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Introduction
Cosmic rays in AREPO

Puzzles
Galactic winds
AGN feedback

Puzzles in galaxy formation
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How are galactic winds driven?

super wind in M82 NASA/JPL-Caltech/STScI/CXC

observed energy equipartition between cosmic rays (CRs), thermal
gas and magnetic fields
→ suggests self-regulated feedback loop with CR driven winds
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Why are CRs important for wind formation?
Radio halos in disks: CRs and magnetic fields exist at the disk-halo interface

Tüllmann+ (2000)

CR pressure drops less
quickly than thermal
pressure (P ∝ ργ)

CRs cool less efficiently
than thermal gas

CR pressure energizes the
wind→ “CR battery”

poloidal (“open”) field lines
at wind launching site
→ CR-driven Parker
instability
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AGN feedback: M87 at radio wavelengths

ν = 1.4 GHz (Owen+ 2000) ν = 140 MHz (LOFAR/de Gasperin+ 2012)

high-ν: freshly accelerated CR electrons
low-ν: fossil CR electrons→ time-integrated AGN feedback!

LOFAR: same picture→ puzzle of “missing fossil electrons”

solution: electrons are fully mixed with the dense cluster gas
and cooled through Coulomb interactions
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The gamma-ray picture of M87

high state is time variable
→ jet emission

low state:
(1) steady flux

(2) γ-ray spectral index (2.2)
= CRp index
= CRe injection index as

probed by LOFAR

(3) spatial extension is under
investigation (?) Rieger & Aharonian (2012)

→ confirming this triad would be smoking gun for first γ-ray
signal from a galaxy cluster!
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AGN feedback = cosmic ray heating (?)

hypothesis: low state γ-ray emission traces CRp-p interactions

cosmic rays excite Alfvén
waves that dissipate the
energy→ heating rate

Hcr = −vst ·∇Pcr

(Loewenstein, Zweibel, Begelman 1991,
Guo & Oh 2008, Enßlin+ 2011)

calibrate Pcr to γ-ray
emission and |vst| = |vA|
to radio/X-ray emission
→ spatial heating profile
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→ cosmic-ray heating matches radiative cooling (observed in X-rays)
and may solve the famous “cooling flow problem” in galaxy clusters!
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Simulations – flowchart
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CR shock acceleration
Comparing simulations to novel exact solutions that include CR acceleration

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)
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Sedov explosion

density
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Sedov explosion with CR acceleration

density

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

ρ

specific cosmic ray energy

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10-3

10-2

10-1

100

101

102

103

u
cr

C.P., Pakmor, Schaal, Simpson, Springel (in prep.)

Christoph Pfrommer Cosmic ray physics in AREPO



Introduction
Cosmic rays in AREPO

Physics
CR acceleration
CR streaming

Cosmological simulations with cosmic rays
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Cosmological simulations with cosmic rays
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Modeling CR streaming
A challenging hyperbolic/parabolic problem

streaming equation:
∂εcr

∂t
+ ∇ · [(εcr + Pcr)vst] = vst ·∇Pcr, vst = −sgn(B ·∇Pcr)vA

Sharma+ (2010)

CR streaming ∼ CR advection
with the Alfvén speed

at local extrema, CR energy
overshoots and develops
unphysical grid oscillations

regularize equations: diffusive at
extrema, advective at gradients

problem: stability criterium requires ∆t ∝ ∆x3

⇒ implicit non-linear solver
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CR streaming ∼ CR advection
with the Alfvén speed

at local extrema, CR energy
overshoots and develops
unphysical grid oscillations

regularize equations: diffusive at
extrema, advective at gradients

problem: stability criterium requires ∆t ∝ ∆x3
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CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN
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Additional slides
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Local stability analysis (1)

heating

kT

cooling

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations

Christoph Pfrommer Cosmic ray physics in AREPO



Introduction
Cosmic rays in AREPO

Physics
CR acceleration
CR streaming

Local stability analysis (1)

heating

kT

unstable FP

cooling

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations

Christoph Pfrommer Cosmic ray physics in AREPO



Introduction
Cosmic rays in AREPO

Physics
CR acceleration
CR streaming

Local stability analysis (1)

cooling

kT

unstable FP

heating

stable FP

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations

Christoph Pfrommer Cosmic ray physics in AREPO



Introduction
Cosmic rays in AREPO

Physics
CR acceleration
CR streaming

Local stability analysis (1)

cooling

unstable FP

region of stability region of instability

separatrix

heating

stable FP

kT

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations

Christoph Pfrommer Cosmic ray physics in AREPO



Introduction
Cosmic rays in AREPO

Physics
CR acceleration
CR streaming

Local stability analysis (2)
Theory predicts observed temperature floor at kT ' 1 keV
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Virgo cluster cooling flow: temperature profile
X-ray observations confirm temperature floor at kT ' 1 keV

Matsushita+ (2002)
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Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
→ CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are
injected into the ICM and caught in a
turbulent downdraft that is excited by
the rising bubbles
→ CR advection with flux-frozen field
→ adiabatic CR compression and
energizing: Pcr/Pcr,0 = δ4/3 ∼ 20 for
compression factor δ = 10

(3) CR escape and outward stream-
ing→ CR Alfvén-wave heating

CR streaming
and diffusion

CR injection
by bubble disruption

and CR energization
adiabatic compression
turbulent advection:
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Prediction: flattening of high-ν radio spectrum
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Conclusions on AGN feedback by cosmic-ray heating

LOFAR puzzle of “missing fossil electrons” solved by mixing with
dense cluster gas and Coulomb cooling

predicted γ rays identified with low state of M87
→ estimate CR-to-thermal pressure of Xcr = 0.31

CR Alfvén wave heating balances radiative cooling on all scales
within the radio halo (r < 35 kpc)

local thermal stability analysis predicts observed temperature
floor at kT ' 1 keV

outlook: simulate steaming CRs coupled to MHD, cosmological
cluster simulations, improve γ-ray and radio observations . . .
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