rays
Plasma instabilities

Magnetic field deflection

- TeV blazar

‘\NV\>.<

=

extragalactic backgroud
light (infrared, eV)

« GeV point source diluted — weak "pair halo"

« stronger B-field implies more deflection and dilution,
gamma-ray non-detection — B > 1076 G - primordial fields?
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Blazars Black hole jets
Propagating -y rays
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Magnetic field deflection

- TeV blazar
W T—e—_
W

extragalactic backgroud
light (infrared, eV)

« problem for unified AGN model: blazars and quasars apparently do
not share the same cosmological evolution (as otherwise, evolving
blazars would overproduce the gamma-ray background)!
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What else could happen?

o TeV blazar
< = W W\ =

extragalactic backgroud
light (infrared, eV)
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Plasma beam instabilities

<

:>e' :;\\\ TeV blazar
— =W :ﬁﬂ/\/\/\ ———

— \
— pair plasma beam propagating
through the intergalactic medium
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Interlude: plasma physics

How do et /e~ beams propagate through the intergalactic medium?

@ interpenetrating beams of charged particles are unstable to
plasma instabilities

@ consider the two-stream instability:

P
>

et e -~ b e

et,e” - p’ o

e+’ e - p7 -
- )

-
-

@ one frequency (timescale) and one length in the problem:

4762
& e ¢ ~10%8cm /\<I
p(z=0) HITS
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Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ initially homogeneous beam-e—:
attractive (repulsive) force by potential maxima (minima)

@ ¢ attain lowest velocity in potential minima — bunching up
@ e* attain lowest velocity in potential maxima — bunching up

D
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Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ beam-et /e~ couple in phase with the background perturbation:
enhances background potential

@ stronger forces on beam-e* /e~ — positive feedback
@ exponential wave-growth — instability

Y

e, e”
et et
(D \/\/
e p o p

e e” HITS
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Two-stream instability: momentum transfer

@ particles with v 2 Vphase:
pair momentum — plasma waves — growing modes: instability

@ particles with v < Vphage: =
plasma wave momentum — pairs — Landau damping /@H.Ts
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Blazars

Oblique instability

@ k oblique to vpeam: real word perturbations don’t choose “easy”
alignment = Y all orientations

@ oblique grows faster than two-stream: E-fields can easier deflect

ultra-relativistic particles than change their parallel velocities
(Nakar, Bret & Milosavljevic 2011)

—— Boam flow #

k//c/u)p

Beam

i ]HITS

Bret (2009), Bret+ (2010)
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Beam physics — growth rates

excluded for collective o @ consider a Iight beam
plasma phenomena

104 1\@ 108 107 penetrating into

% T LLLLLL e AL ng 1 relat'vely dense plasma
— EZ— ] Q
. 1o 2 10 8 @ maximum growth rate
> - =
: 10-® E £ 0% Ny

E = 2 eam
S 10-0 b 1 I ~0.4~y wp
= B ] 5 Mam
o E 5 10° 0=
£ 10 3 =
) ‘f: 104 =
© 10°% ¢ o 3
© ; ‘\‘Cf‘ = 108 L.

10*6 Il \HHH‘ \I\HI\‘ Il M\HI\‘ L
102 10°' 1 10 10?
E (TeV)
Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012) /4
NHiTs

Christoph Pfrommer The Physics and Cosmology of TeV Blazars



Blazars Black hole jets
Propagating ~ rays
Plasma instabilities

Beam physics — growth rates

excluded for collective " @ consider a Iight beam
plasma phenomena

104 1\@ 108 107 penetrating into

; T ||m||‘ T HHII‘ TT H\HI‘ T ng 1 relat|ve|y dense plasma
— FZ= - 2
110 E {0 S @ maximum growth rate
:? 102 ;’ £ 0% Ny
E = 2 eam
2 10 b 110 L M~0.4~ wp
= ERN- Mam
o0 E - 102 o=
g 10 g E 5 . . -
5 Z = 10 — @ oblique instability beats
3 10°F S I 2 inverse Compton
10-6 C vl vl el 4 COOllng by faCtOr 10'100
102 107 1 10 10? _ 3
E (TeV) @ assume that instability
grows at linear rate up
Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012) to saturation /<I
HITS
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev +Yev — € +€ —
plasma instabilities
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Blazars Black hole jets
Propagating ~ rays
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev +Yev — € +€ —
plasma instabilities

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars

HITS
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Magnetic fields
Gamma-ray sky Blazar-AGN unification
Gamma-ray background

Outline

Q Gamma-ray sky
@ Magnetic fields
@ Blazar-AGN unification
@ Gamma-ray background

HITS
Christoph Pfrommer The Physics and Cosmology of TeV Blazars



Magnetic fields
Gamma-ray sky Blazar-AGN unification
Gamma-ray background

Implications for intergalactic magnetic fields

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities

EL; (erg s') at z=0.1
104 1042 104 104 104 104
T T T

@ competition of rates: PR L B L R LA

MNc vs. roblique 3
@ fraction of the pair energy 107 \ 3

lost to inverse-Compton
on the CMB:

fic = Tic/(Nc + Toblique)
@ plasma instability

dominates for more
luminous blazars

fi(1—e™)

rz=1
104 bl vl vl el vl
10715 10714 10710 1012 10~

EdN/dE (cm™? s7!) /"(J
.
Broderick, Chang, C.P. (2012) HITS
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Magnetic fields
Gamma-ray sky Blazar-AGN unification
Gamma-ray background

Conclusions on B-field constraints from blazar spectra

@ it is thought that TeV blazar spectra might constrain IGM B-fields

@ this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

@ beam instabilities allow high-energy et /e~ pairs to self scatter
and/or lose energy

@ isotropizes the beam — no need for B-field

@ < 1-10% of beam energy to IC CMB photons

HITS
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Conclusions on B-field constraints from blazar spectra

@ it is thought that TeV blazar spectra might constrain IGM B-fields

@ this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

@ beam instabilities allow high-energy et /e~ pairs to self scatter
and/or lose energy

@ isotropizes the beam — no need for B-field

@ < 1-10% of beam energy to IC CMB photons

— TeV blazar spectra are not suitable to measure IGM B-fields
(if plasma instabilities saturate close to linear rate)!

Broderick, Chang, C.P. (2012), Schlickeiser, Krakau, Supsar (2013), Chang+ (in prep.) —
-
/<IH|TS
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TeV blazar luminosity density: today

@ collect luminosity of all 23
TeV blazars with good
spectral measurements
§~ @ account for the selection
B effects (sky coverage,
5 duty cycle, galactic
LR ) . occultation, TeV flux limit)
EER . e TeV blazar luminosity
a4 ST ] density is a scaled
I ) %Lloéuéz/;‘z I ] version (ng ~ 0.2%) of
I A R S I that of quasars!
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) /<IH|TS
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Gamma-ray sky Blazar-AGN unification
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Unified TeV blazar-quasar model

42

Quasars and TeV blazars are:

@ regulated by the same

- mechanism
g
= @ contemporaneous
0 elements of a single AGN
3, population: TeV-blazar
3 . activity does not lag
H ES ] quasar activity

- 3. .

[ = o b d 1

= 38 40 42 44 46 48 -

L log,ofL/erg 571} |

e T I AR I B R
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) /<IH|TS
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Unified TeV blazar-quasar model

42 —
. Quasars and TeV blazars are:
i @ regulated by the same
= mechanism
g
= @ contemporaneous
0 elements of a single AGN
3, population: TeV-blazar
i T — NN activity does not lag
AN L N quasar activity
a ST n
- I 1 — assume that they trace
[ ‘ pree ‘ 1 each other for all redshifts!
3 38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) /<IHITS
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How many TeV blazars are there?

Hopkins+ (2007) /'\<I
HITS
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How many TeV blazars are there?

-7.0T T T T T
7~ 7.5} rﬁ %‘;\
‘> =f. ': 4
= -8.0_— .’.fj ":\ 1
SV | T k.
. : f ?“
= -85F A
N i LY
s i Fermi hard R
8 -9.0} gamma-ray blazar
i counts
-9.5 L L N L
0 1 2 3 4 5 6

Hopkins+ (2007) /'\4
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How many TeV blazars are there?

-7.0 T T T T
Fermi extragalactic
gamma-ray background

Ty

4, 7.5
(=8
=
= -8.0r AN
s ] E
b ool A\
= -85F A
N [ 1Y
2 i Fermi hard L
S -9.0f gamma-ray blazar ‘i
counts
-9.5 L L N L
0 1 2 3 4 5 6
z

Hopkins+ (2007) /4
NHITS
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Redshift distribution of Fermi hard ~-ray blazars

1LAC, Abdo et al. 2010

- 2LAC, Ackermann et al. 2011 i
3+ _

e .

evolving hard gamma-ray blazars

~ /above the Fermi flux limit _

By

dlog#,/dz
©

— =
—

Broderick, C.P.+ (2013)
HITS
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Redshift distribution of Fermi hard ~-ray blazars

e

1LAC, Abdo et al. 2010
2LAC, Ackermann et al. 2011

b

evolving hard gamma-ray blazars

~ /above the Fermi flux limit

By

dlog#,/dz
©
L B e e B (SR I
—

o
bt
o

(=)
N — j

]

|

-

|

1.5 2
Broderick, C.P.+ (2013)

— evolving (increasing) blazar population consistent with observed -
declining evolution (Fermi flux limit)! /qms
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Gamma-ray sky

Magnetic fields
Blazar-AGN unification
Gamma-ray background

log NV — log S distribution of Fermi hard ~-ray blazars

104

T T TT7IT

103

10?2

10

T T T T T T

Ll Ll

T T T T

Ll 1

T T

L

0.1 !
10-12

10711

10-10
F 45, (ph cm2 s71)

10-°

10-8
Broderick, C.P.+ (2013)
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Gamma-ray sky

Magnetic fields
Blazar-AGN unification
Gamma-ray background

log NV — log S distribution of Fermi hard ~-ray blazars

104

103

10?2

10

0.1

UL B ALY B R LAL B B R L

1

T T

Ll

T

1

T

Ll

T T T T T T

1

Ll

1

L

10712 10711 10710

F 45, (ph cm2 s71)

10-° 10-8

Broderick, C.P.+ (2013)
— predicted and observed flux distributions of hard Fermi blazars ¥
between 10 GeV and 500 GeV are indistinguishable! /qms
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How many TeV blazars are there?

-7.0 T T T T
Fermi extragalactic
gamma-ray background

Ty

4, 7.5
(=8
=
= -8.0r AN
s ] E
b ool A\
= -85F A
N [ 1Y
2 i Fermi hard L
S -9.0f gamma-ray blazar ‘i
counts
-9.5 L L N L
0 1 2 3 4 5 6
z

Hopkins+ (2007) /4
NHITS
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TeV photon absorption by pair production

10 o
e mumse ] intrinsic and observed SEDs
g 'E 3 ofblazarsat z = 1
™~ r T .
Z o1g 3 — 7-ray attenuation by an-
B o B 71 nihilation and pair producing
ors v it i Ve v ] ON the EBL
0.1 1 10 100 103 104 0%
}{e:“ "= "4 inferred spectral index e for
NS PR ; .
‘i .~ .. = 3 the spectrain the top panel;
o ’ 1 overlay of Fermi data on
34 BL Lacs and non-BL Lacs
L 1 (mostly FSRQs)
1.5 2

Broderick, C.P-+ (2013) /4
NHiTs
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Extragalactic gamma-ray background

@ intrinsic spectrum for a TeV blazar:

(&) + (&)

Ep = 1TeV is break energy, I', = 3 is high-energy spectral index,

I, related to ', which is drawn from observed distribution
@ extragalactic gamma-ray background (EGRB):

/\ F/ A

E’ = E(1 4+ Z’) is gamma-ray energy at emission,
Aq is physical quasar luminosity density,
ng ~ 0.2% is blazar fraction, 7 is optical depth /\<IHITS

Christoph Pfrommer The Physics and Cosmology of TeV Blazars



Magnetic fields

Gamma-ray sky Blazar-AGN unification

Gamma-ray background

Extragalactic gamma-ray background

E2dN/dE (MeV s~! cm™? sr-t)

FT \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTITH
L Dominated by Abdo et al. (2010) 4
soft sources Ackermann et al. (in prep.)
1072 & E
L %% unabsorbed ]
r " absorbed by ., 1
"~ ~ _pair production " 1
— \\\
10-* | absorbed, after subtracting N
F the resolved hard blazars, z < 0.3 \ K
L N ]
L \ ]
\
\
L \ J
\
\
1075 Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \\HHH

10-2 10! 1

hristoph Pfromm

10 102 103 104

E (Gev) Broderick, C.P+ (2013)

Cosmology of TeV Blazars
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Extragalactic gamma-ray background

= T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTTH

L Dominated by Abdo et al. (2010) 4
/T\ soft sources Ackermann et al. (in prep.)
7 100 % =
@ L P unabsorbed ]
© [ ii S absorbed by ]
T "~ ~ _pair production " 1
1%} L ~a 4
> - o~
[5} N
5 10-* | absorbed, after subtracting AN =
=) [ the resolved hard blazars, z < 0.3 \ q
C L ]
S N
=5 L \
w \

\
M [ \
\
1075 L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \\HHH
102 10! 1 10 102 103 10%
E (GeV) Broderick, C.P.+ (2013)

— evolving population of hard blazars provides excellent match to /I
latest EGRB by Fermifor E 2 3 GeV ¢ HITS
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Extragalactic gamma-ray background

FT \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTITH
t Dominated by ® 00 FTTTIIE SRS
-~ soft sources 5 B0F &/ E
| = r 1
4 107 iE
T T 40p ElE
3 E ]
£ 17
g 8 Ll ‘: B
n 2 3
%] z i
>
[}
Z 10 =
= ]
T SR 0 ]
S e i
z e
o R e
B e
10*5 1 \HHH‘ 1 \HHH‘ 1 \HHH‘ 1 \HHH‘ 1 \HHH‘ I
1077 107! 1 10 107 103 104

E (GeV) Broderick, C.P+ (2013)

— the signal at 10 (100) GeV is dominated by redshifts z ~ 1.2 /I
(Z ~ 06) / NHITS
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Outline

e Structure formation
@ Properties of blazar heating
@ The Lyman-« forest
@ Dwarf galaxies
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts

additional IGM heating has significant implications for ...
@ thermal history of the IGM: Lyman-« forest

@ late-time formation of dwarf galaxies /\QH.TS
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Evolution of the heating rates

HI,Hel-/Hell-reionization
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istoph Pfrommer The Physics and Cosmology of TeV Blazars



Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
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Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T 8
eth=—> ~10
hE e
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Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T —9
eh=—— ~ 10
" me?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

Erad =17 ~ 0.1 x 107 ~ 107°
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Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T 9
eth=—> ~10
hE e

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
erad = 1 Qon ~ 0.1 x 107* ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:

ewv ~ 0.1eag ~ 1078 — KT ~ keV
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Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T -9
= ——_ ~ 10
" me?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
Erad = 1 Qpn ~ 0.1 x 1074 ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:
e ~0.16g ~107%  — KT ~keV

@ photoheating efficiency 7pn ~ 107°  — KT ~ nonh cuy MpC? ~ eV

(limited by the abundance of H I/He 11 due to the small recombination rate)
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Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T -9
= ——_ ~ 10
" me?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
Erad = 1 Qpn ~ 0.1 x 1074 ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:
e ~0.16g ~107%  — KT ~keV

@ photoheating efficiency 7pn ~ 107°  — KT ~ nonh cuy MpC? ~ eV

(limited by the abundance of H I/He 11 due to the small recombination rate)

@ blazar heating efficiency non ~ 1072 — KT ~ 1jon £rag MpC* ~ 1OeV/.-<I
HITS

(limited by the total power of TeV sources)
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Thermal history of the IGM

10° : : ‘
— only photoheating
- - standard BLF . e
--- optimistic BLF P
£ gt |
&~
10 20 10 s ; !

142 -
/<IHITS

C.P, Chang, Broderick (2012)
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Evolution of the temperature-density relation

no blazar heating

10"

TK]

1
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Evolution of the temperature-density relation

no blazar heating

10"

T (K]

0.1 1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density

/\<I
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Evolution of the temperature-density relation

no blazar heating

0.1 1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density
— makes low density regions hot .
— causes inverted temperature-density relation, T o« 1/§ /\qms
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Evolution of the temperature-density relation

no blazar heating with blazar heating

10°

== Viel et al. (2009)

cee 2=05

10"

TK]

10"

0.1 1
1+6
Chang, Broderick, C.P. (2012)

1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density
— makes low density regions hot .
— causes inverted temperature-density relation, T o« 1/§ /‘@Hns
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Blazars cause hot voids

no blazar heating

with blazar heating

10°

== Viel et al. (2009)

10!
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140

Chang, Broderick, C.P. (2012)
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Structure formation

Blazars cause hot voids

no blazar heating with blazar heating

10°

== Viel et al. (2009)

10!

0.1

10

1
140

Chang, Broderick, C.P. (2012)

@ blazars completely change the thermal history of the diffuse
IGM and late-time structure formation

/\<I
HITS
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Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2012):
@ L = 15h~"Mpc boxes with 2 x 3843 particles
@ one reference run without blazar heating

@ three with blazar heating at different levels of efficiency
(address uncertainty)

@ used an up-to-date model of the UV background (raucher-Giguere+ 2009)

HITS
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The intergalactic medium
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Temperature-density relation

Structure formation

no blazar heating intermediate blazar heating

i}

log,o(7/K)

% a o~
/o . ‘ :
33 e Viel et al. 2009, F=0.1-0.8 log,o(Myin/(h™'M:)) B
s Viel et al. 2009, F=0-0.9 56 78 910
3.0 L 1 L 1 I I | | | |
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logio(p/{P))

Puchwein, C.P., Springel, Broderick, Chang (2012) )(J
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The Lyman-« forest

Flux

—
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The observed Lyman-« forest

4 T T
4 Q1159+123
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1.0x10
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The simulated Ly-« forest

transmitted flux fraction e~ *

no blazar heating

intermediate b. h.
|

0.00 1 : 1 1 : 1
0 1000 2000 3000 4000

velocity [km s '] /"(J
Puchwein+ (2012) NHITS
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effective optical depth Tefr
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o
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Structure formation

Optical depths and temperatures

‘no blazar ‘healing ‘

weak blazar heating
intermediate blazar heating
strong blazar heating

Viel et al. 2004

Tytler et al. 2004

FG *08

Properties of blazar heating
The Lyman-« forest
Dwarf gal

The Physics

logy of TeV Blazars
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Optical depths and temperatures

T T T T
no blazar heating
——- weak blazar heating i
intermediate blazar heating
—-— strong blazar heating
©  Beckeretal. 2011
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Puchwein+ (2012)

Redshift evolutions of effective optical depth and IGM temperature
match data only with additional heating, e.g., provided by blazars! /@
HITS
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Ly-a flux PDFs and power spectra

tuned UV background
T T T

no blazar heating
——- weak blazar heating

intermediate blazar heating
strong blazar heating
Kim et al. 2007 -8 4

1
9 1 1 1 1

PDF of transmitted flux fraction

1
0.0 0.2 0.4 0.6 0.8 1.0

transmitted flux fraction .
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Ly-a flux PDFs and power spectra

tuned UV background

tuned UV background
10' £ T T T T 7 107! T T
£ no blazar heating [ 2=2.07
[ ——- weak blazar heating
[ intermediate blazar heating 3
— strong blazar heating
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Puchwein+ (2012)
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Voigt profile decomposition
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@ decomposing Lyman-« forest into individual Voigt profiles

@ allows studying the thermal broadening of absorption lines
/<IHITS



Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Voigt profile decomposition — line width distribution
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Lyman-« forest in a blazar heated Universe

improvement in modelling the Lyman-« forest is a direct consequence
of the peculiar properties of blazar heating:

@ heating rate independent of IGM density — naturally produces
the inverted T—p relation that Lyman-« forest data demand

@ recent and continuous nature of the heating needed to match
the redshift evolutions of all Lyman-« forest statistics

@ magnitude of the heating rate required by Lyman-« forest data
~ the total energy output of TeV blazars (or equivalently ~ 0.2%
of that of quasars)

HITS
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Entropy evolution

temperature evolution

only photoheating
standard BLF .
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Entropy evolution

temperature evolution entropy evolution

10°
—only photoheating P , |[— only photoheating
-~ standard BLF o S 107l -~ standard BLF et
-~ optimistic BLF E .-

.- optimistic BLF el . .
g 10
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[<jpet =
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0.1
3
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1+2

C.P, Chang, Broderick (2012)
. _2 .
@ evolution of entropy, Ko = kTn, 73, governs structure formation

@ blazar heating: late-time, evolving, modest entropy floor /@
HITS
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Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales

@ characteristic length/mass scale below which objects do not form

HITS
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Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales
@ characteristic length/mass scale below which objects do not form

@ hotter intergalactic medium — higher thermal pressure
— higher Jeans mass:

1/2
MJ x p?éjz x (ﬂ%M) N MJ,bIazar -~ (Tblazar)s/2 Z 30

P MJ,photo 7-photo

— blazar heating increases M, by 30 over pure photoheating!

/\<I
HITS
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Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales
@ characteristic length/mass scale below which objects do not form

@ hotter intergalactic medium — higher thermal pressure
— higher Jeans mass:

1/2

3 3/2

MJ x ?22 x TIGM N MJ,bIazar ~ (Tblazar) Z 30
P / P MJ,photo 7-photo

— blazar heating increases M, by 30 over pure photoheating!

@ complications:
non-linear collapse,
delayed pressure response in expanding universe — concept of
“filtering mass” =
C.P,, Chang, Broderick (2012) /\<L|Ts
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Dwarf galaxy formation — Filtering mass

102 blazar heating\i/,_:
only photoheating LT
’ ==4 Mg~ 10M'M,
= w07 Mg~ 10'°M,
=
=4 10°
10°= .
§ 10F L emTITCS
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C.P, Chang, Broderick (2012) /\<IH|TS
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Peebles’ void phenomenon explained?

mean density void, 1+ 46 =0.5
1021 148=1,7,4=10 o 12| 1+0=05724,=10
— 1090 = 1001
20 s
= =
= linear theory = linear theory
Z 0 ___ nonineartheory w0 _ non-linear theory

_._._._ optimistic blazar —._._.. optimistic blazar

— - -~ standard blazar ____ standard blazar
10° __ only photoheating | 106 —only photoheating |
& t - ; —
§ 10 T --I0H § 10 v/::,::‘ - E
B | S il 4 s b ——=" 4
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1+z 1+z

C.P, Chang, Broderick (2012)

@ blazar heating efficiently suppresses the formation of void dwarfs
within existing DM halos of masses < 3 x 10" M, (z = 0)

@ may reconcile the number of void dwarfs in simulations and the ~;
paucity of those in observations HITS
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Empirical model for star formation histories (1)

Lu, Mo, Lu, Katz, et al. (2013): wbE. T e
constructing merger tree-based \ Popaace 08
model of galaxy formation that _ 0" F
@©
matches = 100}
@ observed stellar mass S 102 i
function (different z) by
. . . S 10'f
@ luminosity function of local 3
cluster galaxies 10° f
— star formation histories of 10"
L

dark matter halos (different z) 14

M, - 5logyq(h)

Lu+ (2013)
P
HITS
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Empirical model for star formation histories (2)

z=0 '
4—z=1 SR
z=2 R
3F z=3 WSS i
4
2 -

logyo(SFR /M, yr'")

y/ , l \
95 105 115 125 135 1 10
logso(Myir / h7'M,) z4+1

Lu+ (2013)

— strong quenching of star formation efficiency for z < 2 in low-mass...
halos (M < 10" h~"M) — blazar heating? /\4H|Ts
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e quantitative self-consistent picture of high-z Lyman-« forest
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e quantitative self-consistent picture of high-z Lyman-« forest

@ significantly modifies late-time structure formation:

@ suppresses late dwarf formation (in accordance with SFHs)
e void phenomenon, “missing satellites” (?) -
/<IHITS
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Literature for the talk

@ Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars
I: implications of plasma instabilities for the intergalactic magnetic field and
extragalactic gamma-ray background, ApJ, 752, 22, 2012.

@ Chang, Broderick, Pfrommer, The cosmological impact of luminous TeV blazars
II: rewriting the thermal history of the intergalactic medium, ApJ, 752, 23, 2012.

@ Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars
Ill: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752,
24, 2012.

@ Puchwein, Pfrommer, Springel, Broderick, Chang, The Lyman-« forest in a
blazar-heated Universe, MNRAS, 423, 149, 2012.

@ Broderick, Pfrommer, Chang, Puchwein, Implications of plasma beam
instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin
of the extragalactic gamma-ray background, ApJ, subm., 2013.

@ Broderick, Pfrommer, Chang, Puchwein, Lower limits upon the anisotropy of the
extragalactic gamma-ray background implied by the 2FGL and 1FHL catalogs,
ApJ, subm., 2013.
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Additional slides
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Challenges to the Challenge

Challenge #1 (known unknowns): non-linear saturation
@ we assume that the non-linear damping rate = linear growth rate
@ effect of wave-particle and wave-wave interactions need to be resolved

@ using slow collisional scattering (reactive regime), Miniati & Elyiv (2012)
claim that the nonlinear Landau damping rate is < linear growth rate

@ also accounting for much faster collisionless scattering (kinetic regime)
— pOWGI’fU| instability, faster than IC cooling (Schlickeiser+ 2013, Chang-+ in prep.)

/\<I
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Challenges to the Challenge

Challenge #1 (known unknowns): non-linear saturation
@ we assume that the non-linear damping rate = linear growth rate
@ effect of wave-particle and wave-wave interactions need to be resolved

@ using slow collisional scattering (reactive regime), Miniati & Elyiv (2012)
claim that the nonlinear Landau damping rate is < linear growth rate

@ also accounting for much faster collisionless scattering (kinetic regime)
— pOWGI’fU| instability, faster than IC cooling (Schlickeiser+ 2013, Chang-+ in prep.)

Challenge #2 (unknown unknowns): inhomogeneous universe

@ universe is inhomogeneous and hence density of electrons change as
function of position

@ could lead to loss of resonance over length scale < spatial growth
length scale (Miniati & Elyiv 2012)

@ growth length in oblique kinetic regime appears to be shorter than —
gradient — no instability quenching! (chang+ in prep) /\<Lns
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Simulations of the beam-plasma instability

7,=300  «=107" @ o = 3in simulation: beam
Bl 1 energy density dominates
o] , 0 Bl ot ] rest frame energy density of
& 0

background plasma

% 104 ! @ oy~ 10 "2inreality:
z background dominates by far

107 107" 10° 10! 10? 10°
o= nbeam/mem, Sironi & Giannios (2013)
HITS
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Simulations of the beam-plasma instability

@ o~ = 3in simulation: beam
energy density dominates
2x10* 4x10° rest frame energy density of

background plasma

® oy ~ 1072 in reality:
background dominates by far

@ extrapolation with Lorentz
force argument:

ApPoeam, L
At

& = Nbeam/Mam,  Sironi & Giannios (2013 @ however: coherent field £
causes beam deflection, not
broadening of momentum

s . N
distribution /qms
Christoph Pfrommer The Physics and Cosmology of TeV Blazars
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Substructures in cold DM simulations much more numerous than

observed number of Milky Way satellites!
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When do dwarfs form?

03 01 q
v= ege (Gyr)

Dolphin+ (2005)

isochrone fitting for different metallicities — star formation histories
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s form?

NGC 205 NGC 147 NGC 185

r

Sogittarius Fornax Leo | Cassiopela NGC 3109 1€ 5152 NGC 6822 IC 1613
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Milky Way satellites: formation history and abundance

satellite formation time

br—TT T 77T
Maccio & Fontanot (2010)-{

late forming satellites (< 10 Gyr)
not observed!
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Milky Way satellites: formation history and abundance

satellite formation time satellite luminosity function
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q no blazar heating:
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@ blazar heating suppresses late satellite formation, may reconcile
low observed dwarf abundances with CDM simulations i
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Structure formation

Galactic H I-mass function
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@ H I-mass function is too flat (i.e., gas version of missing dwarf problem!)

@ photoheating and SN feedback too inefficient

@ IGM entropy floor of K ~ 15keV cm? at z ~ 2 — 3 successfull /qms
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