The Cosmological Impact of Blazars: from Plasma Instabilities to Structure Formation

Christoph Pfrommer1,2

in collaboration with

Avery E. Broderick2,3, Phil Chang2,4, Ewald Puchwein1, Volker Springel1

1Heidelberg Institute for Theoretical Studies, Germany
2formerly Canadian Institute for Theoretical Astrophysics, Canada
3Perimeter Institute/University of Waterloo, Canada
4University of Wisconsin-Milwaukee, USA

Nov 2, 2011 / Cosmology Seminar MPA
Outline

1. Physics of blazar heating
 - TeV emission from blazars
 - Plasma instabilities and magnetic fields
 - Extragalactic gamma-ray background

2. The intergalactic medium
 - Properties of blazar heating
 - Thermal history of the IGM
 - The Lyman-\(\alpha\) forest

3. Structure formation
 - Formation of dwarf galaxies
 - Puzzles in galaxy formation
 - Bimodality of galaxy clusters
The TeV gamma-ray sky

There are several classes of TeV sources:

- **Galactic** - pulsars, BH binaries, supernova remnants
- **Extragalactic** - mostly blazars, two starburst galaxies

VHE γ-ray Sky Map

(E > 100 GeV)

2011-01-08 - Up-to-date plot available at http://www.mpp.mpg.de/~rwagner/sources/
Unified model of active galactic nuclei

- narrow line region
- broad line region
- dusty torus
- relativistic jet
- central SMBH
The blazar sequence

- continuous sequence from LBL–IBL–HBL
- TeV blazars are dim (very sub-Eddington)
- TeV blazars have rising spectra in the Fermi band ($\alpha < 2$)
- define TeV blazar = hard IBL + HBL

Ghisellini (2011), arXiv:1104.0006
1 TeV photons can pair produce with 1 eV EBL photons:

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \]

- mean free path for this depends on the density of 1 eV photons:
 \[\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \]
 pairs produced with energy of 0.5 TeV (\(\gamma = 10^6 \))
- these pairs inverse Compton scatter off the CMB photons:
 mean free path is \(\lambda_{\text{IC}} \sim \lambda_{\gamma\gamma}/1000 \)
 producing gamma-rays of \(\sim 1 \text{ GeV} \)

\[E \sim \gamma^2 E_{\text{CMB}} \sim 1 \text{ GeV} \]

- each TeV point source should also be a GeV point source
What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – not seen!

![Graph showing TeV spectra and TeV detections with Fermi constraints and expected cascade emission]
Measuring IGM B-fields from TeV/GeV observations

- TeV beam of e^+/e^- are deflected out of the line of sight reducing the GeV IC flux \rightarrow lower limit on B

- Larmor radius
 \[r_L = \frac{E}{eB} \sim 30 \left(\frac{E}{3 \text{ TeV}} \right) \left(\frac{B}{10^{-16} \text{ G}} \right)^{-1} \text{ Mpc} \]

- IC mean free path
 \[x_{\text{IC}} \sim 0.1 \left(\frac{E}{3 \text{ TeV}} \right)^{-1} \text{ Mpc} \]

- For the associated 10 GeV IC photons the *Fermi* angular resolution is 0.2° or $\theta \sim 3 \times 10^{-3} \text{ rad}$

 \[\frac{x_{\text{IC}}}{r_L} > \theta \rightarrow B \gtrsim 10^{-16} \text{ G} \]
How do beams of e^+ / e^- propagate through the IGM?

- Plasma processes are important
- Interpenetrating beams of charged particles are unstable
- Consider the two-stream instability:

\[\omega_p = \sqrt{\frac{4\pi e^2 n_e}{\gamma^2 m_e}}, \quad \lambda_p = \gamma \frac{c}{\omega_p} \sim 10^{14} \text{ cm} \times \left(\frac{\gamma}{10^6} \right) \bigg|_{\bar{\rho}(z=0)} \]
Two-stream instability: mechanism

wave-like perturbation with $k \parallel \mathbf{v}_{\text{beam}}$, longitudinal charge oscillations in background plasma (Langmuir wave):

- initially homogeneous beam-e^-:
 - attractive (repulsive) force by potential maxima (minima)
- e^- attain lowest velocity in potential minima \rightarrow bunching up
- e^+ attain lowest velocity in potential maxima \rightarrow bunching up

\[e^+, e^- \]
Two-stream instability: mechanism

wave-like perturbation with $k \parallel \mathbf{v}_{\text{beam}}$, longitudinal charge oscillations in background plasma (Langmuir wave):

- beam-e^+ / e^- couple in phase with the background perturbation: enhances background potential
- stronger forces on beam-e^+ / e^- \rightarrow positive feedback
- exponential wave-growth \rightarrow instability

\[e^+, e^- \]
Two-stream instability: energy transfer

- particles with $v \gtrsim v_{\text{phase}}$:
 - pair energy \rightarrow plasma waves \rightarrow growing modes

- particles with $v \lesssim v_{\text{phase}}$:
 - plasma wave energy \rightarrow pairs \rightarrow damped modes
Oblique instability

k oblique to \mathbf{v}_{beam}: real word perturbations don’t choose “easy” alignment $= \sum$ all orientations

Bret (2009), Bret+ (2010)
consider a light beam penetrating into relatively dense plasma

maximum growth rate

$\sim 0.4 \gamma \frac{n_{\text{beam}}}{n_{\text{IGM}}} \omega_p$

oblique instability beats IC by two orders of magnitude
Beam physics – complications . . .

non-linear saturation:

- non-linear evolution of these instabilities at these density contrasts is not known
- expectation from PIC simulations suggest substantial isotropization of the beam
- **assume** that they grow at linear rate up to saturation

→ plasma instabilities dissipate the beam’s energy, no (little) energy left over for inverse Compton scattering off the CMB
TeV emission from blazars – a new paradigm

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{IC off CMB} \rightarrow \gamma_{\text{GeV}} \\ \text{plasma instabilities} \rightarrow \text{heating IGM} \end{cases} \]

absence of \(\gamma_{\text{GeV}} \)'s has significant implications for . . .

- intergalactic \(B \)-field estimates
- \(\gamma \)-ray emission from blazars: spectra, background

additional IGM heating has significant implications for . . .

- thermal history of the IGM: Lyman-\(\alpha \) forest
- late time structure formation: dwarfs, galaxy clusters
Implications for B-field measurements

Fraction of the pair energy lost to inverse-Compton on the CMB: $f_{IC} = \Gamma_{IC}/(\Gamma_{IC} + \Gamma_{oblique})$

Broderick, Chang, C.P. (2011)
Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- beam instabilities may allow high-energy e^+/e^- pairs to self scatter and/or lose energy
- isotropizes the beam – no need for B-field
- $\lesssim 1$–10% of beam energy to IC CMB photons

→ TeV blazar spectra are not suitable to measure IGM B-fields!
TeV blazar luminosity density: today

- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ($\eta_B \sim 0.2\%$) of that of quasars!

Broderick, Chang, C.P. (2011)
Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity

→ assume that they trace each other for all redshifts!
How many TeV blazars are there?

\[\log(\Phi(z, M_B < -27)) \text{ [Mpc}^{-3}] \]

Hopkins+ (2007)
How many TeV blazars are there?

Hopkins+ (2007)
How many TeV blazars are there?

Fermi extragalactic gamma-ray background

Fermi hard gamma-ray blazar counts

Hopkins+ (2007)
Fermi number count of “TeV blazars”

- number evolution of TeV blazars that are expected to have been observed by *Fermi* vs. observed evolution
- colors: different flux (luminosity) limits connecting the *Fermi* and the TeV band:

\[
L_{\text{TeV, min}}(z) = \eta L_{\text{Fermi, min}}(z)
\]

- evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!
How many TeV blazars are there at high-z?

Hopkins+ (2007)
Fermi probes “dragons” of the gamma-ray sky

Fermi LAT Extragalactic Gamma-ray Background

Energy (GeV)
Intensity (GeV photons per cm² per sec per steradian)

Background accounted for by unresolved AGN
Unknown contributors
Extragalactic gamma-ray background

- assume all TeV blazars have identical intrinsic spectra:

\[F_E = L \hat{F}_E \propto \frac{1}{(E/E_b)^{\alpha_L-1} + (E/E_b)^{\alpha-1}} , \]

\(E_b \) is break energy,
\(\alpha_L < \alpha \) are low and high-energy spectral indexes

- extragalactic gamma-ray background:

\[E^2 \frac{dN}{dE}(E, z) = \frac{1}{4\pi} \int_{z}^{\infty} dV(z') \frac{\eta_B \tilde{\Lambda}_Q(z') \hat{F}_{E'}}{4\pi D_L^2} e^{-\tau_E(E',z')} , \]

\(E' = E(1 + z') \) is gamma-ray energy at emission,
\(\tilde{\Lambda}_Q \) is physical quasar luminosity density,
\(\tau \) is optical depth
Extragalactic gamma-ray background: varying α

- **dotted**: unabsorbed EGRB due to TeV blazars
- **dashed**: absorbed EGRB due to TeV blazars
- **solid**: absorbed EGRB, after subtracting the resolved TeV blazars ($z < 0.25$)

Broderick, Chang, C.P. (2011)
Extragalactic gamma-ray background: varying α_L

- **dotted**: unabsorbed EGRB due to TeV blazars
- **dashed**: absorbed EGRB due to TeV blazars
- **solid**: absorbed EGRB, after subtracting the resolved TeV blazars ($z < 0.25$)

Broderick, Chang, C.P. (2011)

Christoph Pfrommer

Blazar heating
Extragalactic gamma-ray background: varying E_b

- **dotted**: unabsorbed EGRB due to TeV blazars
- **dashed**: absorbed EGRB due to TeV blazars
- **solid**: absorbed EGRB, after subtracting the resolved TeV blazars ($z < 0.25$)

Broderick, Chang, C.P. (2011)
Conclusions on extragalactic gamma-ray background

- the TeV blazar luminosity density is a scaled version of the quasar luminosity density at $z = 0.1$
- assuming that TeV blazars trace quasars for all z and adopting typical spectra, we can match the *Fermi*-LAT extragalactic gamma-ray background
- evolving blazars do not overproduce EGRB since the absorbed energy is not reprocessed to GeV energies
- fraction of absorbed energy is greater at higher energies
Evolution of the heating rates

Heating Rates [eV Gyr$^{-1}$]

- HI, HeI$^-$/HeII$^-$ reionization
- Blazar heating
- Photoheating

10x larger heating

Chang, Broderick, C.P. (2011)
Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- \(T_{\text{IGM}} \sim 10^4 \) K (1 eV) at mean density \((z \sim 2)\)
 \[
 \varepsilon_{\text{th}} = \frac{kT}{m_p c^2} \sim 10^{-9}
 \]
- radiative energy ratio emitted by BHs in the Universe \((\text{Fukugita} \& \text{Peebles 2004})\)
 \[
 \varepsilon_{\text{rad}} = \eta \Omega_{\text{bh}} \sim 0.1 \times 10^{-4} \sim 10^{-5}
 \]
- fraction of the energy energetic enough to ionize H I is \(\sim 0.1:\)
 \[
 \varepsilon_{\text{UV}} \sim 0.1 \varepsilon_{\text{rad}} \sim 10^{-6} \rightarrow kT \sim \text{keV}
 \]
- photoheating efficiency \(\eta_{\text{ph}} \sim 10^{-3}\)
 \[
 kT \sim \eta_{\text{ph}} \varepsilon_{\text{UV}} m_p c^2 \sim \text{eV}
 \]
 (limited by the abundance of H I/He II due to the small recombination rate)
- blazar heating efficiency \(\eta_{\text{bh}} \sim 10^{-3}\)
 \[
 kT \sim \eta_{\text{bh}} \varepsilon_{\text{rad}} m_p c^2 \sim 10 \text{ eV}
 \]
 (limited by the total power of TeV sources)
Chang, Broderick, C.P. (2011)
blazars and extragalactic background light are uniform:
→ blazar heating rate independent of density
→ makes low density regions hot
→ causes inverted temperature-density relation, $T \propto 1/\delta$
Blazars cause hot voids

- blazars completely change the thermal history of the diffuse IGM and late-time structure formation.
Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2011):

- $L = 15h^{-1}\text{Mpc}$ boxes with 2×384^3 particles
- one reference run without blazar heating
- three with blazar heating at different levels of efficiency (address uncertainty)
- used an up-to-date model of the UV background (Faucher-Giguère+ 2009)
Temperature-density relation

Puchwein, C.P., Springel, Broderick, Chang (2011)
Ly-α spectra

- Transmitted flux fraction $e^{-\tau}$
 - No blazar heating
 - Intermediate b. h.

Velocity [km s$^{-1}$]

$\Delta e^{-\tau}$

Puchwein+ (2011)
Physics of blazar heating
The intergalactic medium
Structure formation

Properties of blazar heating
Thermal history of the IGM
The Lyman-α forest

The end of fudged Ly-α simulations

Effective optical depth τ_{eff} vs. redshift z

- No blazar heating
- Weak blazar heating
- Intermediate blazar heating
- Strong blazar heating

Viel et al. 2004
Tytler et al. 2004
FG '08

Photoionization rate $\Gamma_{\text{HI}} \times 10^{-12}$ s$^{-1}$ vs. redshift z

- No blazar heating
- Weak blazar heating
- Intermediate blazar heating
- Strong blazar heating

FG '08
FG '08, inv. EOS
FG '09 model

$\Delta \Gamma_{\text{HI}} / \sigma_{\Gamma_{\text{HI}}}$ vs. redshift z

Puchwein+ (2011)
Ly-α flux PDFs and power spectra

self-consistent UV background

10^1
10^0
10^-1
10^-2

PDF of transmitted flux fraction

z = 2.52

z = 2.94

transmitted flux fraction

Puchwein+ (2011)
decomposing Lyman-α forest into individual Voigt profiles
allows studying the thermal broadening of absorption lines
Voigt profile decomposition – line width distribution

PDF of $b \, [\text{km} \, \text{s}^{-1}]$

- $N_{\text{HI}} > 10^{13} \, \text{cm}^{-2}$
- $2.75 < z < 3.05$
- no blazar heating
- weak blazar heating
- intermediate blazar heating
- strong blazar heating

Kirkman & Tytler '97

Puchwein+ (2011)
improvement in modelling the Lyman-\(\alpha\) forest is a direct consequence of the peculiar properties of blazar heating:

- **heating rate independent of IGM density** → naturally produces the inverted \(T–\rho\) relation that Lyman-\(\alpha\) forest data demand

- **recent and continuous nature of the heating** needed to match the redshift evolutions of all Lyman-\(\alpha\) forest statistics

- **magnitude of the heating rate required by Lyman-\(\alpha\) forest data** \(\sim\) the total energy output of TeV blazars (or equivalently \(\sim 0.2\%\) of that of quasars)
Entropy evolution

- evolution of entropy, $K_e = kTn_e^{-2/3}$, governs structure formation
- blazar heating: late-time, evolving, modest entropy floor

C.P., Chang, Broderick (2011)
Dwarf galaxy formation – Jeans mass

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter IGM → higher IGM pressure → higher Jeans mass:

\[M_J \propto \frac{c_s^3}{\rho^{1/2}} \propto \left(\frac{T_{\text{IGM}}^3}{\rho} \right)^{1/2} \]

\[\Rightarrow \frac{M_{J,\text{blazar}}}{M_{J,\text{photo}}} \approx \left(\frac{T_{\text{blazar}}}{T_{\text{photo}}} \right)^{3/2} \gtrsim 30 \]

\[\rightarrow \text{depends on instantaneous value of } c_s \]

- “filtering mass” depends on full thermal history of the gas: accounts for delayed response of pressure in counteracting gravitational collapse in the expanding universe

- apply corrections for non-linear collapse
Dwarf galaxy formation – Filtering mass

\[M_F \sim 10^{11} M_\odot \]
\[M_F \sim 10^{10} M_\odot \]

\[1 + \delta = 1, \quad z_{\text{reion}} = 10 \]

\[M_{F, \text{blazar}} / M_F \]

C.P., Chang, Broderick (2011)

Christoph Pfrommer
Blazar heating
blazar heating efficiently suppresses the formation of void dwarfs within existing DM halos of masses $< 3 \times 10^{11} M_\odot$ ($z = 0$) may reconcile the number of void dwarfs in simulations and the paucity of those in observations
When do dwarfs form?

Dolphin et al. (2005)

isochrone fitting for different metallicities → star formation histories
When do dwarfs form?

\[\tau_{\text{form}} > 10 \text{ Gyr}, z > 2 \]
“Missing satellite” problem in the Milky Way

- Blazar heating suppresses late satellite formation, may reconcile low observed dwarf abundances with CDM simulations

![Diagram showing satellite formation time and luminosity function](image)

- Late forming satellites (< 10 Gyr) not observed!

![Linear theory vs. non-linear theory](image)

- No blazar heating: linear theory
- Non-linear theory

Maccio & Fontanot (2010)

Maccio+ (2010)

Blazar heating
Galactic H I-mass function

- H I-mass function is too flat (i.e., gas version of missing dwarf problem!)
- photoheating and SN feedback too inefficient
- IGM entropy floor of $K \sim 15 \text{ keV cm}^2$ at $z \sim 2 - 3$ successful!
When do clusters form?

- **mass accretion history**

- **mass accretion rates**

- Most cluster gas accretes after $z = 1$, when blazar heating can have a large effect (for late forming objects)!

C.P., Chang, Broderick (2011)
Do optical and X-ray/Sunyaev-Zel’dovich cluster observations probe the same population? (Hicks+ 2008, Planck Collaboration 2011)
Entrophy profiles: effect of blazar heating

varying formation time

![Graph showing entropy profiles with varying formation time](image)

varying cluster mass

![Graph showing entropy profiles with varying cluster mass](image)

assume

big fraction of intra-cluster medium collapses from IGM:

- redshift-dependent entropy excess in cores
- greatest effect for late forming groups/small clusters
Gravitational reprocessing of entropy floors

- greater initial entropy K_0
 - \rightarrow more shock heating
 - \rightarrow greater increase in K_0
 - over entropy floor
- net K_0 amplification of 3-5
- expect:
 - median $K_{e,0} \sim 150$ keV cm2
 - max. $K_{e,0} \sim 600$ keV cm2
Cool-core versus non-cool core clusters

Cavagnolo+ (2009)
Cool-core versus non-cool core clusters

- time-dependent preheating + gravitational reprocessing
 → CC-NCC bifurcation (two attractor solutions)

- need hydrodynamic simulations to confirm this scenario
How efficient is heating by AGN feedback?

\[E_{\text{cav}} = 4PV_{\text{tot}} \times 10^{58} \text{erg} \]

\[K_{e,0} \text{ [keV cm}^2\text{]} \]

C.P., Chang, Broderick (2011)

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

Christoph Pfrommer

Blazar heating
How efficient is heating by AGN feedback?

\[E_{\text{cav}} = 4P V_{\text{tot}} \times 10^{58} \text{ erg} \]

\[K_{e,0} \text{ [keV cm}^2\text{]} \]

C.P., Chang, Broderick (2011)

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)
How efficient is heating by AGN feedback?

\[E_{\text{cav}} = 4PV_{\text{tot}} \times 10^{58} \text{ erg} \]

\[K_{e,0} \text{ [keV cm}^2\text{]} \]

C.P., Chang, Broderick (2011)

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

Christoph Pfrommer

Blazar heating
How efficient is heating by AGN feedback?

\[E_{\text{cav}} = 4 PV_{\text{tot}} \times 10^{58} \text{erg} \]

\[K_{e,0} \text{ [keV cm}^2\text{]} \]

Cool cores vs. non-cool cores

C.P., Chang, Broderick (2011)

\[E_{b,2500}(kT_X = 0.7 \text{ keV}) \]
\[E_{b,2500}(kT_X = 1.2 \text{ keV}) \]

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)
How efficient is heating by AGN feedback?

\(E_{\text{cav}} = 4P V_{\text{tot}} [10^{58} \text{erg}] \)

\(K_{e,0} [\text{keV cm}^2] \)

Cool cores

Non-cool cores

\(E_{b,2500}(kT_X = 0.7 \text{ keV}) \)

\(E_{b,2500}(kT_X = 1.2 \text{ keV}) \)

\(E_{b,2500}(kT_X = 2.0 \text{ keV}) \)

\(E_{b,2500}(kT_X = 3.5 \text{ keV}) \)

\(E_{b,2500}(kT_X = 5.9 \text{ keV}) \)

C.P., Chang, Broderick (2011)
How efficient is heating by AGN feedback?

C.P., Chang, Broderick (2011)

\[E_{\text{cav}} = 4PV_{\text{tot}} \times 10^{58} \text{erg} \]

\[K_{e,0} \text{ [keV cm}^2\text{]} \]

\[E_{b,2500}(kT_X = 0.7 \text{ keV}) \]
\[E_{b,2500}(kT_X = 1.2 \text{ keV}) \]
\[E_{b,2500}(kT_X = 2.0 \text{ keV}) \]
\[E_{b,2500}(kT_X = 3.5 \text{ keV}) \]

cool cores
non-cool cores

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

Christoph Pfrommer
Blazar heating
How efficient is heating by AGN feedback?

C.P., Chang, Broderick (2011)

\[E_{\text{cav}} = 4 PV_{\text{tot}} \times 10^{58} \text{erg} \]

\[K_{e,0} \times [\text{keV cm}^2] \]

\[E_{b,2500}(kT_X = 5.9 \text{ keV}) \]

\[E_{b,2500}(kT_X = 3.5 \text{ keV}) \]

\[E_{b,2500}(kT_X = 2.0 \text{ keV}) \]

\[E_{b,2500}(kT_X = 1.2 \text{ keV}) \]

\[E_{b,2500}(kT_X = 0.7 \text{ keV}) \]

Christoph Pfrommer

Blazar heating
How efficient is heating by AGN feedback?

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

C.P., Chang, Broderick (2011)
Conclusions on blazar heating

- explains puzzles in high-energy astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background

- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - rate independent of density \rightarrow inverted $T-\rho$ relation
 - quantitative self-consistent picture of high-z Lyman-α forest

- significantly modifies late-time structure formation:
 - suppresses late dwarf formation (in accordance with SFHs): “missing satellites”, void phenomenon, $\text{H} \, \text{I}$-mass function
 - group/cluster bimodality of core entropy values
Ly-α flux PDFs and power spectra

Puchwein+ (2011)