Cosmic ray physics in AREPO

Christoph Pfrommer

in collaboration with

R. Pakmor, K. Schaal, C. Simpson, V. Springel
Heidelberg Institute for Theoretical Studies, Germany

Virgo meeting - Leiden, Netherlands - Dec 17 2015
Puzzles in galaxy formation

- Dwarf galaxy
- Spiral galaxy
- Giant elliptical galaxy

log(stellar / halo mass) vs log(halo mass)

20% of baryons

Moster+ (2010)
Puzzles in galaxy formation

- Dwarf galaxy
- Spiral galaxy
- Giant elliptical galaxy

Active galactic nuclei feedback by stellar feedback. 20% of baryons.

\[
\log\left(\frac{\text{stellar mass}}{\text{halo mass}} \right) \quad \log(\text{halo mass})
\]

Moster+ (2010)

Christoph Pfrommer
How are galactic winds driven?

observed energy equipartition between cosmic rays (CRs), thermal gas and magnetic fields
→ suggests self-regulated feedback loop with CR driven winds
Why are CRs important for wind formation?

Radio halos in disks: CRs and magnetic fields exist at the disk-halo interface

- CR pressure drops less quickly than thermal pressure ($P \propto \rho^\gamma$)
- CRs cool less efficiently than thermal gas
- CR pressure energizes the wind → “CR battery”
- Poloidal (“open”) field lines at wind launching site → CR-driven Parker instability

Tüllmann+ (2000)
Introduction
Cosmic rays in AREPO
Puzzles
Galactic winds
AGN feedback

AGN feedback: M87 at radio wavelengths

\(\nu = 1.4 \text{ GHz (Owen+ 2000)} \)
\(\nu = 140 \text{ MHz (LOFAR/de Gasperin+ 2012)} \)

- high-\(\nu \): freshly accelerated CR electrons
- low-\(\nu \): fossil CR electrons \(\rightarrow \) time-integrated AGN feedback!
- LOFAR: same picture \(\rightarrow \) puzzle of “missing fossil electrons”
- solution: electrons are fully mixed with the dense cluster gas and cooled through Coulomb interactions
The gamma-ray picture of M87

- **high state** is time variable
 → jet emission

- **low state:**
 (1) steady flux
 (2) γ-ray spectral index (2.2)
 $= \text{CRp index}$
 $= \text{CRe injection index as probed by LOFAR}$
 (3) spatial extension is under investigation (?)

→ confirming this triad would be smoking gun for first γ-ray signal from a galaxy cluster!
hypothesis: low state γ-ray emission traces CRp-p interactions

- cosmic rays excite Alfvén waves that dissipate the energy \rightarrow heating rate

$$\mathcal{H}_{\text{cr}} = -\mathbf{v}_{\text{st}} \cdot \nabla P_{\text{cr}}$$

(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

- calibrate P_{cr} to γ-ray emission and $|\mathbf{v}_{\text{st}}| = |\mathbf{v}_{A}|$
 to radio/X-ray emission
 \rightarrow spatial heating profile

\rightarrow cosmic-ray heating matches radiative cooling (observed in X-rays)
and may solve the famous “cooling flow problem” in galaxy clusters!
Simulations – flowchart

ISM observables:
- X-ray, Hα, HI, ... emission
- stellar spectra

Physical processes in the ISM:
- radiative cooling
- stellar populations
 - supernovae
 - shocks
 - AGN
- thermal energy

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
Simulations with cosmic ray physics

ISM observables:

- X-ray, Hα, HI, ...
- stellar spectra

Physical processes in the ISM:

- radiative cooling
- shocks
- supernovae
- AGN
- Coulomb losses

- thermal energy
- cosmic ray energy

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
Simulations with cosmic ray physics

ISM observables:
- X-ray, Hα, HI, ... emission
- Stellar spectra

Physical processes in the ISM:
- Radiative cooling
- Stellar populations
- Supernovae
- Shocks
- AGN
- Coulomb losses
- Cosmic ray energy
- Heat conduction
- CR streaming

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
Simulations with cosmic ray physics

ISM observables:
- X-ray, Hα, HI, ... emission
- stellar spectra
- radio synchrotron
- gamma-ray emission

Physical processes in the ISM:
- radiative cooling
- thermal energy
- super-novae
- shocks
- AGN
- Coulomb losses
- CR streaming
- heat conduction
- hadronic losses
- cosmic ray energy

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)

Christoph Pfrommer
Cosmic ray physics in AREPO
CR shock acceleration
Comparing simulations to novel exact solutions that include CR acceleration

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
Sedov explosion

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
Sedov explosion with CR acceleration

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
Cosmological simulations with cosmic rays

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)

Christoph Pfrommer
Cosmic ray physics in AREPO
Cosmological simulations with cosmic rays

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
Modeling CR streaming
A challenging hyperbolic/parabolic problem

streaming equation:

\[
\frac{\partial \varepsilon_{\text{cr}}}{\partial t} + \nabla \cdot [(\varepsilon_{\text{cr}} + P_{\text{cr}}) \mathbf{v}_{\text{st}}] = \mathbf{v}_{\text{st}} \cdot \nabla P_{\text{cr}}, \quad \mathbf{v}_{\text{st}} = -\text{sgn}(B \cdot \nabla P_{\text{cr}}) \mathbf{v}_{\text{A}}
\]

- CR streaming \sim CR advection with the Alfvén speed
- at local extrema, CR energy overshoots and develops unphysical grid oscillations

Sharma+ (2010)
Modeling CR streaming
A challenging hyperbolic/parabolic problem

streaming equation:

\[
\frac{\partial \varepsilon_{\text{cr}}}{\partial t} + \nabla \cdot \left[(\varepsilon_{\text{cr}} + P_{\text{cr}}) \mathbf{v}_{\text{st}} \right] = \mathbf{v}_{\text{st}} \cdot \nabla P_{\text{cr}}, \quad \mathbf{v}_{\text{st}} = -\operatorname{sgn}(\mathbf{B} \cdot \nabla P_{\text{cr}}) \mathbf{v}_{\text{A}}
\]

- CR streaming \(\sim\) CR advection with the Alfvén speed
- at local extrema, CR energy overshoots and develops unphysical grid oscillations
- regularize equations: diffusive at extrema, advective at gradients

- **problem**: stability criterion requires \(\Delta t \propto \Delta x^3\)
 \(\Rightarrow\) implicit non-linear solver
CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtion
Additional slides
Local stability analysis (1)

- Isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

\[T^2 h_{\text{CR}} \]
\[T^2 c_{\text{rad}} \]

heating

cooling

\(kT \)
Local stability analysis (1)

- Isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

\[T^2 H_{\text{CR}} \]
\[T^2 C_{\text{rad}} \]

- Heating
- Cooling
- Unstable FP
Local stability analysis (1)

- Isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations
Local stability analysis (1)

- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations
Local stability analysis (2)
Theory predicts observed temperature floor at $kT \simeq 1$ keV

![Diagram showing instability criterion, arsinh(D), with temperature T in K and CR abundance X_{CR} = 0.31 and 0.031. The graph illustrates "islands of stability" and "ocean of instability".](image-url)
Virgo cluster cooling flow: temperature profile
X-ray observations confirm temperature floor at $kT \sim 1$ keV

Matsushita+ (2002)
Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles: CRs diffuse and stream outward → CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are injected into the ICM and caught in a turbulent downdraft that is excited by the rising bubbles → CR advection with flux-frozen field → adiabatic CR compression and energizing: $P_{cr}/P_{cr,0} = \delta^{4/3} \sim 20$ for compression factor $\delta = 10$

(3) CR escape and outward streaming → CR Alfvén-wave heating
Prediction: flattening of high-ν radio spectrum
Conclusions on AGN feedback by cosmic-ray heating

- LOFAR puzzle of “missing fossil electrons” solved by mixing with dense cluster gas and Coulomb cooling
- Predicted γ rays identified with low state of M87
 \rightarrow estimate CR-to-thermal pressure of $X_{\text{cr}} = 0.31$
- CR Alfvén wave heating balances radiative cooling on all scales within the radio halo ($r < 35$ kpc)
- Local thermal stability analysis predicts observed temperature floor at $kT \simeq 1$ keV

outlook: simulate steaming CRs coupled to MHD, cosmological cluster simulations, improve γ-ray and radio observations . . .