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Shocks in galaxy clusters

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Giant radio halo in the Coma cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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High-energy astrophysics in galaxy clusters

consistent picture of non-thermal processes in galaxy
clusters (radio, soft/hard X-ray, γ-ray emission)
→ illuminating the process of structure formation
→ history of individual clusters: cluster archeology
understanding the non-thermal pressure distribution to
address biases of thermal cluster observables
gold sample of clusters for precision cosmology: using
non-thermal observables to gauge hidden parameters
nature of dark matter: annihilation signal vs. cosmic ray
(CR) induced γ-rays
fundamental plasma physics:

diffusive shock acceleration in high-β plasmas
origin and evolution of large scale magnetic fields
nature of turbulent models
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Radiative simulations – flowchart

CP, Enßlin, Springel (2008)
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Hadronic cosmic ray proton interaction
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Cosmological galaxy cluster simulations
Shocks and particle acceleration
Cosmic ray transport and pressure distribution

Radiative simulations with extended CR physics

CP, Enßlin, Springel (2008)
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Our philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description

p = Pp/mp c

Enßlin, CP, Springel, Jubelgas (2007)

f (p) = dN
dp dV = C p−αθ(p − q)

q(ρ) =
(

ρ
ρ0

) 1
3 q0
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CR protons in clusters

relativistic proton populations can often be expected, since

acceleration mechanisms work for protons . . .

. . . as efficient as for electrons (adiabatic compression) or

. . . more efficient than for electrons (DSA, stochastic acc.)

galactic CR protons are observed to have 100 times higher
energy density than electrons

CR protons are very inert against radiative losses and therefore
long-lived (∼ Hubble time in galaxy clusters, longer outside)

→ an energetic CR proton population should exist in clusters
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Radiative cool core cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Cosmological galaxy cluster simulations
Shocks and particle acceleration
Cosmic ray transport and pressure distribution

Diffusive shock acceleration – Fermi 1 mechanism (1)
conditions:

a collisionless shock wave

magnetic fields to confine energetic particles

plasma waves to scatter energetic particles→ particle diffusion

supra-thermal particles

mechanism:
supra-thermal particles diffuse upstream across shock wave

each shock crossing energizes particles through momentum transfer
from recoil-free scattering off macroscopic scattering agents

momentum increases exponentially with number of shock crossings

particle number decreases exponentially with number of crossings

→ power-law CR distribution
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Shocks and particle acceleration
Cosmic ray transport and pressure distribution

Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f
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Mach number distribution weighted by εdiss
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Cosmic ray transport and pressure distribution

Mach number distribution weighted by εCR,inj
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Cosmic ray transport and pressure distribution

Mach number distribution weighted by εCR,inj(q > 30)
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CR pressure PCR
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Relative CR pressure PCR/Ptotal
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Relative CR pressure PCR/Ptotal
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CR phase-space diagram: final distribution @ z = 0

0

0

0

0

1

10-4

10-3

10-2

10-1

100

ph
as

e 
sp

ac
e 

de
ns

ity
 [a

rb
itr

ar
y 

un
its

]

-2 0 2 4 6 8-4

-3

-2

-1

0

1

2

-2 0 2 4 6 8
log[ 1 + δgas ]

-4

-3

-2

-1

0

1

2

lo
g[

 P
C

R
 / 

P
th

 ]

-2 0 2 4 6 8-4

-3

-2

-1

0

1

2 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

Christoph Pfrommer Non-thermal emission from galaxy clusters



Plasma processes in galaxy clusters
Non-thermal emission from clusters
Future perspectives and directions

Cosmological galaxy cluster simulations
Shocks and particle acceleration
Cosmic ray transport and pressure distribution

CR impact on SZ effect: Compton y parameter
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Compton y difference map: yCR − yth
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Cosmic web: Mach number
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Radio gischt (relics): primary CRe (1.4 GHz)
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Radio gischt: primary CRe (15 MHz)
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Radio gischt: primary CRe (15 MHz), slower magnetic decline
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Radio gischt illuminates cosmic magnetic fields
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emission from shock-accelerated CRe
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Diffuse cluster radio emission – an inverse problem
Exploring the magnetized cosmic web

Battaglia, CP, Sievers, Bond, Enßlin (2008):

By suitably combining the observables associated with diffuse
polarized radio emission at low frequencies (ν ∼ 150 MHz,
GMRT/LOFAR/MWA/LWA), we can probe

the strength and coherence scale of magnetic fields on scales of
galaxy clusters,

the process of diffusive shock acceleration of electrons,

the existence and properties of the WHIM,

the exploration of observables beyond the thermal cluster
emission which are sensitive to the dynamical state of the
cluster.
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Rotation measure (RM)
RM maps and power spectra have the potential to infer the magnetic
pressure support and discriminate the nature of MHD turbulence in clusters:
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Particle acceleration by turbulence or shocks?
Diffuse low-frequency radio emission in Abell 521 (Brunetti et al. 2008)

colors: thermal X-ray emission; contours: diffuse radio emission.

“radio relic” interpretations with aged population of shock-accelerated
electrons or shock-compressed radio ghosts (aged radio lobes),

“radio halo” interpretation with re-acceleration of relativistic electrons
through interactions with MHD turbulence.

→ synchrotron polarization is key to differentiate!
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Hadronic cosmic ray proton interaction
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Cluster radio emission by hadronically produced CRe
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Thermal X-ray emission
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Radio gischt: primary CRe (150 MHz)
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Radio gischt + central hadronic halo = giant radio halo
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observation – simulation of A2256

Clarke & Enßlin (2006) CP, Battaglia, Pinzke (2008 in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Unified model of radio halos and relics (CP, Enßlin, Springel 2008)

Cluster radio emission varies with dynamical stage of a cluster:

Cluster relaxes and develops cool core: radio mini-halo develops due to
hadronically produced CR electrons, magnetic fields are adiabatically
compressed (cooling gas triggers radio mode feedback of AGN that
outshines mini-halo→ selection effect).

Cluster experiences major merger: two leading shock waves are
produced that become stronger as they break at the shallow peripheral
cluster potential→ shock-acceleration of primary electrons and
development of radio relics.

Generation of morphologically complex network of virializing shock
waves. Lower sound speed in the cluster outskirts lead to strong shocks
→ irregular distribution of primary electrons, MHD turbulence amplifies
magnetic fields.

Giant radio halo develops due to (1) boost of the hadronically generated
radio emission in the center (2) irregular radio ‘gischt’ emission in the
cluster outskirts.
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cluster potential→ shock-acceleration of primary electrons and
development of radio relics.

Generation of morphologically complex network of virializing shock
waves. Lower sound speed in the cluster outskirts lead to strong shocks
→ irregular distribution of primary electrons, MHD turbulence amplifies
magnetic fields.

Giant radio halo develops due to (1) boost of the hadronically generated
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Non-thermal emission from clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

Simbol-X/NuSTAR: future hard X-ray satellites (E ' (1−100) keV)

Fermi γ-ray space telescope (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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The quest for high-energy γ-ray emission from clusters
Multi-messenger approach towards fundamental astrophysics

1 complements current non-thermal observations of galaxy
clusters in radio and hard X-rays:

identifying the nature of emission processes
unveiling the contribution of cosmic ray protons

2 elucidates the nature of dark matter:

disentangling annihilation signal vs. CR induced γ-rays
spectral and morphological γ-ray signatures→ DM
properties

3 probes plasma astrophysics such as macroscopic parameters
for diffusive shock acceleration
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Hadronic γ-ray emission, Eγ > 100 GeV
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Inverse Compton emission, EIC > 100 GeV
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Total γ-ray emission, Eγ > 100 GeV
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Universal CR spectrum in clusters

GLAST:       ~ 2.4

IACT:       ~ 2.2αp
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Normalized CR spectrum shows universal concave shape→ governed
mainly by hierarchical structure formation and adiabatic CR transport
processes. (Pinzke & CP, in prep.)

→ very promising for disentangling the dark matter annihilation signal!
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Gamma-ray scaling relations
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Scaling relation + complete sample of the brightest X-ray clusters (extended
HIFLUCGS)→ predictions for Fermi (CP 2008)
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Predicted cluster sample for Fermi
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Cosmological galaxy cluster simulations
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Future perspectives and directions

Cluster
Astrophysics

and
Cosmology

Clusters as
Laboratories
for Fundamental
Plasma Physics

Understanding
AGN Feedback

in Clusters

Tracing the Dyna-
mical Evolution
of Dark Energy

Understanding the
Nature of

Dark Matter
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Clusters as laboratories for plasma physics
Opening up the radio and γ-ray window for the “non-thermal Universe”

plasma processes (acceleration, turbulence, instabilities,
anisotropic transport)

cosmic rays (including ultra-high energy CRs)

magnetic fields – origin, growth

feedback processes (AGN, galaxies)

goal: connecting multi-frequency observables (LOFAR, Fermi) to
high-resolution simulations→ fundamental plasma astrophysics

large scales: cluster “cluster archeology”,
cosmological surveys
small scales: solving riddles (cold fonts,
bubble stability) → new effects (magnetic
draping)

Dursi & CP 2008
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Understanding AGN feedback in clusters
The intertwined lives of supermassive black holes and cluster cores

1 AGN accretion, jet launch, bubble
formation: magnetic fields, cosmic
rays, and turbulence play crucial role

2 heating mechanism: cavity heating
through releasing potential energy,
weak shocks, sound damping, . . .
(McNamara & Nulsen 2007)

3 cosmological impact: role in galaxy
and cluster evolution

Perseus cluster
(NASA/CXC/IoA/A.Fabian et al.)

→ understanding both the detailed plasma physics and the statistical
properties of the AGN feedback in the cosmological context
→ high-performance simulations of the involved physics and new
observational strategies will elucidate the properties of the interaction
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Understanding the nature of dark matter
Unveiling dark matter annihilation in the presence of astrophysical foregrounds

disentangling the γ-ray emission resulting from dark matter
annihilation from the cosmic ray induced signal

electrons/positrons from dark matter annihilations vs. CR
interactions: modified synchrotron emission characteristic;
different particle spectra observed on Earth

→ self-consistent cosmic ray simulations (galaxy clusters, the
Galaxy) and modeling of spectral and spatial emission characteristics
necessary to discover the properties of dark matter

NASA/DOE/LAT: Fermi’s 1st light
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Tracing the dynamical evolution of dark energy
Joint analysis of simulated cluster surveys

accelerated expansion of the Universe
caused by either a cosmological fluid
(scalar field, vacuum energy) or by
modification of General Relativity for small
curvature

this causes modified evolution of the signal
from cosmological standard candles (SNe)
/ yard sticks (baryon acoustic oscillations)
or a different growth of structure (weak
lensing, cluster surveys)→ complementary
probes of precision cosmology

(NASA/WMAP Science Team)

→ study of the influence of different physical processes on
hydrodynamical cluster structure and survey observables (X-ray,
Sunyaev-Zel’dovich, lensing, radio) in large cosmological simulations
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Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of
CRs preserve the information about their injection and transport
processes and provide thus a unique window of current and past
structure formation processes!

1 Cosmological hydrodynamical simulations are indispensable for
understanding non-thermal processes in galaxy clusters
→ illuminating the process of structure formation

2 Multi-messenger approach including radio synchrotron, hard
X-ray IC, and HE γ-ray emission:

fundamental plasma physics: diffusive shock acceleration,
large scale magnetic fields, and turbulence
nature of dark matter
gold sample of clusters for precision cosmology
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